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ABSTRACT: Rubber elasticity, identified as the capacity to sustain very large deformations
followed by complete recovery, is exhibited exclusively by polymeric substances consisting
predominantly of long molecular chains. Moreover, it is manifested under suitable conditions by
virtually all polymers so constituted. The molecular theory of rubber elasticity rests on the premise,
now fully validated by experiments, that alterations of the configurations of the chains comprising
the network account for the elastic free energy and for the stress arising from deformation. Early
theories of rubber elasticity were propounded on the assumption that displacements of the
junctions are affine in the macroscopic strain. James and Guth, avoiding this assumption, treated a
phantom network consisting of Gaussian chains having otherwise no material properties. They
showed (i) that the mean positions of the junctions in this hypothetical network are affine in the
strain, and (ii) that fluctuations about these positions are invariant under strain. The corollary that
the instantaneous distribution of the chain vectors cannot be affine in the strain escaped notice for
many years. The copious interpenetration of chains that characterizes polymer networks should be
expected to restrain the fluctuations of junctions embedded therein, but not to suppress them
altogether. Moreover, the restraints on fluctuations should depend on the state of strain.
Departures from phantom behavior consequently occur to a degree that depends on the strain.
Formulation of a self-consistent theory based on this idea required recognition of the non-affine
connection between the chain vector distribution function and the macroscopic strain in a real
network, which may partake of characteristics of a phantom network in some degree. Postulation
of domains of constraint affecting the equilibrium distribution of fluctuations of network junctions
from their mean positions led to a theory that accounts for the observed relationship of stress to
strain virtually throughout the ranges accessible to measurement. The theory establishes con-
nections between network structure and elastic properties. All essential parameters are determined
by the connectivity of the network, the number and functionality of its junctions, and inherent
characteristics of the molecular chains comprising the network.
KEY WORDS Rubber Elasticity / Elasticity Theory / Elastic Free Energy /
Stress—Strain Relations /| Network Structure /| Entanglements / Junction
Fluctuations / Non-Affine Networks /

The ability to sustain high deformations followed
by full recovery upon removal of the stress is a
property manifested under suitable conditions by
virtually all polymeric substances consisting of long
molecular chains. Moreover, it is exhibited ex-
clusively by materials so constituted. This property
assumes importance beyond the narrow limits of the
term “‘rubber elasticity” by which it is commonly
designated. It is operative in the swelling of poly-
meric networks and in the deformation of sub-
stances not generally included in the category of
elastomers, e.g., in the deformation of semicrystal-

line polymers and in the viscoelastic behavior of
linear polymers under flow in the liquid or amor-
phous state. Rubber elasticity is essential to the
functions of elastic proteins and muscle. The theory
of rubber elasticity is centrally important to much
of polymer science.

The basic premise of the molecular theory of
rubber elasticity asserts that the stress in a typical
strained elastomer originates within the molecular
chains of the structure, typically a covalent net-
work; contributions from interactions between the
chains are negligible. This premise finds direct sup-
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port in elasticity measurements on polymeric net-
works. The temperature coefficient of the stress at
fixed strain and its constancy with dilution are
especially significant in this connection.! ~#

Even more pervasive confirmation is provided by
experiments showing the configurations of polymer
chains to be unperturbed by their neighbors in
amorphous polymers. Neutron scattering has been
particularly decisive in demonstrating the absence
of appreciable perturbations in the configurations
of polymer chains when interspersed with other
randomly configured polymer molecules of the
same kind.>*® The (free) energy of interaction be-
tween neighboring chains must therefore be sensibly
independent of their configurations. It follows that
the intermolecular energy should not be signi-
ficantly affected by the changes in configurations of
the chains of a network induced by deformation.’
The stored elastic free energy, which is central to the
theory of rubber elasticity, therefore comprises the
sum of contributions of the individual network
chains. Other contributions, such as often have been
postulated to arise from interchain interactions,
may be ignored according to the stated premise and
the compelling evidence in its support.

