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We present a detailed study of the methods of summation based on Borel transformation and

conformal mapping, which we have used to calculate critical exponents of the n-vector model
through field theoretical methods. In particular we discuss the sensitivity of the results to vari-

ous changes in the summation procedure.

I. INTRODUCTION

We want, in this article, to explain in some detail
how we have calculated, using field theoretical
methods, the values of the critical exponents of fer-
romagnetic systems given in a previous publication'
and to discuss thoroughly the sensitivity of the
results to various changes in the summation pro-
cedure.

We shall remind the reader of the theoretical basis
of this calculation.

Strong arguments ' have been given which indi-
cate that the long-distance properties of systems (for
example ferromagnetic systems, fluids, binary mix-
tures. ..) in the neighborhood of a second-order phase

transition, can be described by a continuous Euclide-
an field theory with an action A ($)

+ (counter terms)

where @ is an n-component vector field and d the di-
mension of space.

The long-distance properties of this field theory can
then be studied through renormalization-group
methods. The one-particle irreducible correlation
functions I'L~)(q;;p, ) satisfy the renormalization-
group equation'.

»(xq+p)('" '(qp)=f ' ""' "*' u sy(e'(y) ('(y )d(*,) y(* )&„,

( 'I

m + W(g) ———rt(g) —L —2 I'L~)(q;;p, )=m'[2 —rt(g)ji't ~)+(0 q:p)
Bm Bg 2 v( g)

(2)

The power-law behavior of correlation functions at
the critical point is governed by the infrared zero g'
of the renormalization-group function W( g) and the
values q( g') and v( g'). The infrared zero g' of
W( g) is defined by

y and v are the critical exponents which govern the
behavior near the critical temperature T, of the mag-
netic susceptibility X and of the correlation length (,
respectively, such that

w(g') =0,
W'(g') )0

The critical exponents then are given by

q = rt( g'), v = v( g')

y = v(2 —q), P= —,
' v(d —2 q+)

o)= W'( g')

(3)

(4)

The exponent q gives the large-distance behavior at
T, of the spin-spin correlation function G(x)-x ", and cu governs the leading corrections to
scaling.

A last remark: Notations concerning critical prop-
erties will throughout the article follow those of
Ref. 3.

The renormalization-group functions 8'( g), q( g ),
and v( g) can be calculated as power series of g.
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In the neighborhood of four dimensions, the
W( g) has an infrared stable zero close to zero so
that perturbative methods are applicable. Setting

d=4 —e

(—5+m')d(x)+ —g)t(x)[d(x)]'=0 .
3I

For any physical quantity A ( g) with an expansion

A ( g) = QA»g»,

(6)

the large-order behavior has the form

A» cK o( —a) K![I+O(1/K)], K +~ . (8)

The quantities a and bo have been calculated in

Ref. 12, the different values of the constant c in Ref.
13. This additional information has been used by

Baker et al. to improve their summation procedure
based on Pade approximants.

On the other hand, new summation methods then
became available. It is natural to use a Borel
transformation

»»

w)g)=f e '))(ge)ee

The large-order-behavior calculation gives us the

it is possible to calculate the critical exponents as
power series in e.' Calculations have been done up
to order e . ' As these series are only at best asymp-
totic, the accuracy of the final result for e =1,2 is

limited.
It has been proposed to calculate directly the

renormalization-group functions in the dimensions of
interest (d =2, 3), as powers in the coupling constant

g. As the series are divergent and the zero g' is now

of order one, nonperturbative methods to sum the
series are required.

Recently many terms have been calculated. A
realistic calculation then became possible. Guessing
correctly that the Eth term in the series would grow
for large orders as Et, Baker et a/. ' decided to use a
Borel transformation, and to sum the series of the
Borel transform by the Pade method.

Since then Lipatov" has proposed a method to es-
timate the behavior of the perturbation series at large
orders. Application of this method to the ()t )q' field
theory" gave the large-order behavior of the various
quantities of interest for d =1,2, 3. The correlation
functions are given in terms of functional integrals.
Their large-order behavior can be obtained by a
steepest-descent calculation of the path integrals, in

which the relevant saddle point is a finite action solu-
tion (instanton) of the classical Euclidean field equa-
tions for g negative

location, the nature, and the residue of singularity of
the Borel transform 8( g) closest to the origin. Mak-
ing some additional assumptions on the analyticity
properties of B(g), it is possible to sum the series
giving B( g). Using the Borel summability'~ of A(g)
allows us then to calculate A ( g), as will be explained
in more detail in Sec. II.

This is the method we have used in Ref. 1 and in
the present article. Very recently, it has also been
applied to the summation of the ~ expansion. '

The contents of this article are the following: In
Sec. II we discuss the problem of the resummation of
asymptotic series using the Borel transformation. In
Sec. III we explain in more detail how we have used
these summation methods in practice. In Sec. IV we
have summed the perturbative expansion in two
cases in which the exact result is known, a simple in-

tegral and the ground-state energy of the anharmonic
oscillator. In Sec. V the critical exponents of )t)f are
calculated. In Sec. VI we present an extensive dis-
cussion of the most interesting example, the critical
exponents of the n-vector model, in three dimen-
sions. In Sec. VII we discuss results obtained from
the e expansion. Section VIII contains our conclu-
sions.

II. RESUMMATION OF ASYMPTOTIC SERIES

A. The problem

Let A ( g) be some function analytic in a neighbor-
hood of the origin in an angle me, which for con-
venience we shall assume to be centered on the posi-
tive real axis. In this angle it admits an asymptotic
expansion

A ( g) —g A.g" ~ C(K+I) I
gl'+'

for

larggl ~ ,'(7m) a—nd C(K) =MC»(K!))'

The asymptotic expansion does not define in gen-
eral the function A(g) completely. At I gl fixed the
best estimate of A ( g) obtainable from the series cor-
responds to the minimum in K of C(K) I gl». The
final ambiguity will correspond to functions analytic
in the angle and bounded by e( g)

a( g) = min C(K) I g I
—exp[ —(c I g I ) ' ~l

Irc}

But there are cases in which no such function ex-
ists.

When o. is larger than p, according to a classical
theorem (Phragmen-Lindelof), there exists no analyt-
ic function bounded by e( g) in the angle. The func-
tion A ( g) is therefore uniquely defined, ' and the



3978 J. C. LE GUILLOU AND J. ZINN-JUSTIN 21

only problem is to reconstruct it from the series.
This is the case we shall consider from now on.

and

g —[1/(1 —u)&], u 1 (17)

B. Borel transform (Ref. 15 )

8(g) = XBttgB,x= (13)

When p = p, 8( g) is analytic in the union of a cir-

cle and an angle

larg g l (—(u —p)
2

(14)

If P )p, it is an entire function. From the asymp-
totic expansion of A ( g), one obtains the Taylor
series of 8 ( g) at the origin, which defines 8 ( g)
uniquely, and therefore also 3 ( g) through the Borel
representation.

