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ABSTRACT
Entropic segregation of chain ends to the surface of a monodisperse polymer melt and its effect on surface tension are exam-
ined using self-consistent field theory (SCFT). In order to assess the dependence on chain stiffness, the SCFT is solved for
worm-like chains. Our focus is still on relatively flexible polymers, where the persistence length of the polymer, `p, is com-
parable to the width of the surface profile, ξ , but still much smaller than the total contour length of the polymer, `c. Even
this small degree of rigidity causes a substantial increase in the level of segregation, relative to that of totally flexible Gaussian
chains. Nevertheless, the long-range depletion that balances the surface excess still exhibits the same universal shape derived
for Gaussian chains. Furthermore, the excess continues to reduce the surface tension by one unit of kBT per chain end, which
results in the usual N−1 reduction in surface tension observed by experiments. This enhanced segregation will also extend to
polydisperse melts, causing the molecular-weight distribution at the surface to shift towards smaller Nn relative to the bulk.
This provides a partial explanation for recent quantitative differences between experiments and SCFT calculations for flexible
polymers.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064549

I. INTRODUCTION

Silberberg1 has cleverly argued that the surface of a poly-
mer melt behaves like a reflecting boundary. This, in turn,
implies that the probability distributions of the individual seg-
ments of the polymer are uniform all the way from the bulk
right up to the surface. It also implies that the surface ten-
sion should be independent of molecular weight or rather the
degree of polymerization, N. However, simulations,2–6 self-
consistent field theory (SCFT),7–10 and experiments11 all find
an excess of chain ends at the surface. Furthermore, SCFT7–10

and experiments12–18 report an N-dependence in the surface
tension. Other deviations from Silberberg’s hypothesis have
also been detected by simulations.19,20

The deviations can be attributed to the fact that the
Silberberg argument is based on a couple of simplifying
assumptions, an off-lattice model in which the energy of
a polymer configuration is unaffected when folded about a
plane and an infinitely sharp surface profile. Previous pre-
dictions of entropic segregation either represented polymers
on a lattice,6 used a bead-spring model where folding causes
a change in energy,5,9 or involved a surface profile of finite
width.7 It has been shown that the finite width of the sur-
face profile generally provides the dominant contribution to
the segregation.21,22 Excluded-volume interactions will also
affect the energy of folding a polymer configuration and could,
therefore, contribute to entropic segregation. However, sim-
ulations23 have shown that this effect is relatively minor,
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presumably because hard-core interactions are, to a good
approximation, screened in polymer melts.24

Because the number of chain ends has to be conserved on
the molecular length scale (i.e., two per molecule), the excess
at the surface is balanced by a depletion of equivalent magni-
tude extending into the melt to a distance of order aN1/2, the
end-to-end length of a polymer. An analytical approximation9

for flexible Gaussian chains predicts that the compensating
depletion takes the form

δφe(z) ≈
A

N1/2
B
( z
aN1/2

)
, (1)

involving the universal function

B(ζ ) =

√
6
π

exp
(
−

3
2
ζ2

)
−

1
π

∫ ∞
−∞

dkζ
(e−x − 1)2eikζ ζ

e−x + x − 1
, (2)

where x = k2
ζ /6. The amplitude of the effect, A, is dependent

on the microscopic details of the system. The segregation also
causes a reduction in surface tension,9

γen

aρ0kBT
≈ Γ∞ −

2A
N

, (3)

from the infinite molecular-weight limit, Γ∞, that is propor-
tional to A. This proportionality results because each chain end
that segregates to the surface reduces the free energy by one
unit of kBT.10,25

Experiments11 have claimed to observe the entropic seg-
regation using neutron reflectivity on polystyrene chains with
deuterated ends. However, this claim is not entirely conclu-
sive because deuterium labeling is known to create enthalpic
interactions strong enough to mask entropic effects.26,27
Nevertheless, the segregation has also been detected in poly-
disperse melts,32 where it causes a shift in the molecular-
weight distribution towards smaller Nn at the surface relative
to the bulk, due to the fact that shorter polymers have more
ends per unit volume.21,23,28–31 In this case, the experiments
measured the shift in Nn using MALDI time-of-flight spec-
trometry, which does not require any labeling. Although the
shift was in qualitative agreement with SCFT, the effect was
considerably stronger than predicted. Two possible expla-
nations were given. It was suggested that the shift may
have been enhanced by enthalpic effects.12,33 Even with-
out labeling, the interactions of end segments will gener-
ally differ somewhat from those of middle segments.34 The
other suggestion was that the difference could be related to
chain stiffness not captured by the SCFT calculations, which
were based on freely-jointed chains. Chain stiffness penal-
izes the folding of polymer chains, which violates the Silber-
berg assumptions and thus could contribute to the entropic
segregation.21