The principal task of theory is to establish the
relationship between the macroscopic strain and the
distortion of the distribution of configurations of
the network chains.”® It was assumed originally
that the locations of the network junctions may be
considered to be affine in the macroscopic strain,
from which it followed that the distribution of end-
to-end vectors of the chains, i.e., the chain vectors,
should likewise be affine in the strain.’”'* The
theory of James and Guth'® appeared at first to
corroborate this conjecture, inasmuch as it showed
the mean locations of junctions in a “phantom
network”™ (see below) of Gaussian chains to be
affine in the strain. Nearly thirty years elapsed
before the important distinction between the distri-
bution of mean chain vectors and their instan-
taneous (or time averaged) distribution was rec-
ognized.” Modern theory of rubber elasticity is an
outgrowth of the recognition that the actual distri-
bution of chain vectors in a network of Gaussian
chains is, in general, non-affine in the strain.

THE ISOLATED CHAIN

The chains in elastomeric networks typically con-

sist of 100—1000 skeletal bonds. For free chains of
this length, the function describing the distribution
of end-to-end chain vector r is Gaussian in good
approximation;'® i.e., the distribution is well repre-
sented by

W(r)=(3/2n(r*)o)* 2 exp [~ (3/2{r*)o)r’] (1)

where {r?), is the mean-square magnitude of r for
the free chain averaged over all configurations. It
follows that the free energy of the chain is given as a
function of its displacement length r=|r| by

A(r)=const—kT'ln W(r)
=A%T)+BkT/2Cr?yo)r? ©))

The magnitude of the average retractive force ex-
erted by the chain at fixed r, obtained by differen-
tiation of eq 2, is

f=3kT{r*yg 3)

It is directed along the chain vector. Proportionality
between the average force and the displacement
length of the chain follows directly from eq 1, as is
obvious. Conversely, primary assertion of eq3
would lead to eq 1.

According to the premise enunciated above, the
elastic properties of a network of Gaussian chains
must follow from these relationships.

NETWORK STRUCTURE AND
TOPOLOGY

A polymer network may be characterized by the
number y; of its junctions, their functionality ¢ (or
average functionality @), and by the number v, 4 of
ends of chains.” The number of chains in the net-
work, including those with only one end attached,
is

V= (1/2)(ﬂj¢ + vends) (4)

The effective number v, of chains is less than v
owing to the imperfections due to free chain ends.
For a perfect network for which v, =0,

Ve=V=10/2 (%

A quantity that characterizes the network with
greater generality, regardless of the nature of its
imperfections, is the cycle rank &, or number of
independent circuits it contains.”!” It may be de-
fined alternatively as the minimum number of scis-
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Figure 1. Spatial neighbor junctions x surrounding a
given junction and its four topological neighbors @ in a
tetrafunctional network.

sions required to reduce the network to a “‘span-
ning tree,” i.e., a unified structure comprising all of
the chains and containing no closed circuits or
loops. This quantity will be used in due course to
characterize the elastic response of the network. It
suffices to observe that in a perfect network ¢ is
given by the difference between the number of
chains and the number of junctions of functionality
¢=> 3;ie.,

E=v—p=v(1-2/¢) )

See eq 5.

A prominent and important feature that is char-
acteristic of polymeric networks is the copious
interpenetration of chains and junctions.”'® The
region of space pervaded by a given chain is shared
with many other chains and junctions. The do-
main roughly demarcated by the junctions that
are topologically first neighbors of a given junction
is occupied by many other junctions. This is illus-
trated in Figure 1 for a tetrafunctional network.

The average number I' of junctions within the
region of radius ¢r?»3? offers a quantitative mea-
sure of the degree of interpenetration. It is given by

I'=(4n/3)<r? 53 (m/V°) ()

where V° is the volume of the network in its state of
reference (see below). Since (r?), increases linearly
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with the length of a chain, it must increase linearly
with p; . Hence, I' is inversely proportional to the
square-root of the degree of interlinking. For typi-
cal elastomeric networks, I is in the range 25—100.
Clearly, the chains and junctions are profusely
interspersed. The first tier of topological neighbors
is located well beyond the nearest spatial neighbors;
see Figure 1. It is to be noted also that the shortest
topological pathway from a given junction to one of
its nearest neighbors in space may span many
chains.

