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ABSTRACT: Several quantities sensitive to  branching density and branching type and to  molecular poly- 
dispersity can be obtained from quasi-elastic and integrated scattering measurements. These are the geometric 
and hydrodynamic branching factors (g = (P), ,ka/(P)h and h = D ~ e e r / D z , ~ ~ ) ,  the ratio p of geometric 
to  hydrodynamic radii, the angular dependence of the particle scattering factor P2(q),  and the first cumulant 
of the dynamic structure factor. Analytic expressions are given for these parameters for model regular and 
polydisperse star molecules, for branched polycondemtes of the Af and ABC typea, and for randomly cross-linked 
chains. The utility of these parameters in distinguishing among different models is demonstrated with three 
examples. 

Introduction 
Since the fundamental theory of branching and gelation 

was more than 30 years ago, a number of 
special models have been studied with regard to their 
molecular and structural properties, i.e., the molecular 
weights M ,  and M,, the mean-square radius of gyration 
(S2),, the particle scattering factor P,(q), where q = (4n/X) 
sin (0/2), and the intrinsic v i s~os i ty .~-~  Fairly complicated 
structures are now accessible to calculation if kinetic data 
of sufficient accuracy are a t  hand. Quite often, however, 
and in particular with biological materials, these kinetic 
data are not available, and it is then especially important 
to consider what information on branched structure and 
molecular polydispersity can be extracted from measure- 
ments in dilute solutions. A few years ago, a brief review 
on the particle scattering factors of branched macromol- 
ecules was given by one of us,19 and it was shown that 
indeed some information can be obtained from integrated 
scattering (IS) measurements. For this purpose, the 
molecules must have dimensions of the order of the 
wavelength of the scattering beam. This condition is often 
much easier to realize with branched materials than with 
linear chains, but it still represents a significant limitation 
in applicability. With the recent rapid development of 
equipment for dynamic “quasi-elastic” scattering (QES), 
smaller molecules have also become accessible to mea- 
surements of structural pr~perties.~’J~ Parallel to this 
development in technology, recent calculations of QES for 
some branched modelsS3l have revealed a number of new 
features. It thus appears worthwhile to examine how these 
results, in combination with IS data, can be applied to the 
practical analysis of unknown structures. The present 
considerations are restricted to molecules in the unper- 
turbed state, and refinements will be necessary in the 
future to allow for the effect of excluded volume. There 
is much evidence, however, that the effects of branching 
and the often vast polydispersity of the products are much 
more important than the influence of excluded vol- 
ume,9J0,32-34 and so the conclusions drawn in this study can 
be expected to remain valid to a considerable extent for 
good solvents. 

The following data can be obtained from IS and QES 
experiments without reference to any special model. (a) 
Integrated scattering: M,, (S2),, and P,(q);  (b) quasi- 
elastic scattering: D,, limq4 d(I’/q2)/dq2, r/q2 = f (q ) ,  
where D, is the z average of the translational diffusion 
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constant and r = -[d In S(q, t)/dt],=, is the first cumulant 
of the dynamic structure factor S(q, t ) .  The diffusion 
constant D, can be measured for small and large molecules, 
and the same is possible, in principle, for M,, although 
some difficulties in integrated light scattering must be 
overcome for very low molecular weights. For reliable 
evaluation of the mean-square radius of gyration (P), and 
the initial slope of r as function of q2, the molecules must 
be larger than about X / l O ,  and, in order to assess angular 
dependencies for P,(q) and I’/q2, which deviate from lin- 
earity when plotted against q2, the ratio (S2),1~2/X has to 
be of the order of unity or larger. The data from IS and 
QES can be combined in various ways and, as we shall 
show, quite interesting information on molecular structure 
and on polydispersity can be obtained by such combina- 
tions. 

In addition to the initial slope, the shape of the dynamic 
structure factor can also be ovserved at longer times. In- 
terpretation of this curve in terms of the various correlation 
times is scarcely feasible at present, since the effects of 
branching, internal modes of motion and of polydispersity 
cannot be properly separated. 

We confine consideration to the following models: (1) 
monodisperse and polydisperse linear ~ h a i n s ; ~ 9 ~ ~  (2) regular 
and polydisperse star macromolecules;30~31 (3) f-functional 
random polycondensates of the Af type;30p31 (4) polycon- 
densates of the ABC type with constraints on the reactivity 
of the three functional groups A, B, and C;30 (5) randomly 
cross-linked chains. 