C. Calculation of the Borel transform

If P = p, the Taylor series defines 8( g) only in a

circle while we need it on the whole positive axis.
We have to make an analytic continuation of the
Taylor series.

It would seem, therefore, that the situation P )p
is better because 8( g) is now an entire function.
But that advantage is fictitious. Only if we knew all

the terms of the series and could sum them with in-

finite accuracy could we calculate A ( g). If we can
use only a finite number of terms, then after integra-
tion we get back the series we started from. There-
fore even in this case a resummation procedure is
needed.

From now on we shall limit ourselves to the case
P=p.

In the absence of any knowledge about the singu-
larities of B(g), one method which can be used to
perform the analytic continuation is the Pade approxi-
mation. "

If we know more about the analytic properties of
B(g) & it is in general preferable to use a conformal
transformation, which maps a part of the domain of
analyticity containing the real positive axis onto a
circle centered at the origin, whose radius has been
normalized to 1 (Ref. 17)

When the function A ( g) satisfies the condition
o. )p, it has a Borel representation:

A(g) = jl e '8(gra)dt, (12)

with P ( o. .
Expanding in powers of g

From the assumed analyticity properties of 3 ( g),
we obtain the condition

+~ex p (18)

We have transformed the asymptotic expansion in a
new series

gf—1+K t~-'" g" =0
u(gt&)

(20)

From the behavior of u( g) near u = 1, we then get

Kv/~I +v&

1/(p+y) (21)

and therefore

OO K~/~n+v ~

0
e '[u(gt')]xdt-exp —C, g]/(, p+y) (22)

K

A typical situation is one in which the UK have the
same behavior in K so that the natural domain of
convergence of such an expansion is

Reg '/'~~') c2

For g small this yields

(23)

larggl «T~(p+y) «T~(r1 1
(24)

which is in agreement with the original assumptions.
We have given here a very qualitative but rather

general discussion. We shall concentrate now on the
specific examples we are interested in.

D. $q field theories

For the field theories @d, d=0, 1, 2, 3, it has been
shown that the-series are Borel surnmable. '"

In addition the large-order behavior of the series
has been obtained explicitly and has the form'

&(I)= x ((a f e '(u(rt )l~d't
K 0

The coefficients UK are the Taylor-series coeffi-
cients of a function analytic in a circle of radius 1.

For K large, the integrals are dominated by values
of u close to 1. It is possible to evaluate them by
steepest descent: The saddle-point equation is

g =g(u) (15)

with

g —u, u 0 (16)

K

A(r=cK o( —a)"K![1+O(1/K)], K
(25)
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with

a &0

and therefore

I»( g) —K 'exp[ —3(K /ag)' ] (35)

We shall therefore consider the Borel (actually
Borel-Leroy) transform Bt,( g) of A ( g) defined by

AK

»~0 I'( K + b + 1)
(26)

where b is a useful parameter, but which will play no
role in the first part of the discussion. Then

A ( g) = Jt t'e 'Bt, ( gt) dt . (27)

From the large-order behavior we know that Bb( g)
is analytic in a circle of radius 1/a. Furthermore we
know that the singularity of Bb( g) closest to the ori-
gin is located at the point —1/a.

In addition, if, as it is extremely likely, all other
finite-distance singularities of Bq( g} come from sub-
leading instanton contributions (at least as long as
the theory is super-renormalizable, d & 4), then all

singularities of Bb( g) lie on the negative real axis.
This result is proven for )t)f and $4). We shall as-

sume it for )t i and $3.
Then we can map the cut g plane onto a circle with

a mapping leaving the origin invariant

~ U»~ & M, exp(eK t'), Ve &0 (36)

then the new expansion converges for all g such that

Reg '~3 &0 (37)

or

3 3——m (argg & —m
2 2 (38)

The function A ( g) is thus analytic not only in the
cut plane but also in a second sheet up to

2
m.

Here only the simple integral @0 will have this
property.

If the coefficients UK behave like

U» —exp( CK' '), K —~
then the expansion converges in a region

(39)

Note that for K not too large, so that agK is of or-
der 1, I»( g) decreases exponentially in K.

The convergence of the expansion depends now on
the behavior of the coefficients UK.

If the coefficients UK are bounded by

(1+ag)'t2 —1 4 u

(1+ag)'t'+1 u (1 —u)
(28}

1Re, t & —C (40)

Bb(g) = x U»[u(g))» . (29)

From this we get an expansion for A ( g)

We obtain now an expansion of Bb( g) convergent
in the ~hole cut plane

It is not known whether the anharmonic oscillator
has this property. When

~ g ~ goes to zero, the singu-
larities must become tangent to the axis arg g
= —,(3n). This condition is satisfied by the anhar-

monic oscillator. But in addition the domain of the
singularities must be included in

with

A(g}=XU»1»(g} .
K

)~l g) = f, Pe ') u( gr) I ~@

E. Natural domain of convergence

(30) ~g~ & C'( —2n —e)' .

Even less of course is known for $2 and @3.
If g is rea) positive then two situations can occur

g& —( —C)1

a

and the expansion converges;

(41)

(32)

The saddle point is given by

——1+b K =0
t(1+agt) ' (33)

We shall now study the domain of convergence of
this expansion. We shall therefore evaluate the
behavior of 1»( g), for K large, by the steepest-
descent method. %e have

) 'K

I»(g) = t'e ' '
dt

(1 + agt) 't2+1

g& —(—C)1

Q

and the expansion does not converge but is a new
kind of "asymptotic expansion. "

Only the numerical
analysis of the series can tell us in which situation we
are.

As the series in the case of $2 and @3 are rather
short, we shall not be able to answer definitely to this
question. On the other hand, we shall be helped by
the fact that the values of g will be such that

For Kag »1 QgK (2.5 (43)

t —(K'/ag) ' (34) so that the integrals I»( g) will decrease faster than in
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the asymptotic regime. In addition we shall use the
parameter b as a variational parameter to improve the
"convergence, " as will be explained in Sec. III.

III. APPLICATION

We shall now examine in more detail how we can
apply the method we have explained in Sec. II.

A. Choice of the function

The first problem which arises is to decide to which
function we should apply the summation method, for
instance, A (g), A '(g) . Although the results
should be the same, at finite order differences will

appear. As a general rule, it appears that the func-
tion for which the series most rapidly reaches its

asymptotic regime in K gives the best convergence.
Another question is the following. Let us define a

shift of order K of the original series by

A (g) =Ap+A) g+ . +g»A(»)( g), (44)

B. Choice of the parameter b

To explain the role of the parameter b we shall use
a more precise form of the large-order behavior of
the A~'s

where we apply our resummation method to the
function A&»)( g).