AFFINE NETWORKS

The high degree of interpenetration in elasto-
meric networks and the fact that each junction is
located in an environment dominated by chains and
junctions whose structural relation to the junction
considered is remote lends credence to the assump-
tion, universally adopted in the earliest theories of
rubber elasticity,” ~'# that the positions of the junc-
tions are approximately affine in the macroscopic
strain.'® It follows at once from the premise in-
troduced above that the elastic free energy of the
network is the sum of expressions like eq 2 for each
chain of the network. Required is the sum 3)_, r?
over all chains. According to the assumption that
the transformation of chain vectors is affine in the
displacement gradient tensor 4 that defines the
macroscopic strain, this sum is just v{r?),(A2+
A2+ 42), where A, A, 4, are the principal exten-
sion ratios measured relative to the dimensions of
the specimen when isotropic and at the volume
V° such that the mean-square magnitude of the
chain vectors matches the value {r*), for unper-
turbed chains. Adding the term —pkT'In V for the
dispersion of the junctions over the prevailing
volume ¥ and expressing the free energy relative to
the state of referencein which A, =/4,=/1.=1and V'=
V°, one obtains'4!?

Ady =/ DkTO2+ A2+ 22-3)
—wkTIn(V/V°) (®)
The stress is obtained as a function of strain by
differentiation of eq 8. For uniaxial elongation par-
allel to the X-axis, 4, =A=L/L° and A,=1 =

(V/V,2)!72, and the force of retraction for the affine
network is
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faff = (6AAeI/aL )T, v= (aAAel/aﬂ)T, V/LO
=kT/LY(—V/V°2?) 9)
=(kT/L, \)(V/V°)(a—a"?) (10)

where a=L/L; = A(V/V°) ™1/ is the extension ratio
relative to the length L, y=L%(V/V°)"? of the un-
stretched (isotropic) specimen at the volume V
prevailing in the elongated state. Equations 9 and 10
are traditionally identified as alternative stress-
strain relations for Gaussian networks.

PHANTOM NETWORKS

The theory of James and Guth,'> which appeared
in 1947, is a landmark in the evolution of rubber
elasticity theory. It addresses networks of
Gaussian chains whose only action is to deliver
contractile forces (proportional to their displace-
ment lengths r) at the junctions to which they are
attached. The chains have no other material prop-
erties; they may pass through one another freely and
they are not subject to the volume exclusion re-
quirements of real molecular systems. Being free of
constraints by neighboring chains, the junctions of
the “phantom network™’ thus described undergo
displacements that are affected only by their con-
nections to the network and not at all by their
immediate surroundings.

Without prior assumptions concerning the dispo-
sition of the junctions in a Gaussian phantom
network, James and Guth®® showed (i) that their
mean positions in this hypothetical network are
affine in the strain, (i) that their fluctuations about
these mean positions are Gaussian, and (iii) that
these fluctuations should be independent of the
strain. The fluctuations of the junctions are sub-
stantial. The mean-squared magnitude of the fluc-
tuations in the chain vectors caused by them is given
byZO,ll

(A =(2/$)<r?>o (11

The corresponding measure of the dispersion in the
magnitudes of the mean vectors is’

2y =(1-2/¢){r*>q (12)

Thus, for a tetrafunctional phantom network, the
fluctuations account for half of (r?), for the free
chain.

It follows directly from the James and Guth

deductions (i) and (iii) above that the instantaneous
positions must be non-affine in the strain: the
distribution of junctions is the convolution of their
mean positions, which are affine in the strain, with
their fluctuations which are invariant with strain.
The distribution of chain vectors in the phantom
network, although a function of the strain, is not
therefore affine in the strain. We return later to the
implications of this long-overlooked corollary of the
James and Guth theory.

This theory!® leads to an elastic free energy of the
same form as the first term in eq8, but with a
smaller coefficient. For a tetrafunctional network
v/2 should be replaced by v/4 in the adaptation of
that equation to a phantom network. Additionally,
the second term of eq 8 disappears. As was shown
subsequently,’ the elastic free energy for a phantom
network with junctions of any functionality is given
with complete generality by

AA,,=(E/2kT, —3) (13)

where ¢ is the cycle rank (see above) and I, is the

first strain invariant defined by
L=A2+22422 (14)

The form of the dependence of the force of re-
traction on strain under uniaxial deformation is the
same as given by eq 9 or 10. The number v of chains
is replaced by £. Hence, the retractive force is

Jon=CkT/L, YV VO Pa—a™?)
=kTILOYVV°) (o —a™2)

(15
(159)
For a perfect tetrafunctional network &=v/2, as
follows from eq 6. Hence, the predicted retractive
force in this case is half that for the affine network.
This difference reflects the fact that only the mean
vectors r are altered by the strain; the fluctuations,
which in a tetrafunctional network account for
half of {r*),, are unaffected by strain.