By polydisperse linear chains we mean specifically 
polymers which follow the Schulz-Zimm length distribu- 
tion. The polydispersity is characterized by the parameter 
m = (P, /P,  - l)-l, where P ,  and P,  are the weight- and 
number-average degrees of polymerization. The regular 
stars need no explanation; the polydisperse stars have all 
the same number f of rays per molecule and the ray-length 
distribution is characterized by the polydispersity param- 
eter m = 1; Le., P,/P,  = 2 ,  which is Flory’s “most prob- 
able distribution”. The f-functional random polyconden- 
sates are obtained from monomer units with f identical 
functional groups. In contrast to this type, the ABC po- 
lycondensates result from a monomer with three dissimilar 
functional groups A, B, and C, and the reaction is subject 
to the constraint that group B or group C can react with 
group A but all other reactions are excluded. Finally, in 
the model of randomly cross-linked chains the primary 
chains have a “most probable” length distribution. The 
same type of polymer is also obtained in the co- 
polymerization of monovinyl with divinyl monomers. 
Comb will not be considered here, partly 
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Table I 
Dependence of  the Mean-Square Radii of Gyration (S'), and the Translational Diffusion Constants D, on  the Weight-Average 

Degree of Polymerization Pw and the Corresponding Exponents vs and UD in the Double-Logarithmic Plots of (s2), and 
D, vs. Pw for Some Selected Models (A' = kgT/61 '2n3 /2  n,b) 

linear chains 
monodisperse 
polydisperse ( m  = 1) 

polydisperse ( m  
coupled chains) 

star molecules 

regular stars 

polydisperse stars 

polycondensates 

Af type 

ABC type 

randomly cross-linked 
chains (polydisperse 
( m  = 1) primary 
chains) 

1 1 6  Pw 
I 4  pw 

l m + 2  
6 m + l  

1 3 f -  2 

6 f '  
f 

PW" -- 

-- b PW 

( f  + l ) Z P "  

E p w c  
2f 
1 + 2B 

4(1 + B)' 
P d  

pw e 
2(2 + E * )  

1 
1 

1 

1 

1 

1 

' I 2  to 1 

1 

( 81 3 )PW1 / 2  

( 2n /Pw)l ' 
- 'I' 
- ' I 2  

k - 1  ( )1'22F (1 + m ) e ( k ) / P w 1 / 2  - 1 1 2  

rn + 1 h=l  

- ' I *  

- ' I 2  

- ' I 2  

-'I4 to-1/, 

- 1 1 2  

a rn = polydispersity parameter; rn-l  = Pw/Pn - 1, where the subscripts denote weight- and number-average degrees of  
p o l y m e r i z a t i ~ n . ~ ~  
unit. B = p (  1 - p ) / (  1 - a), where p is the branching probability and the link probability [ (1 - a)-] = Pn] . B is very 
nearly the number of branching points per molecule based on the number-average degree of  polymerization P,. e E *  = 
e ( n  - l ) x ,  where E is the probability that a pendant double bond has been involved in a cross-link, n - 1 is the number of 
pendant vinyl double bonds per multifunctional vinyl monomer, and x is the molar fraction of multifunctional vinyl mono- 
mers in the branched molecule. 

f = number of rays per star (functionality of the star center). f = functionality of the monomeric 

because of the unsettled question as to whether the num- 
ber of grafted chains and their length appreciably affect 
the flexibility of the backbone. 

Molecular Weight Dependence of ( S2), and 0,. 
The  Ratios g a n d  h 

To avoid misunderstanding, we stress that we are dealing 
here always with unfractionated samples. Considerations 
are therefore based on those molecular averages which are 
directly measurable by the two scattering techniques. 

Quite often the conditions of polymerization can be 
varied systematically so that samples of different molecular 
weight can be synthesized. A reasonable and widely used 
first method of characterization is to plot global structural 
properties, e.g., the mean-square radius of gyration (S2), 
or the translational diffusion constant D,, against the 
molecular weight M,. Such plots alone, however, give little 
information, since usually straight lines are obtained on 
double-logarithmic plots with slopes which in the former 
case are often somewhat larger than unity (because of 
excluded-volume effects). In rare cases the exponents are 
smaller than unity; then, however, one has clear evidence 
for branching, as will be shown below. If the measurements 
are carried out under 8 conditions, the exponents given 
in Table I will be observed. 