Of course, if we have only a finite number of coef-
ficients of the series we cannot take K too large. On
the other hand, A ( g) itself is not necessarily the best
choice, as we shall see later. A reason can be found
to explain this fact:

The Borel transform of A&»)( g) behaves for g
large as Bb( g)/g . After mapping, the singularity of
Bb( g) at g = ~ is transformed in a singularity in u at
u =1. It is certainly useful to adjust K so that the
singularity of Bb(g(u) )/g" at u =I becomes as weak

as possible.
An alternative way of producing the same effect'

is to expand, in powers of u, Bb(g(u))(1 —u) . It is

easy to verify that for n = 2 K, the two methods are
identical when the order in the expansion in powers
of u is larger than, or equal to 2 K. For orders small-
er than 2 K the method with shifting is in general
better. On the other hand, the second method allows
one to compensate more precisely the possible singu-
larity of Bb( g (u)) and to go up to higher values of u
for which in the shifting method there would be no
terms left.

Therefore the coefficients of the Borel transform
behave like

Bb{g) = $8»g',
K

8» = c(—a)»K ' [1+0(l/K) ]

{46)

This shows that the leading singularity of Bb( g) at

g = —1/a is of the form

Bb(g) =cI'(I+bp —b)(1+ag) [I+O(1+ag)]

C. Subtraction of the asymptotic behavior

Up to now we have not used the constant c which
normalizes the large-order behavior of A~. One can
imagine various ways of doing it. One procedure
which we shall use is the following: We shall sub-
tract from the function A, ( g) a known function
C( g) which has the same large-order behavior as
A ( g). We shali write

C(g) =pc»g
K

A(g) =C(g)+X(A„.—c„)g»,
K

(48)

(49)

and apply our summation method to the series
(A» —c»). If we want our method to be reasonably
efficient, we must choose a function which already at
low orders has coefficients e~ close to A~. An em-
pirical choice which seems to give good results is

C(g) = e 't D(gt)dt
Q

with D given (for b' ~ 1) by

(so)

D(g) =c( )b I'(bp —6 l+)(a —)gb (I +ag)

(47)

Therefore, by varying b, we can modify the singu-
larity of Bb( g) at g =—I/a, or of Bb(g(u)) at
u =—1. To weaken the singularity it seems reason-
able to take b & bQ+1.5. This qualitative criterion
does not fix b very precisely. We have therefore tak-
en it as a variational parameter derived from the fol-
lowing variational principle:

The function Bb(g(u)) has an expansion in terms
of coefficients U»(b) which are smooth functions of
K and b. If we truncate the expansion of Bb at order
L, it is reasonable to choose for the "best" b the zero
6' (which can be complex) of smallest module of
UL(b) In th.is way the coefficients UL+){6),
UL+2(b) which we do not know will be minimized
in general in terms of the information we have, i.e.,
the coefficients U»(b) up to order L.

A»=c( —a) "I'(K+op+1)[1+O(1/K)], (45)

where a, bQ, e are numbers which have been explicit-

ly calculated in all cases of interest here.

r(b, 6+I +v'+K)-
{K16+' +)I

(51)
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D(g) = $ D»g' .
K 0 (52)

where b' is an integer equal to b if b is itself an in-

teger, or to (b +0.5) if b is a half integer. Note that

if b'= b, the function C( g) does not depend on b.

The function D( g)

and calculate the others series y( g), t ( g) . for

g =g'. As a result the final errors on the exponents
will be the sum of the error of the series of the ex-
ponent and of the error coming from g'. To avoid
this one can proceed in the following way.

Let us define

»I'(K+bb+b' —b+1)
I'(K + b'+ I)

W( g, e') = —e'g + $ W» g" .
2

(ss)

is such that the DK give the large order of BK
= A»/I'(K + b + I ), as can be seen from the
behavior [Eq. (45)] of A».

Then one has

A(g) =C(g) + Jt e 'tb g (B» D»)(—gt)" dt
,k 0

(s3)
where we apply all our methods to the last term up to
the known order of BK.

Then

W(g, 1) = W(g) (56)

It is possible now to calculate g' as a power series
in ~', and to substitute this series in the exponents.
Cumulation of error is therefore avoided, at the price
of having series with more complicated structures.

We have then applied systematically all the
methods explained above to these ~' series for @q and
i[tl'3 ~

D. Fit of the coefficients

As a final result we shall give numbers with error
bars which show in what range we believe, after these
calculations, the result should lie. As we have no
mathematical bound on the errors, the error bars are
somewhat subjective. As an ultimate check, we have

fitted the known series coefficients in various ways

using explicitly the large-order behavior. In this way

we have obtained predictions for the coefficients we

do not know yet. We have incorporated them in our
analysis and checked that the limit of this longer

series was lying in the range we predicted. The addi-

tional information we have made use here is the
smoothness of the coefficients AK in K.

E. Remarks

The systematic use of all these variations of the
same method has had two opposite effects. On one
hand, it has helped us find the most efficient methods
to sum our series and so decrease the uncertainty
over the final results. On the other hand, we have
found in this way a large number of plausible results,
and this has increased the uncertainty over the
results, but at the same time it has, we hope,
delivered us from obvious biases due to the overly
special structure of one of these methods.

Practically the parameter o. has been varied up to
values as large as 6 or 7, and the range of variation
of b was always larger than 10.

F. Pseudo-~ expansion {Ref. 19)

When we calculate the critical exponents from @42

and P], we shail have to solve first one equation

IV. NUMERICAL APPLICATIONS TO CASES
WHERE THE RESULT IS EXACTLY KNOWN

A. The integral

Z( g) = Jt dx exp[ —(x2+gx4) ] (57)

ZK
1

(—4) KK!
»-~ (2n)'t2 K

(s8)

For half-integer values of the parameter b, the
Borel transform Bb( g) of Z( g) has simple expres-
sions in terms of the variable u

(I —u)' (59)

(1 —u) '~2

Bb(g(u))- I+u
2(1 —u)', b=

2

For b =—
2

the dominant singularity is at u = —1, so

that for K large the UK behave like

The integral Z( g) corresponds to the vacuum-
vacuum amplitude of field theory $t, which is a com-
plicated way of saying that the coefficients ZK of the
expansion of Z( g) in powers of g count the number
of Feynman diagrams of a @4 field theory with the
proper weighting factors.

The large-order-behavior calculation shows here
that

Z( g) = QZ»g

W( g') =0 (54)
U» — [I + O(l/K) ]

2
(61)
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Thus our method converges for all values of g
satisfying

larggl ( —'
, ~ (62)

(63)

As b has increased by one unit, the large-E
behavior of I~( g) has increased by a factor K' ', so
the expansion converges more rapidly for b = —, by a

factor K '/6.

In general, increasing b by one unit decreases the
contribution of the singularity at u = —1 by a factor
g —1/3

Now to decrease the strength of the singularity at
u =1, we can shift A ( g)

A ( g) =A (0) +gA())( g)

For b = —,, the corresponding Borel transform=3
B()) ( g) is

(64)

1 —u )(' —1B())(g(u)) =2 " (I —u)' . (65)

For b =
2

the dominant singularity is at u = 1, and

the Uq- behave like

the only singularities of the Borel transform B(g(u))
are power-law singularities located at u = +l. In gen-
eral other singularities will be present on the circle

~
u

~

= I, which we shall not be able to modify, so
that the efficiency of this method will be more limit-
ed.