COMPARISONS OF AFFINE AND
PHANTOM NETWORK
THEORIES WITH EXPERIMENTS

It follows from eq 10 and likewise from eq 15 that
[OIn(f/T)/0T]L.v=—(2/3)dIn V°/dT
=—dIn{r*),/dT (16)
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Values of dln{r?>,/dT determined from stress-
temperature coefficients using this relationship are
not appreciably affected by swelling of the network
with a diluent.! ™ They are in agreement with
results of measurements conducted on dilute so-
lutions of the linear polymer.3-*? These findings lend
assurance that the primary premise of the molecular
theories of rubber elasticity is valid.

The experimental relationship of stress to strain is
strikingly at variance with the traditional theories
discussed above. Gee?* showed in 1946 that the
slope of the tension-elongation curve observed for
natural rubber diminishes more rapidly with elon-
gation and with swelling than is predicted by eq 10,
and hence also by eq 15. Similar departures from
theory were found for other elastomers.®'4?* The
disparity between the factors of proportionality in
eq 10 and 15 representing theories for affine and
phantom networks, respectively, was overshadowed
by the failure of both theories to account for the
relationship of stress to strain.

This circumstance led to widespread adoption of
the Mooney-Rivlin relation obtained by arbitrarily
appending a term proportional to the second strain
invariant, [, =2242+A242+ A2A2, to the elastic free
energy. The resulting relationship of the tension to
elongation is

f=2C(a—a" ) +2C,(1—a3)
or

flla—a™2)=2C; +2C, /o 17

where C; and C, are empirical constants for a given
elastomer at a fixed temperature. Agreement with
the observed tension-elongation relationship in
simple extension is improved through use of eq 17
having the additional parameter C,. It fails utterly
in compression (or equibiaxial extension) and for
biaxial strains generally.® Even in simple elon-
gation, departures from the linear relation pre-
scribed by eq 17 are apparent.

With the main focus of attention on elastomers in
uniaxial elongation, experiments indicated that the
“correction term” in C, diminishes with dilation
(swelling) and that it diminishes relative to C; with
increase in the degree of interlinking. This was
implicit in the work of Gee.?® The results of Allen,
Kirkham, Padget and Price? shown in part in Figure
2 are particularly revealing in this connection. Here
the reduced nominal stress defined by
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Figure 2. From ref 2.

1= (/AP a—a?) 7 (18)

where 4° is the area of the initial cross section in the
reference state, is plotted against «~! in keeping
with eq 17. The volume fraction v, of rubber may be
identified with ¥°/V in eq 15", according to which
[f*] should be a constant equal to EkT/V° for a
given network. The slopes (2C,) of the Mooney-
Rivlin plots decrease with dilution, but the in-
tercepts (2C;) remain approximately the same.
Other experiments reported by Allen et al.?> showed
that the intercept increases with degree of cross-
linking. Thus, the intercept appears to be an in-
variant that characterizes a given network.
Observations such as these suggested that 2C; may
be identified with ¢kT/V° of eq15".

