Quiz 2 Polymer Properties September 6, 2013 (Take Home Due on September 9)
1) The figure below shows several models for semi-flexible polymers.

a) In Figure “d” the chain structure resembles that of nanoparticle aggregates (top
micrograph). Such aggregates do not display a measurable persistence length. Consider
the difference between Figures b and d and give a general hypothesis for why this is the
case. What are the minimum and maximum values possible for 1?

b) Consider the chain in Figure “b”. The persistence length can be estimated by <tjst> =
e’ = cos(68.4°). Estimate the persistence length using this approximation and compare it
with Iy from the figure.

c¢) The glass microfiber shown in the middle micrograph does not display a measurable
persistence length while the worm like micelle in the bottom micrograph does display a
measurable persistence length. Both display chain scaling similar to that of polymer
chains in solution. Explain this behavior.
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FIG. 4. Various models of semiflexible polymers, as discussed
in the context of simulations. Case (a) shows the snapshot
picture of a typical conformation of a simulated bottle-brush
polymer using a backbone chain length N, = 1027, side chain
length N, = 24, projected into the xy-plane (this model is
discussed in more detail in Sec. 3). Case (b) shows a model
of freely jointed cylindrical rods of Kuhn step length £x and
diameter D = 2R.,, with R., the cross-sectional radius (if
R.. = 0 this leads to a simple ofl-lattice random walk con-
figuration, while excluded volume interaction is introduced if
overlap of the cylinders is forbidden). Case (¢) shows the SAW
model on the square lattice with lattice spacing e (D = a in
this case), where 20° bends cost an energy 5 3 ksT, so
the chain consists of straight pieces where nar steps go in the
same lattice direction, with n, 33 1. Case (d) shows a model
of tangent hard spheres with radius R, (and £, = 2R..,).

Figure 1. Left, from “Estimation of Persistence Lengths of Semiflexible Polymers: Insight from
Simulations.” HP Hsu, W Paul, K Binder, Polymer Science Series C (2013) Cornell University
Press. Micrographs: TOP, Silica Nanoparticles Chain Aggregates (primary particles ~2nm) J.
Appl. Phys. 97 054309 (2005); MIDDLE, Glass micro-fibers J. Polym. Sci. Polym. Phys. 36
3147 (1998); BOTTOM, Worm-like micelles, unpublished micrograph.




d) For the model of Figure 1d the bending force constant is defined by Fyend = Kpend |A9),
where Fieng 1s the bending force and A is the change in angle for three beads. It was
proposed that kyeng = kgT1,/(2R). If Ixunn = 21, what is the value for the bending force
constant in figure 1d? What does this imply concerning the flexibility of the model
shown in Figure 1d?

Biopolymers 20 1481 (1981); Biopolymers 13 217 (1974).

e) Explain the three regimes of Figure 2a, below. (Swollen coils occur when chains are
long enough to bend back and touch themselves.)
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FIG. 5. (a) Schematic plot of the normalized mean square radius (R*)/(2£,L) versus n, = L/{, (apart from a factor of 2
this is the number of Kuhn segments), on log-log scales. The Kratky-Porod (K-P) model describes the crossover from rods
({R*) = L*) to Gaussian coils ({R*) = 2£,L). At n, = (£,/D)*, according to the Flory theory a crossover to swollen coils

oceurs, where {R”) o n2¥ with v = 3/5 (according to the Flory theory). (b) Schematic Kratky plot of the structure factor of a
semiflexible polymer, ¢LS(g) plotted vs. gL, on log-log scales. Four regimes occur: in the Guinier-regime, S(g) & 1 - ¢*{R*)/3:
it ends at the maximum of the Kratky plot, which occurs roughly at gmax \/UEI} =z 1 (constants of order unity being ignored
throughout). For very large L then a regime of swollen coils with S(g) x ¢ /" is observed, until near gR® = 1 a crossover to
Gaussian coil behavior occurs (R* = £3/D). In the Gaussian coil regime S(g) o g, until at g£, of order unity the crossover
to the rod-like regime oceurs (¢LS(g) = w). Only the latter two regimes are captured by the Kratky-Porod model.

Figure 2 from HP Hsu, W Paul, K Binder, Polymer Science Series C (2013) Cornell University
Press.

2) The probability for a random polymer chain to have an end-to-end distance <R*>'""* follows a
Gaussian distribution if the chain has no excluded volume, that is, if the chain follows a
diffusive pathway with no constraints. This Gaussian function has the same exponential
form as the Boltzmann distribution allowing for an expression for the energy of an
isolated chain as a function of <R*>"2,

a) Give the Boltzmann distribution and the Gaussian distribution for end-to-end distance
<R2>1/2.

b) What are the problems with using the Gaussian distribution for a polymer chain
(truncation error, self-avoidance, other problems).

c¢) Obtain the spring constant for a Gaussian coil.



d) What are the limits of this spring constant? (Consider what happens in compression,
large extension, and under other conditions.)

e) Would the expression for the energy of an isolated coil work for a cyclic polymer
chain?



ANSWERS: Quiz 2 Polymer Properties September 6, 2013 (Take Home Due on September 9)

1) a) Ik is too small to observe, i.e. it is smaller than the diameter of the structure. The Minimum
size for ly is somewhat larger than the diameter (say 2.5 times the diameter to be observed by
scattering) and the maximum size is L, the contour length.

b) by drawing tangents to the curve a persistence length (where the tangents are offset by about
68°) of about twice the sketched Ix is observed. This means that I is actually four times what is
shown.

c¢) The persistence length for the GMF must be smaller than the diameter of the fibers. Some of
the fibers show high curvature if you look closely, and using the 68° rule it is conceivable that
the persistence length is smaller than the diameter.

d) From the figure I is 2R, so 1, is R and the spring constant is kT/2. The structure is highly
flexible since the thermal energy is twice the energy needed to flex the structure.

e) For short chains the structure is below the persistence length so it appears as a rod. At larger
lengths the structure is convoluted and shows Gaussian structure. Above a certain length it an
fold back on itself and display excluded volume behavior.

2) a)
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b) The chain is of finite contour length, L = Ny I, while the Gaussian function has no size limits.
The chain generally displays excluded volume which is not accounted for in the Gaussian
distribution.
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d) The function is useful only at small extensions, it is not good for compression, the chain must
be in thermal equilibrium (no quiescent stress or strain) chain can not experience confinement
forces such as at a surface etc.

e) It might work but strictly it would not since the cyclic has no ends so there is no end to end
vector, and no Gaussian probability. You might be able to work around this.