More instructive than the molecular weight dependence 
is a comparison with the corresponding properties of 
well-characterized reference samples. In many cases, the 
molecular weight relationships of well-fractionated or 
monodisperse linear chains are known, and such mono- 
disperse chains are therefore usually taken for reference. 
Other choices would be possible and perhaps even more 
sensible: for instance, to characterize f-functional random 
polycondensates, it would be probably more useful to take 
unfractionated linear bifunctional random polyconden- 

sates for reference. In standard practice two characteristic 
factors are defined: for the geometric. dimensions4 

g (S2),/(Sz)lmono (both at  the same P,) (1) 

and for the hydrodynamic dimensions12 
h = Dl,mono/Dz (both at the same P,) (2) 

where the subscript 1,mono denotes a linear monodisperse 
reference material. These two definitions deviate slightly 
but significantly from the original definitions by the fact 
that the observable radii are compared here a t  same 
weight-average degree of polymerization, while Zimm and 
Stockmayer introduced for polydisperse samples the so- 
called g, factor, where the radii are compared at  same 
z-average degree of polymerization. Since in this study 
we wish to use only quantities which are actually directly 
measured by IS or QES, we prefer the above definitions; 
indeed, the z-average molecular weight is not unambigu- 
ously measurable by means of light scattering. I t  is nec- 
essary to emphasize that in spite of this apparently minor 
change in definition the resulting differences in g and h 
can be substantial because of the huge polydispersity ob- 
served quite frequently with randomly branched samples. 
Table I1 gives g and h for the models of Table I.35836 

The quantities g and h, so defined, have some surprising 
features. I t  is commonly presumed that g and h are con- 
tinuously decreasing functions of the branching density 
and always smaller than unity. This statement is certainly 
correct for monodisperse samples and also holds for regular 
stars. In the other cases, however, g and h are larger than 
unity for low branching densities, and in the case of ran- 
domly branched polycondensates or randomly cross-linked 
molecules they even increase with the number of func- 
tional groups, in contrast to the decrease for star molecules 
(see Figures 1 and 2). The reason for this behavior is that 
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Table I1 
Geometric and Hydrodynamic Factors for Some Selected Models 

model g h 

linear chains 
monodisperse 

polydisperse (m = 1) 

polydisperse ( m  
coupled chains) 

star molecules 

regular stars 

polydisperse stars 
polycondensates 

Af type 

ABC type 

randomly cross-linked 
chains (polydisperse 
(m = 1) primary 
chains) 

For the definition of c ( k )  see ref 30. 

f 

1 

3 i 2  

m + 2  
m + l  

3 f -  2 

f’ 
6 f  

(f + 1)’ 

3 ( f -  1) 
f 

3 1 + 2 B  -- 
2 ( 1  + B)2 

3 
2(1 + € * / 2 )  

Figure 1. Dependence of the geometric branching factor g on 
the number of functional groups f for three models. f denotes 
the number of rays per star molecule and, in the case of the 
polycondensates the number of functional groups per monomeric 
unit, R, = (S2),i/2 is the radius of gyration, and the subscripts 
b and 1 denote branched and linear molecules. 

polydispersity causes a larger increase of the z-average 
mean-square radius of gyration than the corresponding 
increase of the weight-average molecular weight. Thus g 
and h embody two effects with converse behavior: poly- 
dispersity, which causes an increase, and branching, which 
causes the familiar decrease. For the randomly branched 
chains the extraordinarily broad molecular distribution 
dominates the high branching density of the individual 
molecules. The decrease of the two characteristic factors 
g and h with increasing number of rays for the polydisperse 
stars is to a large extent also a consequence of a narrowing 
of the molecular weight distributions. 