The numerical investigations confirm this theoreti
cal analysis.

B. Anharmonic oscillator

We have applied our methods to the ground-state
energy F(g) of the anharmonic oscillator ((t)t field
theory). For this example the method of Borel
transformation and mapping has been proposed by
Loeffel. "As we have explained already, it is not
clear if the particular mapping we have chosen will

generate a convergent expansion. On the other
hand, considering that B( g) is analytic in a cut
plane, if the method converges, it is optimal.

%e have first calculated with 20 terms of the series
and various values of the coupling constant ranging
from 0.05 to 50 and compared the results with values
obtained from a numerical solution of the Schrodinger
equation.

From the large-order-behavior calculations we
know that

The singularity at u = 1 is now weaker, and there-
fore the Ug decrease faster. The convergence is im-

proved by a factor I/E'.
Now if we take b = —, and n = ——,, then the first

1 1

term of the expansion gives the exact result.
The case of the integral is of course ideal, because

E(g)= —, +gE g
1

E —(—3) It ' '1(."(1+0(I/el

In addition the behavior of E( g) for g large is

(66)

(67)

5 I

RELATIVE ERROR
4 —(10 )

-2

-5
2

I

6

FIG. 1. Anharmonic oscillator ( g =0.5): Relative error (E/E, „,« —1) (times 10 ) as a function of the order L of the per-
turbation series, with no shift. Points 0 represent typical oscillatory behavior (b = —0.5), points ~ represent typical monotonic
behavior (b =2.5), and points x represent values for the "best" b found at each order L by (complex) zero b' of UL(b) (see
Sec. III '). On the right are shown corresponding typical error bars, respectively, with vertical lines, ———,and —-—-, for
the result at order L =6. The vertical bar ', „represents the final error bar (for L =6), taking into account all shifts of the
series,
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5 RELATIVE ERROR

t 10-2)

-2-

+

~o Oy~
Og Isg

I

Kl

-3-

-5-
v

FIG. 2. Anharmonic oscillator (,(.' =0.5): Relative error (I.:/E,„,« —1) (times 10 ) as a function of the order L of the per-

turbation series, with no shift. At each order L, points from left to right correspond to increasing values of h, starting from
6 = —1 (for point +) and increasing by steps of 1. Points 0 again represent typical oscillatory behavior, with the corresponding
error bar for the result at order L =6 on the right.

known from scaling arguments

E( g) (68)

As a result we expect the relevant domain in b to be

b~1 {69)

and the best value of a to be

decreases with increasing g as expected.
For g = 50, the relative accuracy with 20 terms,

and for "good" values of a and b, is of the order of a
few percent.

It has been argued in Ref. 20, using 60 terms of
the series and a more accurate calculation, that there
is some evidence that a convergence of the form

=2A=
3

(70) exp —(K/g )' ' (7l)

Considering the sensitivity of the results in n, we

have calculated only for integer values.
The first obvious result is that, up to order 20 at

least, the new series converges towards the exact result.

The second remark is that the rate of convergence

is impossible. Series like the new series obtained
here, would only be also asymptotic but with a very
small residual error of the order of exp( —200/g), in-

stead of exp( —l/(3g)) for the original perturbative
expansion. Certainly such a result cannot be checked

5 —RELATIVE ERROR

(1tl )

-2

FIG. 3. Same as Fig. 2, but with the parameter o, (defined in Sec. III A} equal to 1 (b starts from 0}.
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g RELATIVE ERROR
— (10

5—

-3—

FIG. 4

I II

5 6 73

der 1 of the series (6 starts from 1.5}.Same as Fig. 2, but with a shift 6f order o

here and for any practical purpose our new series
can be considered as convergent.

of fornd ste we have chosen one value of g orIn a secon s ep w

ms to be compar-which the rate of convergence seems o e
able to the rate observed in @2 and P3

(72)g =0.5
and we have systematically varied b, shifted the
series, and varied n.

As noted alrea y in e .d
'

R f 18 the best convergence
is obtaine or n c od f lose to the theoretical value —, , in

and 5,our case +=1. One clearly sees this in Figs. a 5,
w i ns in b at each order of thewhere results of explorations in

series are s ownh wn for different shifts and n's. As t e
b oneexact result oes nod t depend on the parameter b,

associated withexpects the best convergence to be associate wi

the weakest variation in b; this h ppa ens for the value

Now for o. fixed the best values of b are genera yll

found between and b t 1 and 2.5 although occasionally they
can be as high as 3 or 4.

In a third step we have used these series to find
empirical criteria to estimate the error made in trun-

ries. We have looked for criteria such
that the error would be overestimated and this or a

f d b. In general, as b increases the
U d sequences, as function of the correspon ing

order L of the perturbation series, show irs
tions and then, after a transient set of b's, a mono-
tonic behavior for higher b (see Fig. l).

It appears athat typical reasonable and conservative
r er L arecriteria for the error on the result SL at order are

REI ATIVE

I —(I 2)

xv

0- - 7(P'f
+O

-3—

-0.070
0-5.

v 0.217 I

5

v
32

arameter u equal to 3 (6 starts from 0.arameter u equa .5 .FIG. 5. Same as Fig. 2, but with the parameter u equa
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from the study of anharmonic oscillator:
(i) Take the last truly (as b increases) oscillatory

curve, and then take as a possible error bar the
seParation between Sz and Sz 1.

(ii) Take, after the transient set of curves as b in-

creases, the first truly monotonic curve, Sz 1 then

giving an estimation of the upper (or lower) limit of
the error bar.

Pade approximants made on the Sl ((up to ~) give

results consistent with such criteria. Furthermore,
these criteria are applied for each a (or shift) and for
both methods with or without use of the constant c
of the asymptotic behavior. Then a reasonable union
of such error bars around the optimal ~ is finally tak-

en as the error bar on the result.
This is illustrated in Figs. 1 to 5 for I =6 in view

of the application to ($ )3. We have also plotted in

Fig. 1 the sequence obtained from the "best" b found
at each order by (complex) zero b' of Uc(b) (see
Sec. IIIB).

The criteria given above finally yield for the anhar-
monic oscillator with g =0.5, at order 6 of the pertur-
bation series:

g' = 1.751 +0.005 (77)

The exponent cu which characterizes the leading
correction to the scaling laws has not yet been identi-
fied. A possible candidate is 1.

Unfortunately, for technical reasons, the series in g
are rather short: g(g), u(g), y(g), co(g) are only
known up toorder g'and W(g) uptoorder g~. In
addition, as one can expect from the e expansion, the
critical coupling is larger, so that the convergence is
slow compared for instance to d =3, As a result, this
very interesting comparison is not completely con-
clusive. Our estimates are given in Table I. The
constants appearing here in the large-order behavior
(8) are given in Table II. The critical exponents y

TABLE II ~ Constants (Refs. 12 and 13) appearing in the
large-order behavior Eq. (8).