Here, we extend the previous SCFT for entropic segrega-
tion and its effect on surface tension to semiflexible worm-like
chains.35 Still, our study focuses on relatively flexible poly-
mers, where the persistence length, `p, is comparable to the
width of the surface, ξ , but still much smaller than the total
contour length of the polymer, `c. The coefficients A and Γ∞

are calculated from the results for the long-chain limit, and
then, the accuracy of Eq. (1) for the compensating deple-
tion and Eq. (3) for the molecular-weight dependence of the
surface tension are tested for polymers of finite length.

II. THEORY
We consider a monodisperse melt of n polymers, each

containing N segments of length b, giving a total contour
length of `c = bN. The configuration of the α’th molecule
is specified by the space curve rα(s), where the backbone
parameter runs from s = 0 to 1. The polymers are modeled
as worm-like chains,35,36 for which the energy of a polymer
configuration is given by

E
kBT

=
κ

2N

∫ 1

0
ds��u′α(s)��2, (4)

where
uα(s) ≡ r′α (s)/`c (5)

is a unit vector tangent to the chain. The parameter κ is a
dimensionless bending modulus, which controls the persis-
tence length, `p = bκ. In a bulk melt, the average end-to-end
length of a worm-like chain is35–37

R0 =

√
2`p(`c − `p[1 − exp(−`c/`p)]). (6)

For long chains of `c � `p, this expression reduces to

R0 ≈ a
√
N, where the statistical segment length is a =

√
2`pb.

Note that we follow the convention where segments are
defined to have a specified volume, ρ−1

0 , such that the total
volume of the melt is V = nN/ρ0.

Using this model, we examine a flat surface of area A
located at z = 0. To make the problem tractable, the molecu-
lar interactions are represented by a static field, w(z), which
depends only on the coordinate z normal to the surface.
Within this mean-field approximation, the polymer concen-
tration relative to the bulk is

φ(z) =
V

2Q

∫ 1

−1
duz

∫ 1

0
dsG(z,uz, s)G(z,−uz, 1 − s), (7)

where

Q =
A
2

∫ 1

−1
duz

∫
dzG(z,uz, s)G(z,−uz, 1 − s) (8)

is a single-chain partition function. Note that the integration
in Eq. (8) is independent of s.

The above expressions involve the propagator, G(z, uz, s),
which is the partition function for a chain fragment of sN seg-
ments with one end constrained such that the projections of
rα(s) and uα(s) onto the z-axis are z and uz, respectively. It
satisfies the differential equation

∂G
∂s
=
`c

2`p
∂

∂uz

[
(1 − u2

z )
∂G
∂uz

]
− `cuz

∂G
∂z
− wG, (9)

with the initial condition G(z, uz, 0) = 1.36,37 The equa-
tion is solved with reflecting boundary conditions, using the
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numerical algorithm described in Ref. 38. We ensure that the
grid sizes used in the algorithm are sufficiently small and that
the boundaries at negative and positive z are sufficiently far
from the surface (i.e., z = 0) such that numerical inaccuracies
are irrelevant on the scale of our plots.

Generally, one needs to specify the interaction energy of
the melt, which is typically written as

U[φ] =
∫

dr f(φ), (10)

where f(φ) is the energy density relative to the bulk (i.e., f(1)
= 0). In SCFT, the field is normally adjusted to satisfy the
self-consistent condition, w(z) = Nf′(φ(z))/ρ0kBT. As such, the
problem of evaluating the surface segregation is coupled to
the calculation of the surface profile, φ(z). Past studies7,8 have
used a simple choice for U[φ] that results in some unphysi-
cal behaviors, which we will discuss later. Rather than dealing
with the complication of a more realistic U[φ],39–41 we take
the alternative approach of adjusting w(z) in order to create
a specified concentration profile.9,10,21 We specifically choose
the sigmoidal profile