FLUCTUATIONS IN REAL
NETWORKS

Inasmuch as the basic premise that the stored
elastic free energy resides within the chains is fully
validated, observed departures from the form of the
stress-strain relationship prescribed by the theories
cited above implicate the connections assumed, or
deduced, between the macroscopic strain and the

5
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distribution of chain vectors as the source of the
discrepancy. The assumption that the latter are
affine in the strain makes no allowance whatever for
excursions of the junctions from their mean po-
sitions. Fluctuations of this nature are implicit in
the molecular mobility that is essential to the high
compliance exhibited by elastomers. It would be
incorrect therefore to assume that they are sup-
pressed altogether. On the other hand, the large,
unimpeded fluctuations deduced for phantom net-
works may be curtailed severely by the profusion of
chains in which each junction is embedded; see
Figure 1.%4

Considerations such as these led Ronca and
Allegra®® and the author’ to suggest that real
networks may behave in a manner between the two
extremes. It was suggested further that a shift in
proximity to these respective extremes might be
expected with strain, phantom behavior being more
closely approached with elongation or dilation.”-?°
Inasmuch as the factor of proportionality to the
strain function is smaller according to phantom
theory than for affine theory, the observed depar-
tures from these theories might thus be explained.

Exploitation of this conjecture requires full grasp
of the implications of the non-affineness of the
transformation of the distribution of chain vectors
with strain.” It is a necessary and sufficient con-
dition for affine transformation that the neigh-
borhood of junctions about a given junction be
preserved, with distances between junctions altered
in accordance with the displacement gradient 4. The
environments of the junctions must theorefore
change with deformation in a phantom (hence,
non-affine) network, or, indeed, in any network in
which the junctions undergo independent fluctua-
tions.?®2” The magnitude of the fluctuations occur-
ring in a phantom network being generally greater
than the distance to the nearest spatial neighbors,
drastic reshuffling of neighbors about a given junc-
tion may be required when the strain is large.

Extensive interpenetration of portions of the net-
work that are topologically remote in structural
relation to one another implies a maze of entangle-
ments in which chains and junctions are inextricably
intertwined. The mutual entanglement of chains
and junctions confers a coherence on the real
network not present in its phantom analog compris-
ing chains that neither preempt space nor obstruct
transection of one another. This is a feature of real

networks that is of foremost importance.
Occurrence of the rearrangements required by
phantom network theory must obviously be difficult
in a real network.?6 =28

The entanglements here referred to are not dis-
crete in the sense that they engage a given chain with
one of its neighbors in a unique relationship.
Instead, they involve a given chain diffusely with the
manifold of its neighbors. Contrary to the usual
sketches of chain configurations, their trajectories
do not oscillate back and forth as if guided by their
time-averaged ~ destinations.?® As follows from
random-walk statistics in general, they are not self-
correcting such that an excursion in a given direc-
tion presages correction by an opposing course. The
instantaneous configuration of the chain seldom
describes a path such as would wind it about a
neighboring chain, thereby establishing an entangle-
ment that could be equated to a cross-linkage. The
diffuse entanglements prevalent in polymer net-
works allow extensive local rearrangements while,
at the same time, precluding gross displacements of
neighboring members of the network.

The number of configurations accessible to a
network obviously is greatly reduced by the in-
tegrity of its permanent connections and by the
further constraints due to entanglements. This re-
duction is inconsequential in the undeformed net-
work formed by interlinking randomly configured,
unperturbed chains. It is the average over con-
figuration space for an ensemble of equivalently
formed networks that is relevant to the treatment of
equilibrium properties. The ensemble average is
unaffected by interlinking of the chains, which
occurs via a random process. Upon deforming the
networks thus formed, constraints due to the physi-
cal integrity of the network, augmented by the
effects of entanglements, contribute to the elastic
free energy AA,,.

The network junctions are the members of the
network most susceptible to the steric constraints
imposed by the diffuse entanglements. Each of them
marks the confluence of ¢ chains (¢ >3) that en-
cumber displacement of the junction relative to its
neighbors. Although constraints obviously impinge
on the chains as well, the totality of all constraints
may be treated, presumably in good approximation,
as if they restrict displacements of the junctions
exclusively.