(i) For the n-vector model (@ ) in three dimensions

only known from high-temperature series expansions. "

~exact

—1=(I+4) x10'

V. CRITICAL EXPONENTS IN THE $42

FIELD THEORY

(73)
a =0.14777422 (n+8)

5+
2

n for N(g)
1

b()='2+
2

& for q(g)
1

3 + T n for W( g) and the other exponents

y =1.75

v = 1.0

(74)

(75)

We shall now study our first real field theoretical
example. It is commonly believed' that the P2 field

theory from the point of view of critical properties
belongs to the same universality class as the two-

dimensional Ising model, so that universal quantities
like the critical exponents y, v should be the same
in both models. We can therefore compare our results
with the values exactly known of the Ising model

and with
1

C„-1=C„(2),' C. = —
4 C„(~)

1c = —c (2), c 1=2c (2)2') ' p

c given by

n=0 n=1 n=2 n=3
for H ( g): 0.085489 0.039962 0.016302 0.005 961
for co( g): —0.014212 —0.005 905 —0.002168 —0.007 207
for q( g): 0.002 884 0.001797 0.000880 0.000366
for q ( g): 0.010107 0.006299 0.003084 0.001281

and therefore

v) =2 —y/v =0.25 (76)
(ii) For @2 field theory

On the other hand, the critical coupling constant is

TABLE I. Estimates of critical exponents in the $ field

theory in d=2.

g = 1.85+0.10
OJ= 1.3+0.2

1.79 +0.09
v= 0.97+0.08

0.13 +0.07
q(') = —0.85 +0.07

a =0.238659217
1

5 for co( g)
bo=' 2 for q( g)

3 for S'(g) and the other exponents

0.04886 for W(g)
—0.02332 for co(g)

c= 0.003468 for q(g)
0.01049 for q( (g) and v '(g)
,0.005245 for y (g)
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g"'= —+g —2 .
v

(78)

and v seem to be compatible with Ising-like ex-
ponents. The exponent q is much too small but the
series for q(g) has only three terms, so that it is ex-
tremely difficult to assign an error to the obtained
result. The most serious problem comes from the
quantity q ' which is given by

ly interesting if one could calculate one or two terms
more of the series even with an accuracy not better
than 10 ',

VI. THREE-DIMENSIONAL 8-VECTOR
MODEL (f2)1

For the Ising model

'= —0 75

The series, on the other hand, suggests rather

&~» = -0.8S +O.07,

(79)

(80)

We shall discuss in the first part of this section the
case n =1, which corresponds to Ising-like systems,
because in this case the comparison with high-
temperature (HT) series is the most meaningful.

With the normalization used in Ref. 9, the con-
stants appearing here in tht: large-order behavior (8)
are given in Table II.

which is somewhat far from the Ising value.
The estimates for the critical coupling constant g'

are also higher than the value given by the high-

temperature series, but the errors are so large that
this difference is probably not significant.

From this short analysis, two facts emerge: (i) The
results are in qualitative agreement with Ising-like
values. (ii) On the other hand, we observe small de-
viations from the Ising-model values which are some-
what high compared to the expected uncertainties
over the series estimate.

In such a confusing situation, it ~ould be extrerne-

A. Detailed discussion of the case n =1

We have again calculated first the zero g' of
W( g), and then the various critical exponents
separately y, v, P, q ', q, eo, the relations between
these exponents being a check of the method. We
have also calculated these exponents directly through
the pseudo-~ expansion.

We give Figs. 6 to 18 as examples of only some of
the numerous results obtained from the various
methods discussed previously.

1.L1

1.L7

1.L2

1.Ll

1.LO

'%2

FIG. 6. Some typical convergences for the value of g, zero of W(g), for P4 theory with d =3 and n =1, as a function of the
order L of the perturbation series of W( g)/g. The two last orders (L =7 and 8) correspond to a fit of the known terms (up to
L =6) of the series (see Sec. III D). Oscillatory behavior is labeled by 0, normal method, shift of order 1 (b = 2.5) and 0, from

pseudo-e expansion, for + =9, "best" b at each order by (complex) b . Monotonic behavior is labeled by ~, normal method,
shift of order 2 (b =8.5) and x, method using the asymptotic constant c, shift of order 0 (b = —1). Vertical bar ',

represents the final estimate (81). Vertical bars (1) and (2) represent domains of variation of Pade approximants applied, for
L =6 and fixed b, on the series of the results at each order, for a domain of variation of b equal to 5 around the "best" b at or-
der 6: (i) for the normal method and (ii) for the method using the asymptotic constant c.
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gifter ($ )3 (n=3l
1gy ll.50II

1.42

1.30

1.34

1.37
2

FIG. 7. Some typical convergences for the value of p", zero of j ~'(p), for (+2)2 theory with fI =3 and n -3, as a function
of the order L of the perturbation series of ~(g)/f;. The two last orders (L -7 and 8) correspond to a fit of the known terms

(up to L =6) of the series. Oscillatory behavior is labeled by: 0, normal method, shift of order 1 (b =3.5) and Cl, method us-

ing the asymptotic constant c, shift of order 1 (b -1.5). Monotic behavior is labeled by: , normal method, shift of order 2

(b =9.5) and x, method using the asymptotic constant c, shift of order 1 (b -6). Vertical bar ', , represents the final esti-

mate.

1. Coupling constant g

Let us first discuss the determination of g', some
typical behavior being given in Fig. 6. As for the
anharmonic oscillator (and for $t field theory), we
have here both oscillatory and monotonic sequences
as function of the order L of the perturbation series.

The criteria used to estimate the result have been ex-
plained in Sec. IVB.

Notice that the structure of the sequences of the
"best" b's (see Sec. II1B) is not always smooth and
regular. In fact, in determining these best b's, we
have used all the information on the series. We have
then to order 6 of 8'( g)lg an optimal estimate of g',

OQ4

v t p& (n*1)
0.632—

0.630

0.620

0.626

0624

0.622

0.620

0.610

0.616—

Oola, go.an.]a.oao

2

FIG. 8. Some typical convergences for the critical exponent v, for qh~3 theory with ff -1, as a function of the order L of the

perturbation series of v( g"), here with g 1.416. The two last orders (L =7 and 8) correspond to a fit of the known terms

(up to L 6) of the series. Points 0 are from normal method, shift of order 1, b =2. Points 0 and + are from method using

the asymptotic constant c, respectively, with a 3 and a-4, b 7 and b 2. Vertical bar ', ,'represents the final estimate
(83) for (1.416).
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I+
0.636 -ylor y3 (n =1)

0.63L—

0.632—

0.62$—

clo
~+

clo ~~cyclo

0.626—

0.62L—
I
0

0.622—

O.QO—

0.$16 jp gt
2

FIG. 9. Critical exponent v = vi g ) with g"= 1.416 for ft theory with n = 1, as function of the order L of the perturbation

series: Normal method with shift of order 2. At each order L, points from left to right correspond to increasing values of b,

starting from b -4 (for point +) and increasing by steps of 1. Points 0 represent typical oscillatory behavior, with the corre-
sponding error bar for the result at order L-6 on the right. The last order (L =7) corresponds to a fit of the known terms (up
to L =6) of the series. Vertical bar' , ', represents the final estimate (83) for v(1.416).

however, such sequences do not help very much in

general to estimate the error bar, which is better
given by the criteria of oscillatory behavior obtained
from other b's.

