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Synopsis 

A Monte Carlo analysis is presented which establishes a relationship between the rotational 
diffusion coefficients and the flexibility (persistence length, P )  of short, wormlike chains. 
The results of this analysis are presented in terms of experimentally observable quantities; 
namely, the rotational relaxation times for the field-free decay of optical anisotropy. The 
pertinent theoretical quantity is R ,  defined as the ratio of the longest rotational relaxation 
time of a wormlike chain to the transverse rotational relaxation time of a rigid cylinder having 
the same axial length ( L )  and segmental volume. R ,  so defined, is essentially independent 
of the axial ratio of the cylinder for any value of LIP within the range of validity of the present 
analysis (axial ratio > 20; 0.1 < L / P  < 5). It is pointed out that P can be determined with 
reasonable accuracy even in the absence of a precise knowledge of the local hydrodynamic 
radius of the chain. 

INTRODUCTION 

It has been known for some time that the behavior of an elongated par- 
ticle undergoing rotational diffusion is extremely sensitive to the axial 
length of the particle. Theoretical studies'" all suggest that the transverse 
(smallest) rotational diffusion coefficient is roughly proportional to the 
inverse cube of the length. These theoretical observations (particularly 
those of Broersma4) have gained experimental support from studies of the 
rotational diffusion of tobacco mosaic virus (TMV)5-7 and short fragments 
of DNA8-10 using transient electric birefringence or dichroism (TEB or 
TED, respectively). The studies of DNA have further demonstrated that 
as the fragment length is increased, the rotational relaxation times (the 
observable quantities related to the diffusion coefficients) become sub- 
stantially smaller than those predicted on the basis of expected rigid-rod 
behavior. It has been suggested8 that this difference is due to the internal 
flexibility of DNA. 

The major objective of this paper is to establish a quantitative rela- 
tionship between the longest rotational relaxation time of a linear polymer 
of a given axial length ( L )  and the flexibility (persistence length, P )  of the 
polymer. The extreme sensitivity of these relaxation times to the axial 
length, for rigid rodlike molecules, suggests that the study of weakly to 
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moderately flexible molecules (LIP < 5) would provide a more precise es- 
timate of the persistence length than can be obtained through conventional 
means such as sedimentation or light scattering. Moreover, such short 
molecules would not be influenced significantly by excluded-volume ef- 
fects,ll thus enabling experimental studies to be carried out with poly- 
electrolytes under conditions of very low ionic strength. 

Hearst12 has presented an analysis of the rotational diffusion of wormlike 
chains, which contained several simplifying assumptions now known to lead 
to significant inaccuracy. In particular, it was assumed that the hydro- 
dynamic interactions among elements of an individual chain could be 
preaveraged over configuration space and that the sums over the pairwise 
interactions between elements of the chain could be adequately represented 
by integrals. These assumptions will be discussed in more detail below; 
however, despite the approximate nature of Hearst’s approach, his results 
have proven to be useful in carrying out the present study. 

The present analysis of the rotational diffusion of flexible polymers is 
based on the representation of these polymers by isotropically bendable 
wormlike chains, and the computational approach is comprised of three 
parts; namely, (1) the generation by a random-number program of en- 
sembles of wormlike chains having specified contour lengths ( L )  and per- 
sistence lengths ( P ) ,  ( 2 )  the computation of the principal rotational dif- 
fusion coefficients about the center of frictional resistance (CFR), and (3) 
the determination of the observable quantities (rotational relaxation times) 
for each system, based on the equilibrium-ensemble approach. The current 
(“Monte Carlo”) approach is necessitated, since, as has been shown by 
Zimm,13 configurational preaveraging can lead to substantial errors in the 
evaluation of the hydrodynamic properties of flexible polymers. 

It will also be shown that information pertaining to chain flexibility can 
be extracted from rotational relaxation times in the absence of a precise 
knowledge of the local hydrodynamic radius of the molecule. Therefore, 
the following analysis should be applicable to a wide variety of linear 
polymers, provided that the lengths of the polymers are known with rea- 
sonable precision; and even in the absence of precise information concerning 
length, changes in flexibility and/or local polymer conformation can be 
studied. In the accompanying article,ll the results of this analysis have 
been applied to the study of the ionic-strength dependence of the flexibility 
of DNA. 

