030423 Quiz 4 Properties

1) $\mathrm{a} \& \mathrm{~b}$) Give two scattering functions that are used in the literature to describe scattering from a polymer coil.
c \& d) Show that these two functions yield the same power-law equation at the high-q limit.
e) Which of these functions could be used for a dilute polymer solution" in a good solvent? Explain.
2) Derive a relationship between the end to end distance of a linear Gaussian chain and the radius of gyration. Given that,

$$
\begin{aligned}
& R_{g}^{2}=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle \\
& \text { and } \\
& \sum_{\mathbf{u}=1}^{\mathbf{n}} \mathbf{u}^{\mathbf{p}}=\frac{n^{p+1}}{p+1}+\frac{n^{p}}{2}+\frac{p n^{p-1}}{12} \text { for } \mathbf{p}<\mathbf{3}
\end{aligned}
$$

(Explain each step in the derivation)
3) a) Find an expression for the end-to-end distance of maximum probability, R^{*}, for a selfavoiding walk if the probability for a walk of length R is given by,

$$
W(R)=k R^{2} \exp \left(-\frac{3 R^{2}}{2 N b^{2}}-\frac{N^{2} V_{c}}{2 R^{3}}\right)
$$

where k is a constant.
b) The free energy of a self-avoiding chain as a function of extension, R, is sometimes written,

$$
F(R)=k T\left(\frac{R^{2}}{R_{0}^{2}}+\frac{N^{2} V_{c}}{2 R^{3}}\right)
$$

How can this be obtained using the Boltzmann probability and the function given above?

ANSWERS: 030423 Quiz 4 Properties

1) a) Debye Scattering Function for a Gaussian Polymer Coil,
$g(q)=\frac{2 N}{Q^{2}}[Q-1+\exp (-Q)]$ where $Q=q^{2} R_{g}^{2}$
b) Ornstein-Zernike Function (Lorentzian Function)
$g(q)=\frac{N}{1+\frac{Q}{2}}$
c) For the Debye function at high q the $\exp (-\mathrm{Q})$ term goes to 0 and $Q \gg 1$ so $g(q)=>2 N / Q$
d) For the Lorentzian function at high $q, Q / 2 \gg 1$ so $g(q)=>2 N / Q$
e) The high q power of -2 slope in q indicates a 2 dimensional mass-fractal structure. A good solvent coil shows self-avoiding statistics so the slope is $-5 / 3$ in this region. Neither of these functions is appropriate for a good solvent coil.
2) Following the web notes,
step 1: Realize that the difference between two segments in a Gaussian walk is given by nb^{2} so $R_{g}^{2}=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle=\frac{b^{2}}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}|n-m|=\frac{b^{2}}{N^{2}} \sum_{n=m m=1}^{N} \sum^{N}(n-m)$
where the second summation realizes the symmetry of the double summation.
step 2: The double summation can be written as a series in $\mathrm{Z}=\mathrm{N}-1$, this is evident after writing the first few terms of the double summation

$$
\begin{aligned}
R_{g}^{2} & =\frac{b^{2}}{N^{2}} \sum_{n=m}^{N} \sum_{m=1}^{N}(n-m)=\frac{b^{2}}{N^{2}}[Z+2(Z-1)+3(Z-2) \ldots(Z-1) 2+Z] \\
& =\frac{b^{2}}{N^{2}} \sum_{p=1}^{Z}(Z+1-p) p=\frac{b^{2}}{N^{2}}\left\{(Z+1) \sum_{p=1}^{Z} p-\sum_{p=1}^{Z} p^{2}\right\}
\end{aligned}
$$

step 3: using the summation of a power rule given above for the two summations the expression becomes:
$R_{g}^{2}=\frac{b^{2}}{N^{2}}\left\{(Z+1) \sum_{p=1}^{Z} p-\sum_{p=1}^{Z} p^{2}\right\}=\frac{b^{2}}{N^{2}} \frac{Z(Z+1)(Z+2)}{6} \approx \frac{N b^{2}}{6}=\frac{R_{0}^{2}}{6}$
3) a) To find the maximum probability we take the derivative of $W(R)$ with respect to R and set this equal to 0 ,

$$
\frac{d[W(R)]}{d R}=k\left\{2 R \exp \left(-\frac{3 R^{2}}{2 N b^{2}}-\frac{N^{2} V_{c}}{2 R^{3}}\right)+R^{2}\left[-\frac{3 R}{N b^{2}}+\frac{3 N^{2} V_{c}}{2 R^{4}}\right] \exp \left(-\frac{3 R^{2}}{2 N b^{2}}-\frac{N^{2} V_{c}}{2 R^{3}}\right)\right\}=0
$$

so
$\frac{2}{\mathbf{3}}+\left[-\frac{R^{2}}{N b^{2}}+\frac{N^{2} V_{c}}{2 R^{3}}\right]=0$
substituting $\mathrm{R}^{2}{ }_{0}=2 \mathrm{Nb}^{2} / 3$
$\frac{R^{3}}{R_{0}^{3}}+\left[-\frac{R^{5}}{R_{0}^{3}}+\frac{3 N^{2} V_{c}}{4 R_{0}^{3}}\right]=0$
Rearranging,
$\left\lceil\frac{R}{R_{0}}\right]^{5}-\left\lfloor\frac{\lceil }{R_{0}}\right]^{3}=\frac{3 N^{2} V_{c}}{4 R_{0}^{3}}=\frac{9 \sqrt{6}}{16} \frac{V_{c}}{b^{3}} \sqrt{N}$
b) By comparison of the function for the probability of an end to end distance R given in the problem and by comparison with the Boltzman probability, $\exp (-\mathrm{F}(\mathrm{R}) / \mathrm{kT})$ we can directly write an expression for the free energy as a function of R for a self-avoiding chain.