Use of the constant c multiplying the large-order
term gives here better monotonic behavior than for
the normal method without c. Ho~ever, this is not
general and depends on the specific series.

Variation of the parameter a (and shifts of the
series) shows an optimal convergence around tx =2

(shift of order 1) for g".
Figure 6 also shows values of g' obtained if we use

a fit of the known coefficients to predict orders 7 and
8 of the series for 14'( g)/g, as explained in Sec.
III D. We then obtain two results which confirm the
criteria we use to estimate the error: (a) The oscilla-
tory (or monotonic) behavior selected up to order 6
remains the same at higher orders, and (b) there is a
rapid convergence inside the error bar estimated at
order 6.

I

0636 ylor P (n = 1)

0.620

y~~c i &MOydyc l

cl

0.62t

0.622

t

O.S20—

0.6%—

FIG. 10. Same as Fig. 9, but by the method of using the asymptotic constant c, with shift of order 2. Parameter b increases
from 0 by steps of 2. Points 0 and ~ represent typical oscillatory and monotonic behavior, with the corresponding error bars for
the result at order L =6 on the right.
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0.620

0.62S

+
« r

I

0536 —
y f y (n j}

0.634—

0.632—

0.630—
+ ~~~~~~ «~X

/0.622 —,i
tt

I

0.620—

0.610 ——
2

FIG. 11. Same as Fig. 8, but for pseudo-e- expansion. Points && and ' are from normal method, with shift of order, respec-
tively, 1 and 2, b =3.5 and —1.5. Points + are from the method using the asymptotic constant c, with shift of order 1, b = l.
Vertical bar 1

', represents the final estimate (87).

In this way, we have found that even a calculation
which would not be very accurate of the eighth order
of the series for 1V( g) would improve the determi-
nation of g'.

Another check of our results is obtained, as shown
in Fig. 6, by extrapolation of the successive values of
g' at each order with use of Pade approximants,
varying the parameter n and b in a large range
around their optimal values.

We have also used as a check the pseudo-~ expan-
sion of Sec. 111F. For larger n (of order 9) there are
here oscillations for the sequences of best b's found
at each order by (complex) zero b' of UL(b), an ex-

ample being given in Fig. 6.
Only a few examples are given in Fig. 6. After a

global study of the results obtained by all the
methods we used, we finally obtained the estimate
for g"(n =1)

g =1.416+0.005

2. Critical exponents y and v

We give in Figs. 8—10 for v and 13—15 for y,
some examples obtained by calculating v and y as
v( g'} and y( g'} for g" =1.416. We see essentially

(n=l }0 636 — 4

D. S34—

0.632—

D.630
t

0.620

0.626—

0.624—

0.622—

0.620—

FIG. 12. Same as Figs. 9 and 10, but for pseudo-e expansion: normal method with shift of order 2. Parameter b increases
from —1.5 by steps of 1.
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1 2~01
~ p m P3 (n=1)

1.246 ~
\

t24 —'q

t2

1.2

1.2

1.2

1.2

1.2

FIG. 13. Some typical convergences for the critical exponent y, for P3 theory with n =1, as function of the order L of the per-

turbation series of y( g ), here with g =1.416. The two last orders (L =7 and 8) correspond to a fit of the known terms (up
to L =6) of the series. Points 0 and ~ are from normal method, respectively, for a shift of order 1 (b =4) and for a =1
(b =6.5). Points 0, x, and + are from the method using the asymptotic constant c, respectively, for a shift of order 1 (b =2.5
and 6.0) and with no shift (b =3). Vertical bar ,', represents the final estimate (82) for y(1.416).

again the same structures as discussed above.
As mentioned for the anharmonic oscillator, we

also use in general as a criterion the variation of the
results as a function of b at each order of the series.
As the exact result does not depend on the parameter
b, the best convergence is in general associated with
the weakest variation in b. Figures 9, 10, 14, and 15

give examples of typical variations in b (note that b
varies by steps of either I or 2). We obtain an op-
timal convergence with a shift of order 1 for y and 2
for v.

Let us remark, as it is clear for instance from Figs.
9 and 10, that we often have, for the obtained se-
quences as function of the order, oscillations of op-

1.2Q
/for/3

12l6-(n- f )

1.24—

l
D

1.242—

1.240—

+
D"~~"~I

X

1.230—

1.236—

1.232

1.230—

1.221—

FIG. 14. Critical exponent y = y( g") with p =1.416 for @3 theory with n =1, as function of the order L of the perturbation
series: normal method with shift of order 1. At each order L, points from left to right correspond to increasing values of b,
starting from b =1 (for point +) and increasing by steps of 1. Points 0 represent typical oscillatory behavior, with the corre-
sponding error bar for the result at order L =6 on the right. The last order (L =7) again corresponds to a fit of the known
terms (up to L =6) of the series. Vertical bar, , represents the final estimate (82) for y(1.416).
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1.2L8-P for $3 (n=l)
t.

1.2t 6 &
I—\

'I

1.245 —'

1.242—

1.2&8'

1.238

~KPy-~cl c/
KR QK~~c

f

1.236—

1.234—

1.232—

1.230—

1.228—

FIG. 15. Same as Fig. 14, but by the method using the asymptotic constant c, with shift of order 1. Parameter b increases
from 0 by steps of 2. Points )K correspond to the "best" b obtained at each order by (complex) zero b'.

posite phases for the normal method and for the
method using the constant e of the large order. This
is useful to estimate the higher and lower limit of the
final error bar on the result.

Let us also mention that we have obtained here
better results for the series of v '( g) and y '( g ) than
for the direct series. As expected, the series for
which all terms oscillate yields the best convergence.
Finally it is clear in the figures shown that what we
have said above for the use of "predicted" orders

from the fit of the known coefficients is also true
here.

After a global study of the results obtained by all