ANALYTICAL APPROACH 

Hydrodynamic Model for an Individual Wormlike Chain 

The model employed in the present analysis consists of a chain of 
touching beads (Stokes’ spheres), where N beads are joined by N - 1 seg- 
ments, and where the length of an equivalent cylinder is determined by 
L(cy1inder) = 2o(N - 1); u is the hydrodynamic radius of an individual 
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bead. For a summary of the features of the model, see Fig. 1. In order to 
compare the results of the present analysis of the rotational diffusion of 
wormlike chains to the limiting behavior as P - fo, the hydrodynamic 
properties of the linear string of beads will be compared to a volume-ad- 
justed, continuous-cylinder model of radius b,  where b (cylinder) = (2/3)1/2a. 
As an example, for b(DNA) = 13 A, a = 15.9 A, and the bead spacing ( 1 )  
would be 9.4 base pairs (bp) (assuming 3.4 Albp). For the case of touching 
beads, 1 = 2a. This choice is based in part on the work of Garcia de la Torre 
and Bloomfield,14 who observed that bead representations of ellipsoids of 
revolution have frictional properties which are in close agreement with those 
of the ellipsoid when the volumes of the two subjects are equal. Moreover, 
as will be seen below, the rotational diffusion coefficients of the volume- 
adjusted bead and cylinder models agree to within a few percent; however, 
as will be shown later in this article, the final results are rather insensitive 
to the precise bead spacing and hydrodynamic radius. 

Furthermore, it  is assumed that there is no preferred axis of bending 
between segments (isotropic-$ model15); that is, for a given latitudinal angle 
( d i ) ,  the longitudinal angle (&) may assume any value between 0 and 27r 
radians with equal probability. In addition, the standard assumption of 
a free energy of bending, quadratic in Oi (representing a restoring force 
linear in the angular displacement), has been invoked, leading to a proba- 
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Fig. 1. Model for the wormlike chain used for the determination of rotational diffusion 
coefficients. The longitudinal angles (&) and latitudinal angles (8,) are as specified in the 
text for the isotropic-$ model (Ref. 15). The interbead spacing ( 1 )  is twice the hydrodynamic 
radius (u )  (touching-bead model). The beads are centered a t  the ends of each segment; 
therefore, for a chain composed of N - 1 segments, there are N beads. 
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bility distribution function ( F )  for 19i given by Ref. 15: 
F(8; )  = C exp(-u8;/2) sin 8; (1) 

where C is a normalization constant, and where the bending force constant 
divided by k T is given by 

u = PIE (2) 

Solution of the Hydrodynamic Problem for Rotational Diffusion of 
Wormlike Chains 

The following analysis is based on the formalism of KirkwoodlG-l8 as 
extended by Yamakawa,lg Garcia de la Torre and B l o ~ m f i e l d , l ~ , ~ ~  and 
Zimm.13 It is assumed that the wormlike chain is experiencing pure ro- 
tational motion; that is, its CFR is a t  rest in the unperturbed fluid (see 
Results and Discussion). The relative velocity (Vi) of the ith bead with 
respect to the local fluid is given by 

Vi = w X ri - vi (3) 
where w is the angular velocity of the chain about its CFR, ri is the position 
of the ith bead with respect to the CFR, and vi represents the velocity of 
the fluid at the position of the ith bead due to the motions of the remaining 
N - 1 beads, but with bead i absent. In the formalism of Kirkwood, the 
velocity perturbation is given by 

where 

Equation (5) (Eq. (21) of Ref. 19) is a modified version of the Oseen-Burgers 
hydrodynamic interaction tensor? which introduces a first-order correction 
for finite bead volume. R;, represents the vectorial separation between 
the centers of the ith and j t h  beads, and CJ represents the radius of the in- 
dividual beads in the chain. 

In general, for molecules lacking three-fold symmetry, the CFR must 
be entered as an unknown into the set of coupled hydrodynamic equations 
for rotation. This can be done conveniently in the following manner. If 
ri.0 is the position of the ith bead with respect to an arbitrarily chosen origin, 
then 

(6) 
where Ro is the position of the CFR relative to the origin (all vectorial 
quantities are referred to the frame in which the unperturbed fluid is at 
rest). It follows that 

(7 )  

ri,o = ri + Ro 

w X ri,o = w X ri + w X Ro 
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and therefore that 

Vi = -wXRo+wXr; ,o -v ;  (8) 

Fi = pVi = p(u + w X r;,o - v;) (9) 

where p is the frictional resistance for translation of a Stokes’ sphere ( p  = 
6 ~ 7 0 ~ )  and where u (= -w X Ro) is the velocity of the arbitrary origin with 
respect to the CFR. Thus, by including three additional unknowns (the 
components of u), one can solve for the component forces with respect to 
the CFR. 