The lack of one-to-one correspondence between g and 
h and the branching density may be regretted, but on 
reflection the inverse behavior of the randomly branched 
and the starlike-branched polymers proves to be advan- 
tageous because a combination of g > 2 and h > 1 is a clear 
indication for a random-branching process with its very 
broad molecular weight distribution, while values below 
unity indicate less pronounced polydispersities. Sometimes 
g and h decrease with increasing molecular weight. Such 

f l / ’  

( 2 - f ) +  2 1 ” ( f - 1 )  

3 ( f  + 3)\ 7 l  

1 1 2  16 

8 [2(1 + B)]”’ 

1 

- 
3 n 1 y 2  + B) 

=).( m k )) = 

0.5- 
1 4  8 12 

f 

Figure 2. Dependence of the hydrodynamic branching factor 
h = Dzl/Dzb = ( R ~ - l ) / ( R h b - l ) ,  on the number of functional groups 
f for three models. Rh is the hydrodynamic radius defined by eq 
3; all other notation is as in Figure 1. 

behavior is observed, for instance, with the ABC-type 
polycondensates, and in these cases the exponents us and 
uD in the molecular weight dependencies of ( S 2 ) ,  and D, 
become less than 1 or 1/2, respectively. Here the increase 
of branch points is no longer overshadowed by the increase 
in polydispersity, which is much less pronounced than for 
the random Artype poly~ondensates .~~ 

The p Ratio 
Another quantity of interest arises from the combination 

of ( S 2 ) ,  and D,. First we define an effective z-average 
Stokes-Einstein hydrodynamic radius by 

We can now define a dimensionless quantity 

(3) 

(4) 

which no longer depends on the bond length and the de- 
gree of polymerization but is a function of the branching 
density, of polydispersity, and of the inherent flexibility 
of the subchains. A factor similar to eq 4 was used years 
ago to demonstrate the transition of a wormlike chain from 
rodlike to random-coil behavior.37 There, however, the 
end-to-end distance was used, which is not directly 
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Table I11 
p Factor and Molecular Polydispersity Pw/Pn for Some Selected Modelsa 

model 0 P..,IP, 
linear chains 

monodisperse 
polydisperse (m = 1) 

polydisperse (m coupled chains) 

star molecules 

regular stars 

polydisperse stars 

polycondensates 

8 /3n112  1 
31/2 2 
(m t 2 ) 1 / 2  
m + l  

( 2  - f )  t 2 ' / ' ( f -  1) 

f 
1 

f t 3 (75) K) 
31/2 Af tY Pe 

ABC type 2 ( 1  t B )  

randomly cross-linked chains (polydisperse (m = 1) primary chains) 3 l l2  
( 3 / 5 I 1 l Z  1 

W W  PWP 1 
monodisperse spheres 

p = (l/R)Z(SZ),l'Z; all other notation is as in Tables I and 11. 

- . - - - - - - - - - - - - - - - - - - - - - 
s p h e r e s  

051 1 4 8 12 

f 

Figure 3. Dimensionless parameter p = (&-*)& for three 
branching models and for compact spheres. 

measurable. Table I11 gives a list of the p factors for the 
models of Tables I and I1 and also for compact spheres (see 
also Figure 3). 

Initial Slope of I'/q2Dz as a Function of 
u2 = q2(S2), 

The initial slope of the particle scattering factor from 
IS, when plotted against u2 = q2(S2),, is always 1/3 for any 
model. In contrast, the quantity q-T ,  when plotted against 
u2, has an initial slope that is significantly structure de- 
pendent31 and can be used as additional information if the 
polymers are large enough. Table IV gives values of this 
slope for the various models (see also Figure 4). 
Interdependence of the First Cumulant and the 
Particle Scattering Factor 

For large objects, where (S2),1/2/X > 1, the first cumu- 
lant and the particle scattering factor exhibit characteristic 
deviations from linear behavior. One can use such data 
in three ways: (i) to study the particle scattering factor 
P(q)  a t  larger u2, (ii) to study I'/q2D, at larger angles, and 
(iii) to study the interdependence of r and P(q) .  

Method i was discussed in some detail in a previous 
paper,lg where it was pointed out that instructive conclu- 
sions can be drawn in particular from the so-called Kratky 
plot, i.e., a plot of u2P(q) against u2. The appearance of 
a maximum, its position, and its height are characteristic 
for special branching types and polydispersity. 