φ(z) =
1
2

[
1 + tanh

(
2z
ξ

)]
, (11)

characteristic of simulations,42,43 where the width of the
surface, ξ , is used as our unit of length. The field is deter-
mined with the same Anderson mixing algorithm44 used pre-
viously.10,21

As usual, the SCFT is unaffected by an additive constant
to the field, and so for convenience, we set w(z) = 0 in the
bulk. With this choice, G(z, uz, s)→ 1 as z→∞, and thus, Eq. (7)
requires Q = V in order that φ(z) → 1 as z → ∞. Given this
requirement, the dimensionless concentration of chain ends
relative to the bulk is

φe(z) =
1
2

∫ 1

−1
duzG(z,uz, 1), (12)

and the surface tension is45

γen = −
ρ0kBT
N

∫
dzw(z)φ(z). (13)

Because our calculation creates the surface by constraining
the polymer concentration instead of using molecular inter-
actions, it only provides the entropic contribution to the sur-
face tension, γen. This is also true of calculations that use
constraining walls to create the surface.28,30,46 The enthalpic
contribution is given by γint = U[φ]/A. Although γint con-
tains no explicit N-dependence, it does produce an implicit
N-dependence due to variations in φ(z), which are, in princi-
ple, determined by minimizing the total tension, γ = γint + γen,
with respect to φ(z). Nevertheless, we will illustrate later that
γen alone provides the correct N-dependence to leading order
(i.e., to order N−1).

The analytical Eqs. (1) and (3) are derived from an expan-
sion about the long-chain limit.9 The propagator for this limit,
G∞(z, uz), is obtained by integrating Eq. (9) until it becomes

independent of s, or in other words until both sides of the
equation equal zero.47 The field is then adjusted as before, but
using the simpler expression

φ(z) =
V

2Q

∫ 1

−1
duzG∞(z,uz)G∞(z,−uz), (14)

where

Q =
A
2

∫ 1

−1
duz

∫
dzG∞(z,uz)G∞(z,−uz). (15)

Once the propagator, G∞(z, uz), and the corresponding field,
w∞(z), have been determined, the coefficients in Eqs. (1) and
(3) are given by

A =
1
a

∫
dz[φe,∞(z) − φ(z)], (16)

where

φe,∞(z) =
1
2

∫ 1

−1
duz G∞(z,uz) (17)

is the concentration of ends relative to the bulk and

Γ∞ = −
b
a`c

∫
dzw∞(z)φ(z). (18)

FIG. 1. (a) Concentration of chain ends, φe ,∞(z), and (b) self-consistent field,
w∞(z), calculated in the long-chain limit (i.e., `c → ∞) for different persistence
lengths, `p. The `p = 0 curves are given by Eqs. (19) and (20). The dashed curve
in (a) denotes the total polymer concentration, φ(z).
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III. RESULTS
We begin by considering the long-chain limit (i.e., `c→∞).

Figure 1(a) compares the distribution of chain ends, φe ,∞(z),
to the overall polymer concentration, φ(z), for several differ-
ent persistence lengths, `p. In all cases, there is an excess of
chain ends near the surface [i.e., φe ,∞(z) > φ(z)]. For flexible
Gaussian chains (i.e., `p = 0), the distribution obeys the simple
expression7,21

φe,∞(z) =
√
φ(z). (19)

As the polymers become more rigid, φe ,∞(z) extends further
from the surface. Figure 1(b) shows the field, w∞(z), required
to enforce the surface profile, φ(z). It involves a shallow well
that pulls the polymers toward z = 0, followed by a barrier that
prevents them from invading the z < 0 region. The field for
flexible Gaussian chains, which is given by48

w∞(z) =
a2N∇2

√
φ(z)

6
√
φ(z)

, (20)

FIG. 2. (a) Dimensionless surface excess of chain ends, A, and (b) dimensionless
surface tension, Γ∞, as a function of persistence length, `p, calculated in the long-
chain limit. The dashed lines denote the Gaussian-chain predictions in Eqs. (22)
and (23).

needs to counteract the loss of configurational entropy,48

∆Sconf = −
kBa2ρ0

24

∫
dr
|∇φ |2

φ
, (21)

which acts to oppose gradients in φ(z). This free energy
penalty diminishes as the polymers become more rigid, which,
in turn, explains the reduction in the field strength with
increasing `p.