There are now 3N + 3 unknowns: the 3N component forces Fi,a (a  = 
x ,  y,  z )  as well as the components of u. Equation (9) provides 3N expres- 
sions relating the unknown quantities, and the 3 additional relations, 

The frictional force exerted on the fluid by each bead is given by 

are provided by the fact that there is no net force applied to the rotating 
chain (i.e., the CFR is stationary in the unperturbed fluid). The component 
forces can be determined by solving the set of coupled equations [Eqs. (9) 
and (lo)] exactly by numerical procedures, provided that N is less than 100. 
For larger values of N, computation times become prohibitive, and one must 
resort to alternative approaches such as the iterative method described by 
Garcia de la Torre and B l o ~ m f i e l d . ~ ~ ~ ~ ~  

The total torque (T) acting on the chain is given by 

T = { o w  = C ri X Fi = C r;,o X F; (11) 

where {is the friction tensor for pure rotation. It should be noted that 

RoXCF;=O 
i 

by Eq. (10). Diagonalization of { yields three principal diffusion coeffi- 
cients through the Einstein relations: 

<p = KTID, ( p  = 1,2,3) (12) 

Approximate Solution of the Hydrodynamic Problem for 
Rotational Diffusion 

Using the formalism of Kirkwood, HearstI2 derived an expression for 
the smallest rotational diffusion coefficient of a wormlike chain. Yama- 
kawa and Yamaki2I have discussed the approximations implicit in Kirk- 
wood’s approach, and those authors have pointed out that Kirkwood’s re- 
sults are only correct when the frictional force exerted by each bead is 
proportional to the distance of that bead from the axis of rotation. Ya- 
makawa and Yamaki have shown also that for rotational diffusion of linear 
assemblies of identical beads, the above condition of proportionality is 
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satisfied; hence, Hearst’s equation becomes exact in the rigid-rod limit, and 
for long, thin rods, becomes identical in form to the continuous cylinder 

Garcia de la Torre and Bloomfield20 further demonstrated that 
Hearst’s diffusion equation could be reproduced as a first-order approxi- 
mation to the true solution for an arbitrary arrangement of beads. This 
approximate expression is given by 

(for rotation about the 2 axis), where 

Since Eq. (13) approaches the exact solution in the limit of completely 
rigid (linear) chains as N - m, it should serve as a reasonable, approximate 
solution for the rotational diffusion coefficients of short, wormlike chains. 
Therefore, as a computational expedient, Eq. (13) will be used to solve 
(approximately) for the principal diffusion coefficients for each chain (DB; 
li = i ,  5 , i )  by employing the center of mass as an approximate CFR and 
using the axes that diagonalize the inertia tensor as i,$,Z^. The axes i ,$, 
2 are not, in general, equal to the principal axes of the friction tensor. The 
values of the D,; so obtained will be corrected subsequently by comparison 
with the formal approach described below, thus yielding a corrected set of 
rotational diffusion coefficients. This approach, which involves the ap- 
plication of a correction term to the approximate solution, is based on the 
observation that while the variation among the values of D ,  computed for 
a given set of chains, may be large (by either method), the difference be- 
tween DB and D, on a chain-by-chain basis does not vary widely; this allows 
the use of a more restricted (and hence computationally feasible) set of 
chains for the solution of Eqs. (9) and (10). 

Determination of the Macroscopic, Rotational Relaxation Times 
for the Field-Free Decay of Induced Optical Anisotropy 

At this point, the analysis of the rotational diffusion of wormlike chains 
will be described in terms of observable quantities; namely, the rotational 
relaxation times (T), since the D, are not directly observable. The main 
assumption employed in the current analysis is that local, segmental mo- 
tions occur more rapidly than does overall rotational diffusion (discussed 
later in this article), thus allowing the description of the rotational diffusion 
of a wormlike chain in terms of ensemble-averaged quantities ( D ,  ). 