our methods, we finally have the following estimates:

y(1.416) = 1.2408 + 0.0008

v(1.416 ) =0.6300 + 0.0008

(82)

(83)

Taking into account the uncertainty on the value of
g' around 1.416 given in Eq. (81), we then obtain for

I

1.25~- y for y (n=l)
3

t252—

1.25

1.2

1.24

1.2L

1.2t

1.24

1.238—

1.236—
1.11 5

"$i.ooo

2

FIG. 16. Same as Fig. 13, but for pseudo-~ expansion. Points x are from the method using the asymptotic constant c with
e =6 (b =1). Other points are from the normal method: 0 and 0 for u =5 (b =—0.5 and 3.5), ' for e =6 (b = —0.5), and +
for n =7 corresponding to the "best" b obtained at each order by (complex) zero b . Vertical bar ',

'
, represents the final es-

timate (86).
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1.2Ld

1.2L

1.2LL

1.2L2

1.2L0—

1.23d—

1.236— 0

0

~g lo
x&

0 ~»g lo
OX

1.23L—

1.232—

1.230—

1.220—

FIG. 17. Same as Figs. 14 and 15, but for pseudo-~ expansion: normal method with shift of order 1. Parameter b increases
from —1.5 by steps of 1.

the critical exponents

y =1.241 +0.0020

v =0.630 +0.0015

(84)

(85)

As explained above, we have checked these results
using the pseudo-e expansion of Sec. III F. Some ex-
amples are given in Figs. 11, 12 for v and 16—18 for
y. We obtained sequences of slightly different struc-
ture. The oscillations are somewhat larger, and for y
the monotonic curves converge from above. Also,

y = 1.2407 +0.0013

v = 0.6298 +0.0010

(86)

(87)

are therefore in good agreement with the method us-

the optimal convergence is for higher values of o.
(around 5). The behavior of the "best" b's obtained
by (complex) zero b' is monotonicaliy decreasing for
u =5 (Fig. 18; points X) and becomes oscillatory for
u = 7 (Fig. 16; points +).

The results obtained from this pseudo-e expansion

50c

1.?Ld

L ~
I

t?L6

1.?LL

1.2L2

1.?L0 +

1.230—

1,236—

1.23L—

1.232—

1.230—

1.228—

FIG. 18. Same as Fig. 17, pseudo-e expansion, but for the normal method with n =5. Parameter b increases from 0.5 by
steps of 2. Points X correspond to the "best" b obtained at each order by (complex) zero b'.
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TABLE III. Estimates of critical exponents in the three-dimensional n-vector model ($2)).

n=0 n=1 n =2 n =3

7l

JB

~(2)

5], cvv

1.421 +0.008
0.80 +0.04
1.1615 + 0.0020
0.588 +0.0015
0.027 +0.004
0.302 +0.0015

—0.2745 +0.0035
0.236 +0.0045
0.470 +0.025

1.416 f 0.005
0.79 +0.03
1.241 +0.0020
0.630+0.0015
0.031 +0.004
0.325 +0.0015

M.3825 +0.0030
0.110 + 0.0045
0.498 +0.020

1.406 +0.004
0.78 2 0.025
1.316 +0.0025
0.669 2 0.0020
0.033 +0.004
0.3455+0.0020

—0.474 +0.0025
—0.007 +0.006

0.522 +0.018

1.391 + 0.004
0.78 +0.02
1.386 +0.0040
0.705 + 0.0030
0.033 a0.004
0,3645 +0.0025

—0.549+0.0035
—0.115 + 0.009

0.550+0.016

ing g'. In the pseudo-~ expansion, we avoid the un-

certainty on g', but the structure of the series is
more complicated.

B. General results

Everything we have said for g", y, and v for n = 1

applies also for other critical exponents and other
values of n for the n-vector model, and we only give
here the final results. The best estimates are shown
in Table III. Note that, as we mention in Sec. III E,

TABLE IV. Verification of scaling relations between criti-
cal exponents for the three-dimensional n-vector model
i$t)): First column (A) gives the directly computed qp, ,
and q, second column (8) gives the same exponents cal-

1
culated by the relations g =2 —y/v, P = —(3v —y) and

= (1 —y)/v, using the estimates of Table III for the
directly computed y and v.

n=0

=rl2-y/ v,

rlt2' = ( I —y)/v,

p = —, (3v —y)
1

(88)

(89)

our more complete analysis has somewhat widened,
despite more information, the uncertainty in the
results, as compared to those obtained in Ref. 1.

One sees that, when n increases, the accuracy in
the determination of g' improves surprisingly (see
Fig. 7), while in the case of the critical exponents it
deteriorates, as expected from the study of large or-
ders.

The critical exponents given in Table III have all
been calculated independently. Table IV presents
verification of scaling relations between them. Indeed
our theory is scale invariant order by order in pertur-
bation theory, and scaling laws between exponents
must be satisfied within the error bars. Taking for
instance y and v as the two independent critical ex-
ponents, we give in Table IV the estimates obtained
for q, rl't', and p, either by direct calculations (Table
III), or though the relations

P
(2)

n=l

n =2

p
(2)

n =3

0.027 +0.004
0.302 +0.0015

—0.2745 +0.0035

0.031 +0.004
0.325 +0.0015

—0.3825 +0.003

0.033 +0.004
0.3455 +0.002

—0.474 t 0.0025

0.033 k 0.004
0.3645 +0.0025

—0.549 k 0.0035

0.025 +0.008
0.3015 +0.0035

—0.2745 t 0.004

0.030 +0.008
0.3245 + 0.0035

—0.3825 +0.004

0.033 +0.010
0.3455 +0.0045

—0.4725 x0.005

0.034 k 0.014
0.3645 2 0.0065

—0.5475 k 0.008

using the estimates of the directly computed y and v.
The various results obtained in this way are re-

markably consistent.

VII. SUMMATION OF THE e EXPANSION

Kazakov et aI. ' have recently calculated the
fourth-order contribution to the critical exponents v

and co for the a expansion, ' the fourth-order contri-
bution to q being already known. 6

Using the Lipatov estimates for the e expan-
sion, "' they have applied the same summation
methods as ours. Their results are in good agree-
ment with those obtained in our calculation directly
in 2 and 3 dimensions. Note that the series are at
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TABLE V. Values of critical exponents obtained in the framework of the e expansion, using the
homographic transformation (91) of Sec. VII.

d=3; fl

o) =0.80
d=3; fl

o) =0.80
d=3; fl

o) =0.79
d=3; fl

cv =0.78
d=2; n

0) =1.53
d=2; n

cv = 1.40
d=l; n

co =2.44

=0

=0

=0

y =1.163

y =1.242

y =1.324

y =1.395

y =1.43

y =1.82

v =0.589

v =0.632

v =0.676

v =0.713

v =0.77

v =1.03

v =1.3