Figure 2(a) shows the integrated excess of chain ends, A,
defined in Eq. (16). For persistence lengths, `p, comparable to
the width of the surface profile, ξ , there is about 40% increase
relative to the dashed line for flexible Gaussian chains,21

A =
ξ ln 2

2a
, (22)

which is obtained by inserting Eqs. (11) and (19) into Eq. (16).
Figure 2(b) shows the dimensionless surface tension, Γ∞,
defined in Eq. (3) and calculated from Eq. (18). The dashed line
denotes the Gaussian-chain approximation,21

Γ∞ =
a

12ξ
, (23)

FIG. 3. Concentration of chain ends, φe(z), calculated for persistence lengths of
(a) `p = ξ /2 and (b) `p = 2ξ . As the contour length, `c , increases, the profiles con-
verge to the long-chain limit, φe ,∞(z), from Fig. 1(a). The dashed curves denote
the total polymer concentration, φ(z).
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obtained by inserting Eqs. (11) and (20) into Eq. (18). In all
cases, the tension is smaller than that of flexible Gaussian
chains of equal segment length. Note that the quantities,
A and Γ∞, in Fig. 2 will appear later as coefficients in the
analytical expressions for the compensating depletion, Eq. (1),
and surface tension, Eq. (3), of finite chains.

We now turn our attention to polymers of finite size.
Figure 3 compares the distribution of chain ends, φe(z), to
the total polymer concentration, φ(z), for a range of chain
lengths, `c. As required, φe(z) converges to the infinite-chain
limit, φe ,∞(z), but rather slowly. Finite-chain effects are still
significant even for our longest polymers of `c = 512ξ . One
important qualitative difference of finite chains is that δφe(z)
≡ φe(z) − φ(z) switches from positive (i.e., an excess of ends)
for z . 0 to negative (i.e., a depletion of ends) for z & 0.
This is because the excess of ends at the surface has to
come from somewhere, and consequently, a compensating
depletion occurs just beyond the surface. As illustrated in
Fig. 3, the depletion becomes smaller in amplitude and extends
further into the melt for longer polymers. The depletion
eventually vanishes as `c → ∞, simply because ends from
larger polymers can be extracted from ever deeper into the
melt.

FIG. 4. Long-range depletion of chain ends, δφe(z) ≡ φe(z) − φ(z) < 0, scaled
with respect to the average end-to-end length, aN1/2, plotted for persistence
lengths of (a) `p = ξ /2 and (b) `p = 2ξ . As the contour length, `c , increases,
the profiles converge to the universal shape in Eq. (1).

As shown previously for flexible chains,9,10,23 Fig. 4 illus-
trates that the amplitude of the depletion decreases as R−1

0 ,
while the range increases as R0. Furthermore, Fig. 4 illus-
trates that, as the polymers increase in size, the depletion
approaches the analytical result in Eq. (1), involving the uni-
versal shape, B(z/aN1/2), with an amplitude given by the same
A plotted in Fig. 1(a). Although the persistence length does not
affect the shape of the depletion, it does have a sizeable effect
on the amplitude. Indeed, the amplitude is approximately 50%
larger for `p = 2ξ than for `p = ξ/2.

We conclude by examining the effect of finite chain length
on the surface tension. Figure 5(a) plots the entropic contribu-
tion to the surface tension, γen, as a function of chain length,
`c = bN. The symbols represent numerical SCFT calculations,
while the lines denote the analytical approximation in Eq. (3).
This confirms the N−1 dependence observed in experiments
for high molecular-weight polymers.12–18 Just as in exper-
iments, the decrease in tension becomes more gradual for
shorter polymers. In fact, the empirical fit to N−2/3 obtained
by experiments14–17,49,50 for oligomers is accurately repro-
duced by our shortest four polymers, as illustrated in Fig. 5(b).

FIG. 5. Reduction in surface tension, γen, for three different persistence lengths,
`p, plotted versus (a) `−1

c ∝ N−1 and (b) `−2/3
c ∝ N−2/3. The lines in (a) denote

the analytical approximation in Eq. (3), while the lines in (b) are fits to the four
shortest polymers.
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However, as we will explain later, this is not the true power-
law behavior of small molecules.