The decay of optical anisotropy accompanying the rotational diffusion 
of a rigid particle of arbitrary shape can be described in general in terms 
of five relaxation times.22 These relaxation times are identical to the five 
relaxation times used to describe the decay of fluorescence p ~ l a r i z a t i o n . ~ ~ - ~ ~  
An earlier analysis of the decay of birefringen~e~69~7 yielded only two re- 
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TABLE I 
Rotational Relaxation Times for a Rigid Particlea 

1/7i 
1 D i  # Dz # D3 D1= Dz # D3 

5 6D+ 2B 2D1+ 403 

a Tabulated in Ref. 22. 
D = (l /3)(Dl+ D Z  + 0 3 ) ;  B = (0: + D f  + D$ - DlDz - DzD3 - D1D3)1’2. 

laxation times; however, that analysis contained certain restrictions on the 
symmetry of the particle.22 In Table 1 I, the relaxation times have been 
expressed in terms of the three principal rotational diffusion coefficients. 
When two of the diffusion coefficients are equal, as in the case of particles 
having cylindrical symmetry, the number of nondegenerate relaxation times 
is reduced to three, and the longest relaxation time 7 = ‘/3(01+ Dz) = l/& 
( 0 1  = 0 2  < 0 3 )  corresponds to the classical result2,28; namely, that for el- 
lipsoids of revolution, 7 = l/&(transverse). It should also be noted that 
7 1  is independent of 0 3  for this special case. 

For wormlike coils having LIP < 5, ( 0 2 ) / ( 0 1 )  < 1.1 and ( 0 3 )  > 5 ( 0 2 ) ;  

and as a consequence, 

(14) 

to within 0.1%. Moreover, the remaining relaxation times are all coupled 
to the largest diffusion coefficient ( 0 3 ) ,  corresponding to rotation about 
the longitudinal axis in the rigid-rod limit. This coupling results in an 
effective separation between 71 and 72-5 for relatively short chains; however, 
as LIP is increased beyond -5, 71 and the collection (72-5) approach each 
other to within a factor f 2, thus limiting the practical range of this analysis 
if the amplitudes associated with the more rapid relaxation times are ap- 
preciable (for further discussion of this point, see the following paperll). 

1/71 = 3 ( ( 0 i )  + ( 0 2 ) )  

METHODS OF COMPUTATION 

Angle Generators for 8i and 4i 
As described above, the spatial configuration of each chain is determined 

by an ordered set of 0i and & angles which are generated according to the 
requirements of the model (i.e., segment length, persistence length, bending 
potential). For the present analysis, the & are assumed to be isotropic and 
are generated by the numerical algorithm 

& = 2 ? ~  RANDOM (15) 
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where RANDOM is a standard ALGOL pseudo-random-number generator 
with output values distributed between 0 and 1. The latitudinal angles 
(Oi) are generated by successive application of two orthogonal angular 
displacements (Oi,l and Oi ,2 )  in the x-y and x-z planes of the (i - 1)st frame 
[the x axis in the (i - 1)st frame corresponds to Oi = 01, the expression for 
Oi being given by 

for 8i < 1 radian. The component angles (Oij) are normally distributed 
about Oij = 0 with a standard deviation of (Z/P)1/2.15 The resultant (ap- 
proximate) distribution function for Oi is given by 

Figure 2 shows a comparison of a set of computed 8i with the curve pre- 
dicted by Eq. (1). The O i , j  are generated by the ALGOL intrinsic NORRFI, 
which produces normally distributed random numbers using linear con- 
gruential generators29 

I ? I 

0 

d c - 
0 

- i 
f 
r’ 

I 

i 
I 

- i  
i 
i 
i 

0 f .1 

ei (Radians) 

Fig. 2. Comparison of the distribution of a set of lo5 latitudinal angles (8i) with the theo- 
retical probability distribution function for the isotropic-+ model. The filled circles represent 
accumulated 8; values in 0.01-radian annular regions with the accumulated values represented 
at the midpoint of the annulus. The solid line represents the predicted angular dependence 
[Eq. (l)]. This computation was carried out for P = 600 A, u = 17 A. 
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Generation of Individual Chains 

The configuration of the collection of segment vectors comprising an 
individual chain is generated by successive application of a transformation 
matrix (Ai)30 given by 

] (18) A , =  1 [ sinOi cos$i cosoi cos& -sin& 

(A21 was misprinted in the original reference.) Ai, when applied to the 
components of a vector in the local coordinates of the ith segment, trans- 
forms it to the (i - 1)st coordinate frame. As a computational check of the 
overall chain-generation procedure, computed values of ( h2)/L2 (reduced, 
mean-squared, end-bend distance) for ensembles of chains having various 
values of L and P have been compared (Fig. 3) with the values predicted 
by the well-known expression 

