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the application of electrical voltage and manifested by the 
light and dark alternations known as Williams Do- 
mains. l 2 v Z 3  
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ABSTRACT: The molecular weight (M,) and temperature (T) dependence of the radius of gyration (RG) 
and hydrodynamic radius (RH) of a polymer in a dilute solution are investigated. The theoretical predictions 
are compared with experimental results on polystyrene in various solvents as functions of M ,  and T .  It is 
found that the existing data fall in a region of values where RH cannot be represented by a simple power law 
RH - A”, whereas most of the data on RG satisfy RG - I?”. It is concluded that a power law fit to data would 
yield a u’ < u in this region, even though the theory predicts u’ = u in the asymptotic region. The quantitative 
aspects of the blob theory are also discussed and compared in some cases to the modified Flory theory. 

This paper investigates the molecular weight and 
temperature dependence of polymer dimensions in solution 
under actual experimental conditions and presents a 
quantitative comparison of the existing data on polystyrene 
in various solvents, with the theoretical predictions. 

In equilibrium, the mean size of a polymer molecule is 
characterized by its radius of gyration RG, which is a static 
property of the polymer measured in static experiments, 
e.g., by observing the static structure factor S(q) as a 
function of momentum transfer q. 

In the interpretation of dynamic experiments the hy- 
drodynamic radius RH of the polymer is defined by 

RH = k ~ T / G a v D o  (1) 

where k B T  is the temperature of the solution, 7 is the 
viscosity of the solvent, and Do is the zero concentration 
translational diffusion coefficient. It is the latter which 
is actually measured in a dynamic experiment, e.g., by 
observing the relaxation in time, of the dynamic scattering 
function S(q,t) for small momentum transfers qRG << 1. 
The reason for introducing RH through eq 1 in preference 
to Do is that it is less sensitive to the conditions of the 
solution, such as the temperature and viscosity, and fa- 
cilitates comparison with RG. One may interpret RH as an 
equivalent radius, when the polymer is visualized as a rigid 
sphere with stick boundary conditions, obeying Stoke’s law. 

0024-929717912212-0276$01.00/0 

It is known that RG - N’ in a good solvent and for large 
N ,  where N is the equivalent number of links in the 
statistical chain. The scaling arguments by De Gennesl 
and our earlier calculations based on the linear response 
theory2 also yield RH - Nu for large N. But recent 
light-scattering experiments by Adam and Delsanti3 in 
dilute solutions of polystyrene in benzene at  room tem- 
perature yielded an exponent v‘ = 0.55 7 0.02 in the 
molecular weight range 2.43 X lo4 to 3.8 X lo6, which 
differs from the most accurate value of v = 0.588 T 0.001.4 

In a very recent paper, Des Cloizeaux5 proved the in- 
equality 

where K does not depend on N for large N but depends 
on the type of the chain. He concluded from eq 2 that v’ 
I u must hold even if one postulates6 the existence of a 
new dynamical exponent v’ in RH - N””. 

Des Cloizeaux7 suggested that this discrepancy may be 
due to the fact that RH does not reach its asymptotic power 
law behavior, as predicted by the theory, within the range 
of experimental values of the molecular weight. 

The aim of this paper is to study this question quan- 
titatively by comparing the theoretical calculations of R G ~  
and RH2 as a function of the molecular weight and tem- 
perature in the nonasymptotic regions with the experi- 

RH > KRG (2) 
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mental data on polystyrene in different solvents and a t  
different temperatures. The reason for studying both RG 
and RH together in this paper is to eliminate the un- 
specified proportionality constants in the "blob" theory 
of polymer s t a t i s t i c ~ ~ . ~ t ~  using RG data and compare the 
theory and experiment on RH without any adjustable 
parameters. Temperatures above the 8 point are con- 
sidered in this study. 
The Variation of RG with T and M ,  

The radius of gyration is calculated from its definition 
1 N  

where N is the number of beads in the equivalent sta- 
tistical chain. 

In the temperature "blob" theory of polymer statis- 
t i c ~ , ~ , ~ ~  ( IRnl2) is modeled as 

(IR,I2) = Z2n, n I N, 

( IRn12) = 1zNr1-zun2u , n l N ,  (4) 
where 1 is the statistical length and N, is a tempera- 
ture-dependent cutoff to separate Gaussian and excluded 
volume regimes. The value of N, is estimated from 

N, - ( l3 /v ) '  ( 5 )  
where u is the usual binary cluster integral which will be 
approximated here aslo 

In (61, u, is treated as a constant to be determined from 
comparison of theory and experiment. Combining (5) and 
(6) we find 

N, = a /?  (7) 

= ( T -  e ) / T  (8) 
where 

and the proportionality constant a - (23/u,)z is an ad- 
justable parameter, which may depend insensitively on the 
type of the solvent and the structure of the monomer units. 