The second method, i.e., a plot of r / q 2 D ,  against u2, 
requires measurements of high accuracy. There are some 

Table IV 
Particle Scattering Factor P,(q ), First Cumulant r ( q  ), and 

the Coefficient C in the Initial Slope of r = D,q2(l  t 
Cu2 - ... ) for  Ai and ABC Polycondensates and 

for  Cross-Linked Chainsa 

Ai-Random Polycondensates and 
Randomly Cross-Linked Polydisperse Chains 

P,(q) = (1 + uz/3) - '  

c =  ' I s  
ABC Polycondensates 

( 1  t I?)-' t B( 1 t u ~ ) ' ~  
1 + B  PAq) = 

r = rpre + ~r 
1 t u z / ( l  t B / 2 )  
1 t u 2 / ( l  + B )  

rpre = q2Dz(1  + 
uz (1 t u2)"' ( 1  t a 2 u 2 )  + 3/zB 
10 ( 1  + a2u2)5 /2  

~r = rpre- 
(1 t u z )  t B / 2  

1 2 t 3 B  c = - -  
6 1 t 2 B  

where 

and 
1 1 t B  

u 2  = - - 
3 1 t 2 B U 2  

a For derivation see Appendix. The corresponding rela- 
tionships for linear and star-branched molecules are given 
in ref 31.  

0 20 

polydisperse s t a r s  

$ b" LT O l 5 b  regular  stars 

0.10- 
1 4  8 1 2  

f 

F i  u re  4. Coefficient C in the initial slope of r = q2D,(1 + 
CL!! - ... ) for three branching models. 
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Figure 5. Angular dependence of the first cumulant F in a plot 
of r/p2D2 against u2 = (S2) ,q2 for monodisperse (top) and for 
polydwperse (bottom) star molecules. The numbers on the curves 
denote the number of rays per molecule. Inserts show behavior 
a t  small u2. Note the slight upturn at  u2 N 2 for monodisperse 
stars with more than 4 rays which is missing for polydisperse stars. 
The function I'/q2D, is normalized to 1 a t  q2 = 0. 

o3 

1, 'D[ 9 ! 
Figure 6. Interpendence of the normalized first cumulant and 
the reciprocal particle scattering factor for monodisperse (top) 
and for polydisperse (bottom) star molecules. 

differences in behavior for the various models. For in- 
stance, regular stars show a weakly pronounced sigmoidal 
curve with a slight upturn at  intermediate u2 before the 
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curve bends down. This upturn is missing for polydisperse 
stars (see Figure 5). 

The third method, namely, a plot of r/q20, against 
l/P,(q) on a double-logarithmic scale, probably gives the 
most instructive insight. (Figure 6 gives examples for 
regular and polydisperse stars. These curves include 
monodisperse and polydisperse linear chains (f = 1) and 
f-functional random polycondensates.) This may be rec- 
ognized from Table IV, where the particle scattering fac- 
tors and the first cumulants of the various models are 
collected. The reason for the striking coincidence of the 
scattering behavior between linear polydisperse chains 
(with the "most probable distribution") and f-functional 
polycondensates has been discussed p r e v i o u ~ l y ~ ~ ~ ~  and 
arises from the fact that the length distribution of sub- 
chains (i.e., the number of subchains of a given length in 
the polymer) is identical and follows a "most probable 
distribution" in these polymers. This statement does not 
hold for monodisperse chains or for star molecules and 
ABC-type polycondensates. For values of l/P,(q) < lo2 
the double-logarithmic plot of the first cumulant against 
the reciprocal particle scattering factor yields a straight 
line to a good approximation. In this case the exponent 
u is related to the initial slope C of I'/q2D, against u2 by 
the equation 

r/q2o, = [P,(q)l-" (5) 

with 
v = 3c 

which immediately follows from the power expansion 
1 + cu2 = (1 + '/,u2)" = 1 + (v/3)u2 + ... 

Discussion 
The utility of the various quantities given in the four 

tables may be elucidated by a few examples. 
(i) Let us assume that the following parameters have 

been measured under 0 conditions: g = 0.77, h = 0.94, p 
= 1.4, and C = 0.158. We immediately see from Figures 
1-4 that none of these parameters fits a randomly 
branched polymer. The question remains whether the 
measured set of parameters will suffice for distinguishing 
between the models of star polymers and the ABC-type 
polycondensate. First, it will be noticed that the formulas 
for the polydisperse stars and the ABC polycondensates 
give formally identical results when B is replaced by 
(f - 1)/2,  with the decisive difference that f in the star 
molecules is a constant number while B,  the number of 
branching points in the AJ3C polycondensate, increases as 
the polymer becomes larger. From Figures 1-4 we read 
off 

f B 
reg polydisp ABC poly- 

stars stars condensate 

g =  0.77 i 14% 3 i 0.8 5.5 i 1.4 2.25 i 0.6 
h =  0.94 i 5% 3 * 0.8 4.3 i 0.9 1.65 * 0.35 
p = 1.4 i 6% 3 ? 0.9 8.0 i. 2.5 3.5 f 1.1 
C =  0.158 i 10% 3 * 1.5 10.0 i 5 4.5 * 2.3 