(19) 
(see p. 160 in Ref. 31). Three features of the comparison in Fig. 3 should 

cosei -sin& 

s i d i  sin& cosfli sin& cos& 

(h2)/L2 = (2P/L) [ l  - P/L + (P/L) exp(-LIP)] 

I I I 1 I I 
0 2 4 6 8 10 

L I P  
Fig. 3. Comparison of the reduced, mean-squared end-end distance ( (h2 ) /L2)  computed 

for a number of chain ensembles of varying LIP, with the results predicted by Eq. (19) (solid 
line). The numbers refer to particular values of P in units of 100 8, and represent ensembles 
of 100-200 chains for each point. 
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be noted; namely, (1) that the agreement between the ensemble averages 
and those predicted by Eq. (19) is quite good, (2) that the ensemble averages 
faithfully represent the predicted averages over a wide range of P values, 
and (3) that the ensemble sizes (100-200 chaindpoint) appear to be ade- 
quate to describe the true distribution. 

Determination of the Rotational Diffusion Coefficients 

Approximate Method 

For each (L,P) pair chosen for computation, between 100 and 200 chains 
were generated. The approximate rotational diffusion coefficients ( D G )  
were computed for each chain by first determining the center of mass, 
followed by diagonalization of the moment-of-inertia tensor in order to find 
R ,  9 ,  and 2. The set, DG, was then computed by using Eq. (13). The en- 
semble-averaged quantities, ( D & ) ,  were determined as outlined above. The 
results of these computations are plotted in Fig. 4 as the ratio (R,) of 7, 

(the approximate rotational relaxation time, determined from the ( D G ) )  
to 7g [= 1 /6D~;  determined from Eq. (23), below] as a function of the re- 
duced contour length (LIP). The results have been fit to a cubic equation 
in X (= L/P) using a standard, nonlinear, least-squares curve-fitting routine 
with the result 

R, = 1.0120 - 0.24813X + 0.033703X2 - 0.0019177X3 (20) 

L/P  
Fig. 4. Plot of R,(= T , / T ~ )  as a function of the reduced contour length (LIP).  T~ is the 

approximate rotational relaxation time computed, as described in the text, for ensembles of 
100-2OG chains. 76 is the rotational relaxation time of a straight cylinder of axial length, L 
(volume corrected; see text). The numbers represent P in units of 100 A. The solid line 
represents a best-fit, cubic equation [Eq. (20)] .  
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Exact Method 

Due to prohibitive requirements for computation time in solving large 
systems of simultaneous equations for each chain in an ensemble (com- 
puting time varies as N3, and cost varies approximately as N5; Zimm13), 
a more restricted set of ensembles (20-50 chainslpoint) were used. For 
these computations, both exact and approximate rotational diffusion 
coefficients were determined for each individual chain. The exact rota- 
tional diffusion coefficients were determined by first solving Eqs. (9) and 
(10) for the Fi,a by using the ALGOL intrinsics, CHOLDETl and CHOLSOL1, 
which employ the Cholesky procedure for solving systems of simultaneous 
equations. (For details regarding this procedure, see Ref. 13 and references 
cited therein.) The set, D,, was then determined from Eqs. (11) and (12). 
The results of these computations are reported (Fig. 5) as a correction factor 
( Y )  defined by 

(21) R,(exact) = Ra X (I - Y )  

where Y is fitted to 

Y = 0.06469X - 0.01153X2 + 0.0009893X3 ( 2 2 )  

The range of validity of the present analysis is given by 

0.1 <LIP < 5.0, Ll2b > 20 

The expression for Y includes a constant 1.8% correction in order that 

Ra 
p-= Rc 
lim - = 1 

This adjustment is considered somewhat arbitrary (as discussed below) 
in view of the theoretical uncertainties which exist at this level of precision; 

.20 1 1 I I 1 1 1 1  

0, 

.I 5 - 
> .I0 - 

0 5  - 
-0 

1 I I 1 1 1 1 1  1 1 I -  

0 .I 0.5 1 5 

L I P  
Fig. 5. Plot of the correction factor ( Y )  required to bring R, into coincidence with the exact 

results. Each filled circle represents an ensemble of 20-100 chains, where the exact and ap- 
proximate hydrodynamic analyses were carried out on a chain-by-chain basis prior to ensemble 
averaging. 



