Radius of Gyration

$$
\begin{equation*}
R_{g}^{2}=\frac{1}{N} \sum_{i=1}^{N}\langle | r_{i}-R_{G}| \rangle \equiv \frac{1}{2 N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left|r_{i}-r_{j}\right|^{2} \tag{1}
\end{equation*}
$$

where N is the number of steps in a structure, R_{G} is the center of mass given by,

$$
\begin{equation*}
R_{G}=\frac{1}{N} \sum_{i=1}^{N} r_{i} \tag{2}
\end{equation*}
$$

r_{i} is a vector from an arbitrary starting point to step " i ". The definition in (1) can be shown by expanding the last double summation using R_{G},

$$
\begin{align*}
\sum_{i=1}^{N} \sum_{j=1}^{N}\left|r_{i}-r_{j}\right|^{2} & =\sum_{i=1}^{N} \sum_{j=1}^{N}\left|\left(r_{i}-R_{G}\right)-\left(r_{j}-R_{G}\right)^{2}=\left|\left(N \sum_{i=1}^{N}\left(r_{i}-R_{G}\right)\right)-\left(N \sum_{j=1}^{N}\left(r_{j}-R_{G}\right)\right)\right|^{2}\right. \\
& =\left|\left(N \sum_{i=1}^{N}\left(r_{i}-R_{G}\right)\right)^{2}+\left(N \sum_{j=1}^{N}\left(r_{j}-R_{G}\right)\right)^{2}-2 N^{2} \sum_{i=1}^{N}\left(r_{i}-R_{G}\right) \sum_{j=1}^{N}\left(r_{j}-R_{G}\right)\right| \\
& =\left|2 N\left(\sum_{i=1}^{N}\left(r_{i}-R_{G}\right)\right)^{2}-\left(\sum_{j=1}^{N}\left(r_{j}\right)-N R_{G}\right)^{2}\right| \tag{3}
\end{align*}
$$

Eq. (2) can be rewritten,

$$
\begin{equation*}
\sum_{i=1}^{N} r_{i}-N R_{G}=0 \tag{4}
\end{equation*}
$$

so eq. (3) becomes,

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{j=1}^{N}\left|r_{i}-r_{j}\right|^{2}=\left|2 N\left(\sum_{i=1}^{N}\left(r_{i}-R_{G}\right)\right)^{2}\right| \tag{5}
\end{equation*}
$$

which verifies eq. (1).