Substituting (4) into (3) yields 
1 - x z v + l  

2 v  + 1 
1 - x z ( u + l )  

2(v + 1) 
C Y S ' ( X )  = x2(3 - 2 ~ )  + 6~"" 

where x 
defined by as 
RG a t  the 8 temperature, Le., 

NJN, and as is the linear expansion factor 
RG(x)/RG(e) where RG(e) is the value of 

&(e) = 1(N/6)'lZ (10) 
Equation 9 was first given by Farnoux et a1.8 

In (9), x varies from N-' to unity when the solvent 
changes from "good" to "poor", respectively. In the good 
solvent limit x I N--l one has 

&(good) = 1N"/ [2(~  + 1)(2v + 1)11/' 
(11) RG(gOOd) = O.3771iP6 (V = y5) 

and25 

as(good) = 0.923NO.l (12) 
The variation of as with X-' = N/N, is presented in 

Figure 1 with the Flory value v = 3 / 5  although the most 
accurate value of v is reported to be 0.588.4 The accuracy 

N r2Mw 
N ,  a nA 
- = - -  (16) 

where A is the molecular weight per monomer ( A  = 104 
for polystyrene) and n is the number of monomer units 
in a statistical length. The product an is the only ad- 
justable parameter needed for a quantitive comparison of 
the theory and experiment. We have determined it as an 
i= 4 by matching the experimental and theoretical values 
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of as for polystyrene in cyclohexane, for which the 0 
temperature is known to be about 35.4 "C.  More explicitly, 
we have first calculated as from the experimental values 
of R G ( T )  and &(e) listed in Table I as a function of T and 
M,. Then we have computed the theoretical value of 
(NIN,) corresponding to as using eq 9 which gives as as 
a function of (NIN,). These results are also tabulated in 
Table I. Finally, we have substituted NIN,, M,, r = (T  
- 0 ) / T ,  and A = 104 in (16) to obtain an. We have 
considered only the experimental points designated by 2, 
5, and 6 in Table I and Figure 1, because the values of as 
corresponding to these points are well in the asymptotic 
region and follow N" power law, and the blob theory is 
expected to be more accurate in this region. The value an 
= 4 represents a rounded average of an for these points. 
A more precise determination of an employing least- 
squares fitting of a power law to data in this region was 
not considered necessary for the main purpose of this 
paper. Besides, we had only few experimental points in 
the asymtotic region to obtain a precise value for an. 

The 0 temperatures for benzene and toluene are not 
accurately known. We have estimated them in the vicinity 
of -50 "C and -41 "C, respectively, by assuming that an 
is the same in these solvents as in cyclohexane. an is 
expected to be insensitive to the type of solvent for a given 
polymer because the dominant solvent dependence is 
accounted for explicitely through the 0 temperature in N ,  
= a/r2.  Had the 0 temperatures been known for benzene 
and toluene, this assumption would be unnecessary, and 
in fact an could be obtained the same way for these 
solvents as illustrated above for cyclohexane, and the 
solvent dependence of an could be investigated. We 
emphasize that other values of 8 for these solvents can be 
accounted for by allowing an to  be different in different 
solvents. The interpretation of the experimental results 
for the hydrodynamic radius in such solvents a t  room 
temperature, or above, is very insensitive to the value of 
the 0 temperature, so that the above estimates are ade- 
quate for our purpose. 

A value of the parameter a can be obtained from an 
independent estimate of n, i.e., the number of monomers 
in a statistical length, using, for example, the characteristic 
ratios calculated by FloryI3 for various chain models. For 
a Gaussian polystyrene chain one obtains values in the 
vicinity of n = 15-20. As a typical value we choose n = 
20 and obtain a ii: 0.2. We use this value in the following 
discussions, where we indicate the temperature region in 
which the behavior of as as function of T i s  most sensitive 
to the choice of value of a and suggest the possibility of 
experimental evaluation a from comparison of theory and 
experiment in this region. 