1492 HAGERMAN AND ZIMM 

however, the corresponding uncertainty (due to this correction) in P is only 
54%. Finally, it should be noted (Fig. 4) that R, is essentially independent 
of the axial ratio, provided that the conditions of validity stated above are 
satisfied. 

Computational Uncertainties 

The aggregate computational uncertainty associated with this analysis 
is believed to be approximately 0.03RC. This value includes contributions 
from the uncertainty of the rigid-rod limit, as well as the statistical un- 
certainty associated with the use of finite ensembles. In terms of resultant 
uncertainties in P, for 1 < LIP I 5 (0.76 2 R, 2 0.3), the percent uncer- 
tainty in P is approximately constant at  -10%. As LIP decreases below 
1, this uncertainty in P increases, largely due to the imprecision of the 
rigid-rod limit. For example, for LIP = 0.5, the uncertainty in P is ap- 
proximately 20%. For most practical purposes, it is desirable to work at  
values of L I P  2 0.5. 

Computer Facilities 

All programs were written in ALGOL and were run on the Burroughs 
B6700 or an improved system (B7800) on the campus of the University of 
California, San Diego. 

RESULTS AND DISCUSSION 

Broersma’s Expression for the Transverse Rotational Diffusion 
Coefficient of a Straight Cylinder Provides a Suitable Standard 
for the Comparison of Wormlike Chain Models in the Rigid-Rod 

Limit 

At present, the most accurate hydrodynamic analysis of the transverse 
rotational motion of long cylinders is that of B r o e r ~ m a , ~  who extended 
Burgers’ treatment3 of the problem and included an analysis of end effects. 
On the basis of his theoretical and experimental investigations, Broersma 
arrived a t  an expression for the rotational diffusion coefficient ( D g  ); 
namely, 

D g  = (3kT/.lr~,-J3)(ln(LIb) - 1.57 + 7[llln(Llb) - 0.2812] (23) 

where L is the axial length of the cylinder, b is the transverse radius, 70 is 
the viscosity of the solvent, h is Boltzmann’s constant, and T is the tem- 
perature (K). Broersma’s expression is believed to be most accurate for 
rods having axial ratios greater than 10. It should be noted, however, that 
there is no rigorous theoretical basis for Eq. 23; rather, it represents a “best 
fit” to both theoretical and experimental results obtained by Broersma. 
Consequently, the justification for the use of Eq. (23) must rely on exper- 
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iments. Several  investigator^^-^ have reported values for the rotational 
diffusion coefficient of TMV (axial ratio 20), and the average of these 
values agrees with DB to within 2% (Table 11). An axial ratio of 20 corre- 
sponds to a DNA molecule approximately 150 bp long. The uncertainties 
associated with the application of hydrodynamic analyses of smooth cyl- 
inders to real molecules increase as the axial ratios become smaller, pri- 
marily because of end effects. Therefore, the current analysis will only deal 
with molecules having axial ratios greater than or equal to 20. 

In view of the experimental results quoted above, it appears that Bro- 
ersma’s expression yields values for the diffusion coefficients of rigid cyl- 
inders which are accurate to within a few percent. Equation (23) should 
therefore serve as a reasonable representation for the behavior of wormlike 
chains in the limit, P - a. 

Comparison of Several Models Used to Compute the Rotational 
Relaxation Times of Wormlike Chains 

As discussed above, Broersma’s expression provides a good representa- 
tion of the rotational diffusion of straight cylinders. However, at least thus 
far, continuous models have not been directly applicable to the study of 
the rotational diffusion of wormlike chains (in the absence of configura- 
tional preaveraging) due to the magnitude of the computational task in- 
volved. An alternative model, namely, a wormlike chain composed of a 
string of Stokes’ spheres, has been employed by Hearst12 in an attempt to 
develop analytical expressions for the rotational diffusion coefficients of 
wormlike chains. In the weakly-bending-rod (WBR) limit, Hearst ob- 
tained 

(24) 
(n  >> 1, An << 1) with 

(25) 

DdWBR) = [kT /8 . r r~&d)~] [3  ln(n) - 0.92 + O(X) + f ( X ) ]  

/(A) = Xn(4.5 ln(n) - 6.20) + O ( n - l )  

TABLE I1 
Rotational Diffusion Coefficients of TMVa 

DR 
Investigator Method (sec-1) 