Polymer J., Vol. 17, No. 1, 1985
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THEORY OF NETWORKS WITH
JUNCTIONS SUBJECT TO
STRAIN-DEPENDENT
CONSTRAINTS?6:28

The model adopted for the purpose of giving
quantitative expression to the ideas above is shown
in Figure 3. Point A represents the mean position of
the chosen junction in the hypothetical phantom
state of the network. The radius of the large dashed
circle centered at A represents the root-mean-square
fluctuation ((AR)*)L;Z about this position in the
phantom state. The domain of constraints due to
entanglements with surrounding real chains and to
their steric requirements is represented by the small-
er dashed circle centered at B and separated from A
by $§. It may be considered to be located as if the
constraints were suddenly imposed at an instant
during which a random excursion of the junction
about its mean position A carried it to point B. (The
manner in which the network was actually formed is
irrelevant.) After the constraints have been estab-
lished, the mean position of the junction is at point
C removed from A by AR. In other words, under
the combined influences of its connections with the
network (i.e., the phantom network forces) and of
the constraints, the mean position of the junction in
the unstrained, real network is at C. The instan-
taneous position of the junction happens to be at
point D, which is outside the domain of constraints
by neighbors but inside the domain representing
fluctuations of the phantom network. Both of the
domain boundaries are diffuse rather than rigid;
hence the junction may wander beyond either of
them, although the probability of its doing so
diminishes with the distances from their centers.
For simplicity and without significant sacrifice of
accuracy, we take the action of the domain of con-
straint to be a Gaussian function of the distance
As of the junction from B, just as the action of the
(phantom) network is a Gaussian function of AR.

The principal parameter k that characterizes the
constraints specifies the inverse ratio of the mean-
square radii of the domains; i.e.,

K=(AR)) u/<(As)*>o (19)

where {(As)?), is the mean-square of the fluc-
tuations about B that would occur in the unde-
formed network if the junction would be subject
only to the effects of its involvements with the

Polymer J., Vol. 17, No. 1, 1985

surrounding chains, constraints imposed by its con-
nections to the network being somehow suspended.
Thus, x measures the severity of the entanglement
constraints relative to those of the phantom
network.

Since the network is formed through random
molecular processes, the instantaneous distribution
of junction positions, and hence of chain vectors,
must be unaffected by formation of the network. It
follows that the distribution of the centers of the
domains of constraint about the mean phantom
positions (A) must be identical, in the unstrained
state, with the distribution of fluctuations (AR) in
the phantom network.

Isotropy of the network in its state of rest implies
that displacement of the centers of the domains of
constraint should be affine under strain. The dimen-
sions of these domains, unlike those representing
the action of the phantom network, must undergo
distortion under strain. In first approximation,26-28
they may be expected to become ellipsoidal accord-
ing to the macroscopic deformation gradient tensor
A, i.e., the sphere represented in Figure 3 by the
smaller dashed circle becomes an ellipsoid. Thus, if
Ax is the component of As along one of the
principal axes of 4, then on the assumption that the
vectors As are affine in 4

(AX)* 3/ {(Ax)* o =22

where A=4,. For A>1, the domain of constraint is
lengthened and the severity of the constraints is
diminished in this direction.

Experimental results suggest a somewhat more
rapid alteration of the constraints with strain than
predicted by affine deformation of the do-
main.?%-2%:2° This observation may reflect structural
inhomogeneities in the network. A higher approxi-
mation is offered by?®

CAx)> /[ Ax) Do =21 +k{(A=1)]  (21)

where ( is an additional parameter. In the following
development we neglect {, although its effect on
numerical calculations will be indicated.

The primary contribution to the elastic free en-
ergy from the connectivity of the network, i.e., the
phantom network contribution A4, is implicit in
the displacement of the mean positions of the
junctions in the phantom state. It is given by eq 13.
The contribution A4, from the steric constraints
comprises two terms?®2® due, respectively, to (a)

(20)
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Figure 3. From ref 28.

alteration of the (instantaneous) distribution of the
AR (see Figure 3) from their values in the phantom
network, and (b) alteration of the distribution of
displacements As of the junctions about the centers
of their domains of constraint. The foregoing re-
lations allow the required distributions to be for-
mulated as functions of the strain. The free energies
may then be obtained from the familiar configu-
ration function

Q= n (o] py, )5 (22)
where y; ; is the number of junctions at the location
AR, or at As; relative to the center of the domain of
constraint; w; is the a priori probability of the state
thus specified, as given by the three-dimentional
Gaussian probability distribution W(AR) or
W(As), the latter being ellipsoidal under strain. The
contributions (a) and (b) above follow from
—kTn Q.