This situation would give clear evidence for a regular star 
with three arms. The measurements are, of course, charged 
with certain errors. The mean-square radius of gyration 
can be measured with an accuracy of *lo% and the dif- 
fusion constants with an accuracy of better than &3%, 
which would yield the percentage errors indicated above. 
It thus turns out that of the four listed quantities the p 
parameter is the most reliable and sensitive to structural 
differences. Still, a t  least two of the four quantities have 
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to be measured before a distinction between the various 
models becomes possible, and the next best quantity after 
p is h because of the high accuracy of measurements of D, 
from QELS. In order to distinguish between polydisperse 
stars and a polymer of the ABC type, one must perform 
measurements a t  different molecular weights, where the 
different species could, in this case, be obtained also by 
fractionation. If star molecules are present, the factors 
should shift to those for monodisperse regular stars, while 
those for the ABC polycondensates would show a pro- 
nounced molecular weight dependence. 

(ii) For poly(viny1 acetates) prepared by emulsion po- 
lymerization a value of p = 1.84 is found38 at low monomer 
conversion, and thus gradually decreases to p = 1.70 at M, 
= 10.6 X lo6. At  higher extents of reaction, when a mo- 
lecular weight about M ,  = 15 X lo6 is reached, the pa- 
rameter p shows a steep decrease to 0.55. A geometric g 
factor or a hydrodynamic h factor could not be measured 
since no calibration curve for linear PVAc in methanol was 
available. The coefficient C from the initial slope of the 
first cumulant was found to scatter around a value of 0.2. 

The high value of p at low conversions is only slightly 
greater than the ideal figure of 3llz for polydisperse linear 
or randomly branched systems, and this is not unexpected 
as long as the individual polymer molecules are appreciably 
smaller than the latex particle containing them. In this 
region, the angular dependence of the integrated light 
scattering also shows behavior typical of randomly 
branched macromolecules. The slight decrease of p with 
increasing molecular weight is, on the other hand, an in- 
dication that the branching process is not fully random. 
This deviation from randomness may have its origin in the 
restricted space available to the polymer, but it also may 
be based on the chain-transfer mechanism which shows 
some similarities to ABC-type polycondensation.21 

The observed% steep decrease of the p factor around M ,  
= 15 X lo6 has its roots in the fact that the branched 
molecules have reached the dimensions of the latex particle 
such that at least one big macromolecule expands over the 
whole volume. At still higher conversion, this gelled 
macromolecule more and more completely fills the latex 
volume, thereby preserving the spherical shape of the latex 
particle, even when the external boundary of the soap is 
removed. The p factor is now much smaller than for any 
branching model discussed here, and the value is close to 
that of a compact sphere. This conclusion is supported 
by the angular dependence of the integrated light scat- 
tering which also gives evidence for the spherical shape of 
the gelled  particle^.^^,^^ 

(iii) The third example refers to a @-limiting dextrin of 
amylopectin measured by ILS and QELS in aqueous 1 N 
NaOH. This limiting dextrin was obtained from amylo- 
pectin by the action of @-amylase, which degrades the outer 
chains of the branched polymer. The g and h factors could 
not be measured in this case, since the amylopectin has 
a molecular weight (&E%) M ,  = 500 X 10641,'2 and linear 
amylose samples of such high molecular weight are not 
available. Both ILS and QELS exhibit strong angular 
dependence, and the double-logarithmic plot of r/q2D, 
against P,(q)-l gives a straight line with an exponent of v 
= 0.39. Mea~urements~~ of the radius of gyration, (S2),'J2 
= 490 nm, and of the diffusion coefficient, D, = 7.1 X 
m2 s-l, lead to p = 0.89. 

For a long time amylopectin was believed to be repre- 
sentative of the ABC-type p o l y ~ o n d e n s a t e . ~ ~ ~ ~ ~  For this 
model we find in the limit of a large number of branching 
points the asymptotic exponent v = 0.40, which is close to 
the experimentally observed value. This result can be 
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cross-checked, since the branching density can be deter- 
mined chemically and has long been known to be p = 0.04. 
The number of branching points B is related to an ABC- 
type polycondensate to the branching density p and the 
weight-average degree of polymerization P, by the equa- 
tion (see Appendix) 

p(1 - p)P, = 2B(1 + B)  (6) 
from which we find B = 250; this leads to (Table IV) v = 
0.401, which in fact is the asymptotic value. 