Figure 2 shows the variation of as with the reduced 
temperature T for polystyrene with M ,  = 44.4 X lo6. The 
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Figure 2. The variation of as with the reduced temperature at 
a fixed molecular weight. 

three temperature regions are to be observed. The 8 region 
extends up to the transition temperature 

T,  = 0(l - [c~ /N] l /~) - l  (17) 
where T ,  and 0 are in degrees Kelvin. For polystyrene 
with M ,  = 44.4 X lo6 in cyclohexane (e = 308 K) we find 
T,  = 36.5 "C. For M ,  = 1.79 X lo5, T,  = 51 "C. 

The upper transition temperature TM, if it exists, marks 
the beginning of the good solvent limit, which corresponds 
to the maximum swelling of the chain for fixed N. It is 
given by 

TM = 0(l - all2)-' (18) 
when a < 1. The case a > 1 implies that the maximum 
swelling is not attained at  any temperature. For benzene 
eq 18 yields TM = 130 "C  with 0 = -50 " C  and a = 0.2. 
This result, admittedly very crude, seems to indicate that 
polystyrene in benzene is not quite in the good solvent 
regime, where as becomes independent of temperature. 
This point may be verified by measuring as in benzene at 
higher temperatures with fixed M,. 

In summary, we find, for large N, 
as = [3/(v + 1)(2y + 1)11/2~"0.5 

as = [ 3 / ( ~  + 1 ) ( 2 ~  + 1)]"2~2"(N/~)A~5 

(19) 

(20) 
for T > TM, 

for T,  < T < T,, and as = 1 for T < T,. 
The Variation of RH 

The calculation of RH through its definition (eq 1) re- 
quires an expression of the diffusion coefficient Do. Such 
an expression can be obtained from the fact that Doq2 is 
the slope of Iln S(q,t)l for small momentum transfers q 
satisfying qRG << 1, where S(q,t) is the normalized scat- 
tering function with S(q,O) = 1. However, Do may be 
calculated as the limit as q - 0 of a generalized q-de- 
pendent diffusion coefficient2J4 

where O(q)  is the initial slope of Iln S(q,t)l. D(q) may be 
interpreted as the diffusion coefficient of part of the chain 
within a wavelength of momentum transfer, whose dif- 
fusion dominates the initial decay of S(q,t). When q R G  
<< 1, this initial diffusion involves the entire molecule so 
that S(q,t) becomes an exponential function of t for all 
times and D(q)  reduces to Do. 

The general expression for D(q)  was obtained earlier2 
as 

m?) = W / q 2  

C (D,, exp(iq.R,n) ) :qq 
1 m,n 

D(q)  = - 
q2 C (exp(iq-R,,)) 

m,n 
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Figure 3. The variation of the expansion factor CTH for hy- 
drodynamic radius with NIN,. No adjustable parameters are 
involved in comparison of theory and experiment. Experimental 
points are labeled corresponding to Table 11. 

where D,, is the diffusion tensor, and R,, denotes, in the 
limit of zero concentration, the vector distance between 
two beads of the same chain. In the limit of q - 0 and 
with D,, chosen as the conventional diffusion tensor in 
Kirkwood-Riseman theory,1° D ( q )  reduces to 

where E is the friction coefficient per segment. Using the 
temperature blob model to perform the equilibrium av- 
erages, Benmouna and Akcasu2 calculated Do as a function 
of temperature. We present their result directly in terms 
of the hydrodynamic radius: 

where as before x = N,/N. 
Equation 22 yields 

RH(0) = ( [6~] ' /~/16)lN"~ (23) 
in a 0 solvent with x I 1, and 

RH(good) = ( [ 6 ~ ] ~ / ~ / 1 2 ) ( 1  - ~ ) ( 2  - v ) ~ N "  (24) 
in the good solvent limit with x I 1. 

from (22) as 
The expansion factor CYH = RH(x)/RH(e) is then obtained 

(25) 
Figure 3 shows the variation of C Y ~ ( X )  with NIN,, as 

calculated from (25) with u = 3/5. The asymptotic behavior 
for large (NIP/,) is 

CYH(X) - 4/5(1 - ~ ) ( 2  - U)(N/N, ) "~ .~  
CYH(X) = 0.747(N/N,)0.1 (26) 

Figure 4 presents the variation of aH(x)/CYs(x) as cal- 

(27) 

culated from (25) and (9) with u = 3/5. We find that 

in 0 solvents, and 
RH(e)/RG(e) = 3/g7T1/' = 0.664 

1 10 102 103 104 

Figure 4. The variation of the ratio of the hydrodynamic radius 
to radius of gyration. 