The total elastic free energy thus derived is just
the sum

Ady=Ad,+A4, (23)

of the elastic free energy of the phantom network,
A4, given by eq13, and A4, for the combined
contributions (a) and (b) above due to action of the
constraints. According to the theory?®*® here
outlined.

(kT)"'AA=(wy/2)}, {(1+ 47K 1)B,

—In[(B,+D(A2x"'B,+ D]} (24

where

B =(A{= D)k + 1) (2%)

and ¢ identifies the principal axis x, y or z.
It will be apparent that A4 _ vanishes for k—0. In
the opposite limit where k™' =0,

1
M = wkTLI, =321 (VY]

which, when substituted in eq23 together with
eq 13, followed by replacement of &+4p; with v
according to eq 6, yields A4, of eq 8.2° The present
theory is therefore consistent with both affine and
phantom theory at its respective limits.

The stress may be expressed similarly as the sum
of contributions from the phantom network and
from the entanglement constraints. In the case of
simple elongation, for example, the tensile force

1826'28

J=SontSe=Lon(L+1c/ fon)

where f, is given by eq15 or 15 The relative
contribution from the entanglement constraints is

Jelfon= /DK@ —a 2 K@) a—a"2) ™" (27)

where
I=a(V] VO3

(26)

and A,=a VA(V/VO)B,
and
K(*)=B[B(B+1)"!
+Kk Y A2B+B) (kA 2+ B)™ Y]

where

B=0B/0A%. 28)

In general, and for perfect networks in particular,
/¢ may be replaced by unity in eq27.

COMPARISON OF THEORY
WITH EXPERIMENTS

Experimental results on elastomers in uniaxial
strain are conveniently represented by plots of the
reduced nominal stress [f*] (see eq 18) against o~ 1.
Results of Pak3® covering an exceptionally wide
range of extension ratio « are shown by the points in
Figure 4.%° The experiments were carried out on
cross-linked poly(dimethylsiloxane), PDMS, with-
out dilation, i.e., with v,=1. Those in compres-
sion, for which a~!>1, were obtained®® by
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Figure 4. Results of Pak®® on PDMS in extension
(1/a<1) and compression (1/a>1). From ref 29.
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Figure 5. Results of Flory and Tatara.®* Effects of
swelling on cross-linked PDMS. From ref 29.

measuring the inflation of a sheet as a function of
pressure. Measurements in extension were con-
ducted on strips from the same sample. The curves
have been calculated according to the theory dis-
cussed above using the parameters indicated. Use of
{=0.05 instead of {=0 improves the agreement
with experiment in compression (1/a> 1) but at the
expense of agreement in extension. The divergence
between theory and experiment is small compared
to the range covered: fourfold in extension and
sixfold in compression.

The results of Allen et al? on the effects of
swelling on the reduced force of networks of natural
rubber (see Figure 2) are well represented by
theory.?® Results of Tatara’! on PDMS networks
swollen to the various degrees indicated by the
volume fractions v, of polymer are compared in
Figure 5 with calculations according to theory
for the values of x and { indicated.

Results of Mark and Sullivan®? on tetrafunc-
tional networks prepared by end-linking PDMS
chains of different lengths, shown in Figure 6,
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Figure 6. Results of Mark and Sullivan®? on end-
linked PDMS. From Erman and Flory.?

demonstrate the effect of the degree of cross-linking.
The curves have been calculated for values of k
chosen to be inversely proportional to the square-
roots of the degrees of cross-linking (i.e., koc&~1/?)
on the hypothesis that the constraints should be
proportional to the degree of interpenetration;?® see
eq 7. All of the data for the several networks are well
reproduced by the arbitrary choice of one of the
K’s, the others being related thereto through the de-
grees of cross-linking.