O’Konski and Haltner (Ref. 5) TEBc 291 
Allen and van Holde (Ref. 6) TEB 298 
Newman and Swinnev (Ref. 7 )  TED 318 

Average value 
Predicted valued 
Difference 

302 
308 
2% 

a These studies have also been included in a larger table of DR (exp.) values obtained by 

Values are corrected to 20°C by the equation D(20) = D ( T )  ( tp /v20)  (293/T) as determined 

TEB (transient electric birefringence); TED (transient electric dichroism). 
Based on L = 298 f 6 nm (Ref. 32); and b = 15 nm (Ref. 7 ) .  

various methods (see Ref. 7 )  

by Newman and Swinney (Ref. 7 ) .  
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representing the contribution to DH(WBR) due to chain flexibility. Hearst 
obtained 

DH(WLC) = ( h  T/vO)( l / h ~ ) ~ [ 0 . 2 5 3 (  Xn)ll2 
+ 0.159 ln(l/X) - 0.227 + O(X) + O(X-1/2n-1/2)] (26) 

for long, wormlike chains. Equations (24) and (26) represent the specific 
case where the bead spacing (1) is equal to the hydrodynamic diameter (20); 
n = ( N  - 1)/2; O(X), O(n-'), and O(X-1/2n-1/2) represent terms of order 
A, n-l, and X-1/2n-1/2, respectively; and X = 1/2P. The basic diffusion 
equation [Eq. (13)] derived by Hearst,12 from which Eqs. (24) and (26) were 
derived, was based on the formalism of Kirkwoodl6-lB that was later shown 
to contain some errors, thus reducing its generality. (For a discussion of 
this point, see Ref. 20, and references therein.) However, Hearst's diffusion 
equation becomes exact in the rigid-rod limit as P - a.21 

In developing the analytical expressions for the two limiting cases 
mentioned above [Eqs. (24) and (26)], two additional mathematical oper- 
ations were employed. The first operation nvolved preaveraging over 
configuration space in order to facilitate the subsequent analysis. This 
procedure is quite often employed in treatments of the hydrodynamics of 
flexible chains; however, Zimm13 has shown that in computing the intrinsic 
viscosity and sedimentation coefficients of Gaussian chains, the preaver- 
aging assumption leads to errors of 12 and 13%, respectively. Furthermore, 
Yamakawalg has pointed out that configurational preaveraging eliminates 
certain correction terms applied to the Oseen-Burgers hydrodynamic in- 
teraction tensor. The second operation employed by Hearst involved the 
replacement of the double sums in Eq. (13) by integrals, in order to facilitate 
the development of analytical expressions for the two cases mentioned 
above. For chains composed of a relatively small number of beads, how- 
ever, the integral approximation is expected to lead to significant err0rs3~ 
(see Discussion below). 

Rigid-Rod Limit 

One important requirement of any hydrodynamic model for a wormlike 
chain is that it yield the same rotational relaxation times in the rigid-rod 
limit as those predicted from the continuous cylinder model of Broersma. 
In Fig. 6, R (= 7/7B)  is plotted as a function of the axial ratio (L/2b); several 
features should be noted. 

1. Curves 1 and 2, representing the limiting form of Hearst's analytical 
expression [Eq. (24)] for the weakly bending rod, overshoot (R  = 7 / 7 ~  = 
DB/DH(WBR) > 1) the corresponding values predicted by Eq. (23) (Ds) 
by approximately 9 and 7%, respectively, for the largest axial ratios. The 
origin of this discrepancy is not completely understood but may be due, 
in part, to the application of integral approximations by that author (see 
below). 

2. The approximation to  the continuous cylinder model, in which the 



ROTATIONAL DIFFUSION OF WORMLIKE CHAINS 1495 

I I I I I I 1 

0.8 1 
20 40 60 80 

Fig. 6. Comparison of the computed rotational relaxation times, plotted as R(= 7/76) versus 
the axial ratio (L/26)  of a volume-corrected cylinder (see text) for various hydrodynamic 
models in the rigid-rod limit. Curves: 1, weakly-bending-rod (WBR) model of Hearst (Ref. 
12), Eq. (26); 2,  WBR model, as in 1, except that  there are N - 1 beads; 3, wormlike-chain 
model employing the diffusion equation of Hearst [Eq. (13)]; 4, same as 3, except that there 
are N - 1 heads, and the beads have been spaced a t  equal distances along the chain such that 
the terminal beads are in the same locations as would be the case for N beads (nontouching 
model; approaches the touching model as N - a); 5, model equivalent to that used in 3, except 
that  the formal solution to the coupled hydrodynamic equations has been carried out as de- 
scribed in the text; 6, N - 1 touching beads, computed as in curves 3 and 4. Curve 4 has not 
been plotted separately, since it overlaps curve 3 (<0.2% difference). The difference between 
curves 3 and 5 varies by less than 0.2% over the range studied. 