IV. DISCUSSION
The SCFT for Gaussian chains relies on the assumption

that the field, w(z), changes slowly on the scale of the seg-
ment length, a. However, polymer surfaces are relatively nar-
row, and consequently, even flexible polymers generally do
not satisfy this criterion at a surface. Therefore, it becomes
necessary to use a less coarse-grained model such as that of
worm-like chains. Although the introduction of small degrees
of chain stiffness, on the scale of the surface profile, does
not change the shape of the long-range depletion plotted in
Fig. 4, it does have a substantial effect on the level of surface
segregation in Fig. 1(a) and the amplitude of the depletion in
Fig. 2(a).

The shift in the molecular-weight distribution at the sur-
face of polydisperse melts observed by Hill et al.32 is a direct
consequence of the segregation of chains ends. Thus, it fol-
lows that our predicted increase in the entropic segrega-
tion accounts for a significant portion of the discrepancy
between the experimental measurements and the SCFT for
flexible chains.51 The remaining discrepancy could very well be
attributed to small differences in the interactions of end seg-
ments relative to middle segments.34 If known, this enthalpic
effect could readily be included in the SCFT calculation. It
would, to a good approximation, simply alter the values of A
and Γ∞.7,30,46

Figure 5 suggests that surface tension increases with per-
sistent length, while Fig. 2(b) illustrates that the tension is
lower than that of flexible Gaussian chains (denoted by the
dashed line). It is important to realize that the generaliza-
tion from Gaussian to worm-like chains introduces an addi-
tional length scale; there are two independent lengths, `p
and b, rather than just a =

√
2`pb. Consequently, the ten-

sion is affected by both the persistence length and the cross-
sectional area of the polymer, 1/bρ0, which is controlled by b
given the convention of defining segments based on a common
volume, ρ−1

0 . At constant `p and `c, the surface tension depends
linearly on the number of molecules per unit area, which is
inversely proportional to the cross-sectional area. This sim-
ple dependence is scaled out of the results in Fig. 5, and thus,
the comparison is effectively between the polymers of the
same cross-sectional area. On the other hand, the conclusion
that the tension is lower relative to Gaussian chains applies
when comparing molecules with equal statistical segment
lengths.

The N−2/3 dependence suggested by Fig. 5(b) is not,
in fact, the true scaling behavior of short molecules. Once
`c . `p, the degrees of freedom of each molecule are effec-
tively reduced to five, three for its center of mass, and two for
its orientation. Furthermore, the orientation becomes random
at the surface as the size of the molecule becomes compara-
ble to the width of the surface (i.e., R0 . ξ). Thus, the entropic
contribution to the surface tension of short polymers reduces

to that of translational entropy, which implies

γen

bρ0kBT
≈

1
`c

∫
dzφ(z) lnφ(z) = −0.4112

ξ

`c
. (24)

This again results in an N−1 dependence, but with a smaller
amplitude relative to the long-chain limit in Eq. (3). Interest-
ingly, there are recent experiments18 that show a crossover
from one N−1 power-law at large N to another at small N.
However, the convergence of our SCFT results in Fig. 5 to
Eq. (24) occurs around `c ≈ ξ , which is well beyond the point
where we can ignore the N-dependence of φ(z). Nevertheless,
these SCFT results do emphasize the danger in accepting the
previous empirical evidence for N−2/3 scaling.14–17,49,50

At small N, the enthalpic part of the surface tension,
γint = U[φ]/A, contributes to the N-dependence of the total
surface tension, γ = γint + γen, as a result of variations in φ(z).
Provided N is not too small, we can assume the profile changes
affinely with N (i.e., its shape remains approximately constant,
while the width, ξ , varies). Given this assumption,

γint

aρ0kBT
=

c1ξ

a
, (25)

where c1 is a constant determined by the shape of the polymer
profile. If we also assume Gaussian chains, then Eqs. (3), (19),
and (20) imply

γen

aρ0kBT
=

c2a
ξ
−

2c3ξ

aN
, (26)

where c2 and c3 are again constants determined by the shape
of φ(z). Minimization of γ = γint + γen with respect to ξ gives

ξ = ξ∞

(
1 +

c3

c1N

)
(27)

to order N−1, where ξ∞ = a
√
c2/c1 is the width for infinitely

large polymers. Note that the broadening of the surface for
finite polymers is consistent with simulation.42 In any case,
the resulting equilibrium tension is given by