While the above exponent is in good agreement with the 
ABC-type polycondensate, we find significant deviations 
from this model for the p factor and the particle scattering 
factor. According to the model, p can never decrease below 
1.22, whereas a value of 0.89 is found experimentally. Also, 
the particle scattering factor should show a pronounced 
maximum at u2 = 6 in a Kratky plot, but this is not ob- 
served.19y41t42 These two deviations reveal that the ABC- 
polycondensate cannot be a correct model for amylopectin. 
Similar conclusions have been drawn from degradation 
experiments with various specific enzymes.4s The good 
agreement of the exponent v with the asymptote of the 
ABC model cannot be considered highly specific, since a 
similar asymptote may result for various other models. 
This last example shows that scattering experiments alone 
rarely, if ever, allow a unique determination of structure. 
With additional data from chemical or kinetic experiments, 
however, the rather simplified models discussed here can 
sometimes be realistically refined. 

Acknowledgment. W.H.S. thanks the Alexander von 
Humboldt Stiftung for a Senior US. Scientist Award 
(1978-1979). W.B. and M.S. are grateful to the Deutsche 
Forschungsgemeinschaft for financial support. 

Appendix. Derivation of Equations for P,(q) and 
r Given in Table IV 

All equations are easily obtained from the derivative of 
a general path weight generating function Uo(4j), where 
c$~ is a special weighting function for a pair of elements 
joined by a chain of j monomeric units in length. The 
degree of polymerization P,, the particle scattering factor 
P,(q), and the first cumulant of the time correlation 
function of the quasi-elastically scattered light r are ob- 
tained as 

where3] 

and 
y2 = b2q2/6 

a2 = 0.72 

A' = k ~ T / 6 ~ 1 ~ ~ ~ f ~ q ~ b  (-45) 

The path weight generating functions of the randomly 
cross-linked chains and the Af and ABC type polycon- 
densates were derived previously and are given below 
without d e r i v a t i ~ n . ~ J ~ , ~ ~  

Randomly Cross-Linked Chains. The derivative of 
the path weight generating function readsa 
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m 

V,l($J) = $0 + 2a[1 + € * ] C [ f f ( l  + e *)]j-'$j (A6) 
j = l  

Here a is the link probability for the formation of a pri- 
mary chain and e* = c(n - l)x is the cross-linking proba- 
bility, where E is the probability that a pendant vinyl 
double bond has reacted and x is the mole fraction of the 
multifunctional vinyl comonomer with n vinyl double 
bonds per monomer. We assume long chains, where a 
1. Under such conditions e* can be shown to be a small 
quantity. Hence 

Passing to  integrals and neglecting terms of the order of 
unity, we find 

a(l + e-[l-a(l+t*)l (-47) 

+ 1 - a ( l  Y 2  + €*) I-' (A9)' 

and since P,(q) = 1 - u2/3 + ..., we find by power expansion 
of eq A9 

y2/ [l - L y ( 1  + €*)I = y3u2 (A101 

P,(q) = (1 + u2/3)-' ( A l l )  
and finally 

Next (neglecting the free-draining term) we have 

Integration yields 

e*)]1/2 1 + 1 - a(l Y 2  + €*) y2  x [ 
(1+; )) ( A W  

(1 - a ( l  + e*) + y2)'/2 

(1 - a(l  + e*)  + u2y2)3/2 

For q2 - 0 one has r - q2D,; thus 

where use was made of eq A9. 
AfType Polycondensates. The same equations as for 

randomly cross-linked chains are obtained for Aptype 
polycondensates withg 

m 

Vo'(4j) = $0 + (YfC [a( f  - 1)IJ-'$j (A15) 
j = l  

ABC-Type Polycondensates. Here the derivative of 
the path weight generating function id9 

m m m 

U0'($j) = @(I + 2aCaj-14j + 2 4 1  - p)pCaj-1Cak-'$. J+k 
J = 1  j=1 k = l  

Again a N 1 N e-(l-a) and one easily finds 
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2 + 2P(l - P )  2 
= -(1 + B) (A17) P, = - 

