
Quiz 10 Polymer Properties April 12, 2019

- Chain overlap and chain entanglement are related concepts but display distinct behavior as a function of concentration for uncharged polymers in theta and good solvents and for polyelectrolytes, the three universal classes for flexible polymers in solution, Figure 1.
- a) Figure 2 shows the behavior of c* and ce,
 -top circles ce for uncharged polymers following M^{-0.8},
 -next circles down ce for polyelectrolytes M^{-0.8},
 -middle stars c* for uncharged polymers in good solvent following M^{-0.8} and
 -bottom stars etc. c* for polyelectrolytes following M⁻².

Explain the origin of the dependence of c^* on molecular weight for the polyelectrolytes (bottom stars) and noncharged polymers in a good solvent (middle stars).

*Colby RH Structure and linear viscoelasticity of flexible polymer solutions: comparison of Polyelectrolyte and neutral polymer solutions. Rheol. Acta **49** 425-42 (2010) **Dou S and Colby RH Charge Density Effects in Salt-Free Polyelectrolyte Solution Rheology J. Polym. Sci. Polym. Phys. **44** 2001-2013 (2006).

b) The entanglement concentration (top circles), c_e , is larger than the overlap concentration, c^* , by a factor of 10 for uncharged polymers and by a factor of up to 10,000 for polyelectrolytes. Why do you think the entanglement concentration follows $M^{-0.8}$ for

both the polyelectrolytes and for the uncharged polymers in good solvents noting the differences in c^* behavior from part "a"?

- c) Explain the behavior seen in Figure 10 for the specific viscosity, $\eta_{sp} = (\eta \eta_0)/\eta_0$ based on your answers to parts a and b. The top curve is for a polyelectrolyte and the bottom curve for an uncharged polymer. Compare the concentration ranges in Figure 10 for the 1/2 and 1.3 power-law regimes with Figure 2.
- d) Figure 5 shows four regimes for the specific viscosity of a polyelectrolyte. Write an expression that relates the specific viscosity to the intrinsic viscosity. Show that if φ^{*} = 1/[η] then η_{sp} must equal 1 at φ^{*}. Does Figure 5 support this conjecture?
- e) For polyelectrolytes the tube diameter (entanglement spacing), d_t , is much larger than the spacing between chains or mesh size, ξ . This is because the tube diameter is defined in terms of the point where the kT energy of each monomer cannot overcome the constraint of surrounding chains, whereas ξ is defined as the distance of first contact between chains, a shorter distance. Within the tube the chain is a random walk of correlation blobs. For polyelectrolytes, as chain concentration increases the counterion concentration also increases until the charge is screened out at ϕ^{**} and the chains become neutral chains since all of the charge effects are screened. Figure 5 below (circles) shows this behavior. **Explain how you could change the three transition points**, ϕ^* , ϕ_e , and ϕ^{**} for a given polymer.

ANSWERS: Quiz 10 Polymer Properties April 12, 2019

- a) Uncharged polymers are in a good solvent so $d_f = 5/3$ (or 1/0.588). $c^* = M/V = M/M^{3/df}$. This has a value of M^{-0.8} for good solvents. For rods $d_f = 1$, so $c^* \sim M^{-2}$
- b) For both chains there is a transition at about η_{sp} of 1 from dilute to semi-dilute unentangled chains. Dilute chains follow Rouse behavior with $\eta_{sp} \sim c$. Above c^* , Fuoss behavior is seen for polyelectrolytes $\eta_{sp} \sim c^{1/2}$, and a power law of $c^{1.3}$ for noncharged good solvent chains. Then there is a gap until c_e is reached where a much stronger power-law dependence is observed on the order of c^3 . The issue concerning the dependence of the entanglement concentration on M is not addressed in the papers as far as I saw. The reason is hinted at in Figure 1. The linear size of the polyelectrolyte follows $L \sim N$. But the lateral size follows $D \sim N^{0.588}$. The

lateral size is what controls entanglements for polyelectrolytes, whereas the length controls c^* . There doesn't seem to be another explanation, though this explanation doesn't seem particularly believable. Nonetheless, the data that he presents clearly supports this argument.

- c) For Figure 10 and the uncharged chain the transition from Rouse to unentangled overlap occurs at about $c_n = 0.1$. c_n is the number of monomers per liter. c_n is proportional to c^*/c_e which are in g/ml. We don't know the conversion factor. So say the conversion factor is $c^* \sim c_e \sim c_n/20$ so $c_n = 0.1$ becomes $c \sim 5e^{-3}$ g/ml and the gap between red stars and red circles is about a factor of 10 so $c_e \sim 5e^{-2}$ g/ml and the corresponding c_n is 1, which is about where the transition to the entangled regime occurs in Figure 10 for the red circles on the bottom. Similarly, the c^* transition for polyelectrolytes in Figure 10 occurs at $c_n \sim 3e^{-3}$ which might correspond to $c^* \sim 1.5 e^{-4}$ at a molecular weight of 25,000 in Figure 2 with a corresponding c_e of $7e^{-2}$ g/ml or c_n of 1.4 which agrees fairly well with figure 10.
- d) $\eta = \eta_0(1+\phi[\eta])$ so $\eta_{sp} = (\eta-\eta_0)/\eta_0 = \phi[\eta]$. If $\phi^* = 1/[\eta]$, then $\eta_{sp} = 1$ at ϕ^* . The data in Figure 5 and 10 support this conjecture more or less. The actual transition seems to happen at a slightly higher η_{sp} .
- e) ϕ^{**} can be changed by adding salt which would lower the value due to Debye screening. ϕ^* can be changed with the molecular weight or solvent quality (changing d_f). ϕ_e can be changed with the temperature, at higher temperature the tube would be larger and ϕ_e would be higher since the tube would be larger.