γ

aρ0kBT
= 2Γ∞ −

2A
N

(28)

to order N−1, where Γ∞ = c2a/ξ∞ and A = c3ξ∞/a are the
same constants in Eq. (3). Thus, the tension of infinitely long
polymers is split equally between enthalpy and entropy. This
precise balance happens because γint ∝ ξ and γen ∝ ξ

−1 in the
infinite-chain limit, and thus, the result is specific to Gaus-
sian chains. More importantly, the 2A/N correction is exactly
the same as that of γen in Eq. (3). This just relies on the fact
that γint and γen for infinite chains are increasing and decreas-
ing functions of ξ , respectively, and thus, the conclusion that
γen provides the leading-order molecular-weight dependence
holds more generally.

The enthalpic contribution to the tension, γint, will, nev-
ertheless, become important at small N. First of all, the higher-
order (e.g., N−2) corrections to γ will be affected by variations
in the width, ξ . Second, our assumption that φ(z) changes
affinely will break down at some point. For instance, a vapor
phase will eventually occur,52 and thus, φ(z) will no longer
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vary between 0 and 1. Therefore, we cannot comment on the
N-dependence of the total surface tension, γ, beyond the N−1

correction for long chains, without considering U[φ].

Including U[φ] not only allows predictions at small N
but also allows one to relate ξ to the fundamental parame-
ters of the molecular interactions and the polymer molecules.
Wu et al.7 did so using an energy density of

f(φ) = −
νρ2

0

2
(φ − 1)2, (29)

where the excluded-volume parameter, ν, is directly related
to the bulk compressibility. Naturally, the simple parabolic
penalty for deviations from bulk density will be quantita-
tively inaccurate when φ(z) drops to zero, but there are also
some qualitative failings.10 The underlying problem is that
the quadratic approximation causes the melt to behave like
a gas, filling all available space. As a consequence, Ref. 7 had
to impose a wall at z = 0 in order to create their surface.
Although this produced a reasonable looking surface profile
for continuous Gaussian chains, it results in a discontinuous
profile for discrete chains.8 The shortcomings are also evi-
dent from the fact that Wu et al. predicted a narrowing of
the surface profile for decreasing N, which contradicts the
common-sense behavior predicted in Eq. (27) and observed
in simulations.42 Of course, the problem can be remedied
by using a more realistic U[φ] from, for example, density
functional theory,39–41 but that is beyond the scope of this
paper.

V. SUMMARY
We have examined the effect of chain stiffness on the

entropic segregation of chain ends to a polymer surface and
the resulting consequence on surface tension. This was done
by applying SCFT to a melt of worm-like chains. To avoid spec-
ifying the molecular interactions, U[φ], we simply constrained
the surface to a sigmoidal concentration profile, φ(z), where
the width, ξ , was treated as a system parameter. Although this
only allowed us to evaluate the entropic contribution to sur-
face tension, γen, this was, nevertheless, sufficient to obtain
the dominant (i.e., N−1) molecular-weight dependence for the
total surface tension, γ.

The focus of this study was on persistence lengths, `p,
comparable to ξ but small relative to the overall contour
length of the polymer, `c = bN. For these relatively flexible
polymers, the universal behavior of the compensating deple-
tion in Eq. (1) and the resulting reduction in surface tension in
Eq. (3) derived for Gaussian chains still hold. The finite stiff-
ness does, however, cause a sizeable increase in the amplitude
A and a modest decrease in the coefficient Γ∞, relative to
the Gaussian-chain predictions in Eqs. (22) and (23), respec-
tively. Interestingly, the molecular-weight dependence of the
surface tension for our shortest chains is consistent with the
empirical fit from experiments to an N−2/3 power-law. How-
ever, we emphasize that this behavior is not a true scaling
relationship.

Our results have direct implications for polydisperse
melts, where short polymers segregate to the surface because
they have more ends per unit volume. As a consequence,
the molecular-weight distribution is shifted towards a smaller
average polymerization, Nn, relative to the bulk distribu-
tion. Our finding that chain stiffness significantly enhances
entropic segregation helps account for the larger shifts mea-
sured in experiments relative to previous SCFT predictions
based on flexible polymers.32
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