X - ~ ( N / N ~ I  
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in a good solvent. Both of these results are consistent with 
the inequality of (2) of Des Clo i~eaux.~  

The experimental results on RH are compiled in Table 
I1 as a function of Mw and T for polystyrene in various 
solvents. We have used 

- = - -  N Mw r2 
N, 104 4 

to calculate (NIN,) in the table, which corresponds to ncy 
= 4 determined from the data on the radius of gyration, 
as discussed in the previous section. The 0 temperature 
for T H F  was taken as -50 "C (the same for benzene) in 
the absence of any more accurate data. The experimental 
results are shown in Figure 3. 

The main observation is that  the data fall in the non- 
asymptotic region of the theoretical curve, where a simple 
power law RH - N" is not obeyed, as suspected by Des 
Cloizeaux.6 It also follows that any power law fit to the 
data is bound to yield an exponent less than 0.6, as ob- 
served by Adam and Del~ant i .~  The value of the exponent 
in such a fit should depend on the range of (NIN,) cor- 
responding to the experimental values of M ,  and T. 

A final remark about the discrepancy between the data 
and the theoretical cullre is that the blob theory is expected 
to be crude for small values of NIN, due to the discon- 
tinuous transition from the Gaussian to excluded volume 
behavior in modeling ( lR,I2). On the basis of the com- 
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Figure 5. The  variation of aH with the reduced temperature a t  
a fixed molecular weight. 

parison made in Figure 1 between the blob theory and the 
modified Flory theory for as, one may conclude that the 
blob theory of R H  should predict lower values in the 
transition region NIN, N 1 than the actual values. The 
experimental results seem to confirm this trend in Figure 
3. 

Figure 5 presents the variation of a H  with the reduced 
temperature (1 - 8 / T )  for M ,  = 179000, along with the 
experimental values in cyclohexane and trans-decalin. 
Discussions a n d  Conclusions 

We regard the blob theory of chain statistics essentially 
as a model for the equilibrium distribution of the vector 
distance between monomer pairs in the same chain. When 
supplemented with a dynamical model for the time evo- 
lution of polymer solution, it provides a powerful com- 
putational tool within the framework of the linear response 

by which various equilibrium and dynamic 
polymer properties can be calculated in a self-consistent 
manner. This aspect of the blob theory, which has been 
demonstrated in this paper by actually computing the 
radius of gyration and the hydrodynamic radius, is perhaps 
its most attractive feature over the other classical two- 
parameter theories, such as the modified Flory theory. 

The mathematical framework described above does not 
leave any room for a new dynamical exponent v’ in R H  N 
N” for large N, which is independent of, and numerically 
different from, the exponent in RG - N”. This implication 
of the theory is in agreement with Des Cloizeaux’s con- 
clusion (eq 5 )  mentioned in the introduction and calcu- 
lations by Adler and Freed.24 

The single chain properties such as the expansion factors 
as and aH considered in this paper are expressed in terms 
of a single parameter NIN, N z2 where z is the excluded 
volume parameter. The unspecified proportionality 
constant in N / N ,  N z2  introduces a further lack of pre- 
cision in quantitative comparison of theory and experi- 
ment, in addition to the difficulties encountered in other 
two-parameter theories in expressing the binary cluster 
integral in z as a function of temperature. We have re- 
moved these uncertainties in this paper by adopting Flory’s 
form for the binary cluster integral and eliminating the 
unknown quantities, which are lumped into a single pa- 
rameter, by matching the theory and experiment for the 
radius of gyration. 

The data for the hydrodynamic radius RH have been 
compared in Figure 3 with the theory which is now free 
of any adjustable parameter. The main conclusion is that 
the experimental values R H  for various molecular weights 

and temperatures all fall in a region, where, as suspected 
by Des Cloizeaux,” R H  cannot be represented by a power 
law N”’ as a function of N. Interpretation of the data by 
a simple power law is therefore expected to yield a value 
for v’ less than v, as reported by Adam and Delsanti. The 
numerical value of v’ obtained by this procedure would 
depend on the range of molecular weights used in the 
experiment. 

Figure 3 also shows that the blob theory predicts 
consistently lower values than the experimental data in 
the transition region centered about N/N, - 1. The same 
trend is also observed in Figure 1 where the data on R G  
are compared with the blob and modified Flory theories. 
The inadequacy of the blob theory in this region is due to 
the discontinuous jump from the Gaussian to excluded 
volume behavior in modeling ( IR,I2). This numerical 
inaccuracy in the transition regions seems to be a price one 
pays for the simplicity and clarity of the blob theory. 
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