Quiz 9 Polymer Properties March 8, 2017

- 1) Through modification of the Arrhenius equation $\eta = \eta_0 \exp\left(\frac{-E_a}{kT}\right)$ using the Vogel temperature, T_V and the idea that E_a is a free energy rather than an enthalpy, $E_a = \Delta H T\Delta S$, show that it is possible to obtain the WLF expression,
 - $\eta = \eta_0 \exp\left(\frac{-C_1(T T_0)}{C_2 + (T T_0)}\right)$. Do this by finding expressions for ΔH , ΔS and T_v in terms

of C_1 , C_2 and T_0 .

- 2) Explain what the Vogel temperature is and, using a cartoon of circles in flow, explain to what ΔH and ΔS correspond.
- 3) The hydrodynamic radius corresponds to something like a harmonic mean while the radius of gyration corresponds to a second order moment, a type of arithmetic mean. Explain why this might be the case. Where is the harmonic mean usually used? Which size is larger for an expanded coil, R_H or R_g? What about for a sphere?
- 4) Starting with the power series expression for intrinsic viscosity,

$$\eta = \eta_0 \left(1 + c \left[\eta \right] + k_1 c^2 \left[\eta \right]^2 + k_2 c^3 \left[\eta \right]^3 + \dots + k_{n-1} c^n \left[\eta \right]^n \right)$$

Explain the origin of the Kraemer equation,

$$\frac{\ln(\eta_r)}{c} = [\eta] + k_1 [\eta]^2 c$$