Measurements of stress in biaxial extension are
more definitive inasmuch as the strain is bivariate.
The more complex array of data obtained from
skilfully executing experiments®® on rubber in bi-
axial strain long resisted rational interpretation® on
a molecular basis, or even in terms of the more
familiar phenomenological theories. It is partic-
ularly significant therefore that these results are
well reprdoduced by the theory discussed above, as
Erman3* and Treloar’® have shown. Thus, the
theory accounts for the relationship of stress to
strain in elastomers virtually throughout the range
accessible to experimental measurement.>® The do-
mains of constraint postulated by the theory exert
their greatest effect at small strains. Inasmuch as the
domains are distorted in proportion to the principal
extension ratios A, whereas the range of the phan-
tom fluctuations is unaffected by deformation, the
relative effect of the constraints in a given direction
must vary inversely with the elongation A. The effect
vanishes as A is increased without limit. This de-
scription is over-simplified. It nevertheless explains
qualitatively the attenuation of effects of the con-
straints at large strains or at high dilations.®
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The reduced nominal stress [f#,] in the limit of
high deformations or dilations emerges as the quan-
tity that characterizes the molecular contribution of
the network, as earlier experiments suggested.>?3 It
is obviously essential to perform the extrapolation
accurately, complications from curvature in plots
of [f*] vs. a~! being avoided. Measurements on
swollen networks offer the best procedure for
this purpose.

As formally expressed, the theory takes account
only of the covalent cross-linkages of the network
embodied in the cycle rank £ Whether or not
entanglements may increase the effective degree of
interlinking is difficult to decide on purely theoreti-
cal grounds. It is an issue best resolved by experi-
ments. If entanglements enhance the effective value
of &, this enhancement should be reflected in [f}]
determined by appropriate extrapolation of expe-
rimental measurements. The value thus determined
may be compared with the “chemical” degree of
interlinking, or the cycle rank.

Numerous experiments®®3%°~*3 show that [f%]
obtained by extrapolation to «~'=0, or, in some
instances [f*] measured at finite extensions, to be
proportional to the chemical degree of interlinking.
An intercept indicative of a threshold of “entangle-
ment cross-linkages,” often postualted, is not ob-
served. The absolute magnitude of the chemical de-
gree of interlinking is more difficult to establish
with accuracy. In those instances where this objec-
tive has been achieved, the “‘elastic”” and “‘chemical”
degrees of interlinking are in good agreement. In-
cluded are networks of PDMS,2°32404243 ngly.
(ethyl acrylate)** copoly(isoprene-styrene)** and
poly(cis-1,4-butadiene).*>

Results deduced from the work of Mark and
Sullivan®? shown in Figure 7%° are illustrative of
comparisons between limiting values of the reduced
stress [/%,] and degrees of interlinking. Values from
elasticity measurements are somewhat higher than
those obtained from the chemical structure, es-
pecially at low degrees of interlinking. Failure to
attain ultimate elastic equilibrium may account for
these departures. The results deduced from swelling
equilibrium, which are not subject to this source of
error, are in excellent agreement with the theoretical
line based on the network structure as embodied in
gve.

The value of the parameter k appears to be
related uniquely to the degree of interpenetration I

10
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Figure 7. Limiting values of the reduced force [f%,] for
PDMS deduced from elasticity and swelling measure-
ments of Mark and Sullivan3? plotted against ékT/V°.
From Erman and Flory.?®

given by eq7; i.e.,”®

k=const I'=I{r*)3?(u,/V°) (29)

where [ is an empirical parameter. Data available
suggest that I may be the same for all tetrafunc-
tional networks.?® If this indication is verified, then
it becomes possible to relate stress to strain on the
basis of the degree of cross-linking which, in prin-
ciple at least, is determinable from the chemical
constitution of the network. Only the empirical
parameter { would then be subject to arbitrary
choice. Its role in refining agreement between theory
and experiment is marginal.

CONCLUSIONS

The molecular theory here discussed provides a
comprehensive account of rubber elasticity. It suc-
ceeds in relating the elastic equation of state to
molecular constitution. This long sought objective
is achieved with a latitude of choice in only one
parameter. This parameter, x, appears to be suscep-
tible to independent determination, approximately
at least, from the cycle rank ¢ that characterizes the
connectivity of the network. Arbitrariness- in the
choice of parameters may thus be reduced to an
utter minimum.

The theory also accounts for the peculiar form of
the dependence of the ‘“‘elastic” contribution to the

Polymer J., Vol. 17, No. 1, 1985
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chemical potential of the diluent in a swollen net-
work.*® It provides the basis for a more exact
treatment of strain birefringence in elastomeric net-
works.*’® The theory appears to account also for
the effects of functionality.*>° These topics are
beyond the scope of this review.
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