7!=0.034

7l =0.04

q =0.05

7l =0.05

7l =0.30

p =0.305

p =0.330

p=0, 357

p =0.379

p =0.58

(1 —a/p(n))
(91)

with

p(0) =4, p(1) =3,

p(n) =2, for n ~2

The new Borel transform probably now has a
power-law behavior, which can be handled with the
parameter a defined in Sec. III A.

We give in Table V the results for d = 3
(n =0, 1, 2. 3), for d=2 (n =0, 1), and for d =1
(n =0). Because these results are less accurate, we
do not give the apparent errors, which are always
such that the results are compatible with the direct
calculations in two and three dimensions.

Finally, for n =1 we have verified that, if we
choose the values of b and n such that the two-
dimensional results are exactly those of the Ising
model, then the three-dimensional results calculated
with the same values of b and n are very close to the
results obtained by direct calculation in fixed dimen-

the same length as the series in two dimensions but
shorter than those in three dimensions.

We have redone this calculation but with the fol-

lowing slight modification: we know that, as a func-
tion of ~, the exponents for n = 2 and 3 have a singu-
larity at e = 2 (d =2). For n = 1 a singularity prob-
ably lies at e =3 (d = 1), and for n =0 presumably at
e =4 (d =0). Therefore the Borel transform has an

exponential behavior for large values of the argu-
ment. To avoid this problem, we have made a
homographic transformation

sion d = 3. For example we have

y(p) = 1.75 y(3) 1.240

v(2) = 1.0 v(3) 0.631

q(2) =0.25 q(3) 0.033

(92)

VIII. CONCLUSIONS

We shall now make a few final remarks about the
calculations of the critical exponents for the n-vector
model in three dimensions.

First, it appears that the results are very much in-

dependent of the summation method. Essentially
same type ef estimates are obtained using Fade ap-
proxirnants or other resummation techniques.
Also, results from the ~ expansion are consistent
with those obtained directly at a fixed dimension.

Second, the estimate of the apparent errors is as
usual more delicate and somewhat subjective, and
therefore more method dependent. Nevertheless,
there seems to be reasonable agreement between all

types of calculations made in the framework of field
theory.

Then, if we compare such results with those given
by experiments or by high-temperature series, as
shown in Table VI, we see the following situation:
(i) At first sight, the results appear to be quite simi-
lar, (ii) nevertheless, significant discrepancies, mainly
with high-temperature results, appear, apparently"
incompatible with quoted errors.

The situation is therefore at present somewhat
confusing, "and it does not seem possible yet to draw
definitive conclusions from numerical calculations
about the identity of lattice models and continuous
field theory. May be more terms both in high-
temperature series expansions and in @4 field theory
would lead to more accurate results so that we could
see if the differences become more or less significant.
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TABLE UI(a). Three-dimensional critical exponents obtained by high-temperature series analysis.

n=1

5], QJv =

~ 250, i%0.003 (Ref 23)l-o.oo7

1.246 %0.005 (Refs. 28 and 29)
1.245 +0.003 (Ref. 22)

0.63&' ~'008 (Ref.23),)+0.002

0.638 %0.002 (Ref. 22)

0.125 +0.020 (Ref. 23)
=0.110 (Ref. 22)

0.312 20.005 (Refs. 34 and 25)
0.311 +0.008 (Ref. 35)

0.6+0.1 (Ref. 23), =0.496 (Ref. 79)
0.50 %0.05 (Ref. 37)

1.250+ 0.003 (Refs. 21, 78, and 24—27)

1.250 +0.001 (Ref. 30)
=1.241 (Ref. 79)

0.638 ~'001 (Refs. 31, 21, and 25)l+o.oo2

=0.125 (Refs. 32 and 33)
0.13 +0.01 (Ref. 29)

0.303—0.318 (Refs. 30 and 25)
0.312 +0.004 (Ref. 30)

0.50 10.08 {Ref.36)
0.83 +0.11 (Ref. 27)

n =2

5], oJv =

1.318 +0.010 (Ref. 38)
1.315 t 0.015 (Ref. 40)

0.670 20.006 {Ref.38)
0.673 k 0.006 (Ref. 40)

—0.02 %0.03 (Ref. 38)
0.02 +0.02 (Ref. 40)

0.60 20.08 (Ref. 39)

1.333 +0.010 (Ref. 39)
1.33 %0.02 (Ref. 41)

0.678 +0.005 (Ref. 39)

0.02 20.05 (Ref. 41)

q =0.04 10.01 (Ref. 38)

A~, Qlv =

1 42' ' (Ref. 42)—0.01

1.405 +0.02 (Refs. 44 and 46)

0.725 +0.015 (Ref. 42)

0.717 %0.007 (Refs. 44 and 46)

—0.14 20.06 (Refs. 44 and 46)
—0.09 +0.03 (Ref. 56)

0.38+0.03 (Refs. 47 and 46)

0.043 10.014 (Ref. 43)

0.54 +0.10 (Ref. 42)

1.375' ~'01 (Refs. 43 and 40)
l-e.o2

1.36 +0.04 (Refs. 45 and 46)

0.7025 ~'005 (Ref. 43)l-)o.ohio

0.70 +0.02 (Ref. 46)
—0.07 X0.04 (Refs. 55, 33, and 43)

0.35 +0.05 (Ref. 46)

0.040 2 0.008 (Refs. 44 and 48)

n=0

y=
V=
e—

1.165 +0.003 (Ref. 9), 1.1615 +0.0005 (Ref. 80)
0.600 +0.005 (Ref. 9)
0.25 (Refs. 49, 53, and 54)

=1.167 (Refs. 49 and 50)
=0.6 (Refs. 49, 51, and 52)

d ~. a u —-0.465 (Ref. 80)

1.162—1.167 (Ref. 50)
=0.59 (Ref. 52)
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TABLE VI. (b) Experimental results for three-dimensional critical exponents.

1.21 + 0.03,
1.22 +0.06 (Ref. 61)

1.240 +0.007 (Ref. 57)
1.23 +0.02 (Ref. 59)
1.20 +0.05,
1.25 +0.05,

1.14 + 0.1,

1.23—1.28 (Ref. 58)
1.24 +0.015 (Ref. 60)
1.18 +0.08,

0.625 +0.003, 0.625 +0.005 {Ref.57)
0.65 +0.02 (Ref. 60)

0.63 +0.02 (Ref. 59)

0.113 +0.005 (Ref. 62)
0.13 +0.02, 0.08 +0.02,
0.12 +0.04 (Ref. 61)

0.125 +0.01, 0.11 +0.03,

0.328 +0.004, 0.316 + 0.008 (Ref. 63)
0.321—0.329 (Ref. 58)
0.34 %0.02, 0.347 k 0.01, 0.354 + 0.004, 0.33 20.05,
0.34 %0.01 (Ref. 61)

0.016 %0.007, 0.016 %0.014 (Ref. 57)
0.03-0.06 (Ref. 60)

0.50 +0.03 (Ref. 62)

0.328 +0.007 (Ref. 64)
0.305 +0.005 (Ref. 60)

0.675 +0.001 (Ref. 65)
—0.026 + 0.004 (Ref. 65)

0.66—0.68 (Ref. 66)

1.40 +0.03 (Ref. 60)
1.397 +0.034 (Ref. 68)
0.70+0.02 (Ref. 60)

—0.09——0.12 (Ref. 67)
0.357 +0.012, 0.358 +0.003 (Ref. 67)
0.346 +0.007 (Ref. 69)
0.378 +0.010 (Ref. 71)
0.37 +0.015 (Ref. 60)

1.30—1.35 {Ref.67)

0.724 +0.008 (Ref. 68)

0.336+0.002 (Ref. 70)
0.385 +0.005 (Ref. 72)

n=0

0.595 +0.020 (Ref. 73)
0.575+0.01 {Refs. 75 and 76)

=0.6 (Ref. 49)

0.55 +0.02 (Refs. 74 and 76)
0.57—0.60 (Ref. 76)
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