1 - a  (1 -a )2  1 - a  

(1 + u2)-l + B(l  + u2V2 
1 + B  (A181 P,(q) = 

with 

Y 2  u2 l + B  u 2 = - = - _ -  
I - a  3 1 + 2 B  

B = p(1 - p ) / U  - a) ( A W  
where the connection to u2 = ( s2),q2 follows from the series 
expansion of P,(q) 

p(1 - p)SmSme-(1-a)0.+k)4j+~QEs 0 0  d j  dk]/PwPz(q) 

Integration is conveniently performed by splitting 4jQES 
into $j,pre + whence one finds l? = rpre + AI', with 

(~20129 

1 + u2 + B/2 rpre = q2A'7r'/2(1 - a)'l2(1 + u2)l j2  1 + u 2 + B  (A2U 

u2 (1 + u 2 ) 3 / 2  1 + u2u2 + 3B/2 
(-422) Ar=r  - 

A t  q2 - 0 we have r = q2D, and thus 

'relo (I + u2u2)532 1 + u2 + B/2 

Finally we have 
r = rpre + ar 

1 + u 2 / ( 1  + B/2) 

1 + u 2 / ( 1  + B) 
rpre = q2D,(1 + u2)1/z ( ~ 2 4 )  

and A r  as given by eq A21. The coefficients C in r = 
q2D,(1 + Cu2) are obtained by power expansion of r. 
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Polymerization. Compositional Variation of Glass-Transition 
Temperatures. 5 

P. R. Couchman 
Department of Mechanics and Materials Science, Rutgers University, 
Piscataway, New Jersey 08854. Received March 6, 1980 

ABSTRACT: A model of one-phase mixtures as regular solutions provides the basis of an entropic theory 
for the prediction of their glass-transition temperatures from pure-component glass-transition temperatures 
and associated heat-capacity increments. First-order approximations to an initial equation are derived and 
related to previous equations proposed to describe the composition-dependent glass transition. The phe- 
nomenological theory is then applied to the calculation of glass-transition temperatures for one-phase solutions 
in which the pure components are of arbitrary molecular mass, to  give a predictive equation in terms of 
pure-component chain end and high-polymer glass-transition temperatures and heat-capacity increments. 
Calculated values of Tg are found to be in satisfactory accord with experimental glass-transition temperatures 
for an appropriate binary mixture of polymers. Additionally, the experimental dependence of the Wood 
parameter on degree of polymerization is accounted for. 

Introduction 
The development of a theory for the prediction of com- 

position-dependent glass-transition temperatures for 
multicomponent mixtures which manifest single glass 
transitions is of some fundamental interest and, moreover, 
has practical merit in connection with their processing 
conditions and in-service properties. In addition, such a 
theory might serve to clarify the areas of validity of the 
diverse relations at present used to describe the phenom- 
enon’+ in what is for various reasons a somewhat post hoc 
manner. 

As a preliminary step toward the development of a 
consistent scheme for the calculation of glass-transition 
temperatures of compatible mixtures from pure-compo- 
nent properties, the first two papers in this seriesgJO were 
given over in turn to a preliminary discussion of the form 
such a scheme might take and a phenomenological ther- 
modynamic theory for one-phase solutions of high poly- 
mers. The entropic theory’O was shown to give values of 
Tg in close agreement with observed transition tempera- 
tures in binary blends of compatible high polymers and 
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to provide 89 approximations to a central equation several 
previous relations for the effect. The third and fourth 
contributions of the series1’J2 have considered the effect 
of chain ends on homopolymer glass-transition tempera- 
tures as a particular problem in the compositional variation 
of Tg, on the premise that polymers of arbitrary molecular 
mass can be considered single-phase solutions of chain ends 
and high polymers. Predicted glass-transition tempera- 
tures were found to be in satisfactory agreement with 
dilatometric, calorimetric, and dielectric values of this 
property” and two first-order approximations to a prin- 
cipal equation were shown to give expressions identical in 
form with previous relat i~ns‘~J~ for the effect of degree of 
polymerization on Tr Subsequently, the range of com- 
parison between calculated and observed transition tem- 
peratures was extended considerably and the relative ac- 
curacy of the central relation and the two fundamentally 
different first-order approximations clarified.12 
As the theory for composition-dependent glass-transition 

temperatures has met with a measure of success both for 
compatible blends of high polymers and for the effect of 
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