ends of the terminal beads are a t  the same positions as the ends of the 
cylinder (curve 6), significantly underestimates the hydrodynamic resis- 
tance for small axial ratios, as expected from Broersma’s s t ~ d y . ~  

3. Placement of the centers of the terminal beads at the ends of the 
continuous cylinder (curve 3) markedly improves the agreement between 
the bead and continuous cylinder models; however, curves 3 and 6 even- 
tually converge (difference < 1% for L/2b > 130). 

4. Removal of a single bead from the interior of the chain has very little 
effect on the hydrodynamic resistance (reducing R by approximately 0.1%; 
curve 4, not plotted separately) as long as the terminal beads remain in the 
same locations as for curve 3. 

Curve 5, representing the formal solution to the hydrodynamic 
problem, differs from curve 3 by approximately 1.8%. This difference 
varies by less than 0.3% over the entire range of axial ratios investigated 
in this study. The correction factor ( Y )  has been adjusted by 1.8% in order 
to bring the limiting results for R, into correspondence with R,. As 
mentioned above, this adjustment is somewhat arbitrary in view of the 
uncertainty in the verification of Broersma’s expression at this level of 
precision; however, the attendant uncertainty in P is rather small. 
Moreover, it should be noted that the form of the hydrodynamic interaction 
tensor [Eq. (5)] used in this analysis is itself somewhat approximate; the 

5 .  
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justification for its use (as well as the volume-corrected model itself) being 
that it yields a rigid-rod limit that is within a few percent of the experi- 
mentally verified, continuous-cylinder model developed by Broersma. 

Moderately Stiff, Wormlike Chains 

Figure 7 displays the results of several hydrodynamic models, the details 
of which are given in the legends to Figs. 6 and 7. The expression [Eq. (26)] 
derived by Hearst [DH(WBR)] yields values of R which are substantially 
larger than corresponding results for either the basic diffusion equation 
[Eq. (13); curve 21 or the more formal analysis (curve 3). This difference 
can, in part, be rationalized in terms of the approximations made by that 
author. In particular, the use of approximate integral solutions should 
introduce significant errors for small values of n, and the extent to which 
this approximation contributes to the difference between curve 1 and curve 
2 or 3 can be appreciated by inspection of Fig. 8. Hearst has pointed out 
that Eq. (26) is only valid for n >> 1; the analysis presented in Fig. 8 provides 
a more quantitative assessment of this criterion. 

One approximate model, represented by curve 4, involves the use of the 
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Fig. 8. Dependence of Hearst’s WBR formula [Eq. (24)] on the number of beads comprising 

the chain. Actual plot is of R for a chain of L1P = 3.4, as a function of P. The symbols 0, 
D, and 0 represent the corresponding points on Fig. 7 for curves 1 , 2 ,  and 3, respectively. 

rms end-to-end length ( (  h2)  lI2) as an effective cylinder length in Bro- 
ersma’s expression [Eq. (25)]. In this example, the “radius” of the cylinder 
has been adjusted so that the effective cross-sectional area of the equivalent 
cylinder is the same as that of the original wormlike chain. In view of the 
simplistic nature of this model, the agreement with the formal analysis 
(curve 3) is surprisingly good. 

Flexibility of Wormlike Chains Can Be Determined in the Absence 
of a Precise Knowledge of the True Hydrodynamic Radius 

In most studies of the hydrodynamic properties of wormlike chains, the 
assumption is made that the local molecular cross section can be effectively 
represented by an equivalent (circular) cross section. Furthermore, in 
choosing an effective hydrodynamic radius, assumptions are invariably 
made regarding the draining properties of the solvent and associated 
counterions in the vicinity of the macromolecule. For example, in the 
analysis of the rotational diffusion of DNA presented in the following ar- 
ticle,’l the value of 13 A has been chosen as the effective hydrodynamic 
radius (b) .  Implicit in this choice is the assumption that the solvent in the 
major and minor grooves is essentially nondraining. This nondraining 
assumption is a standard one and is based on both t h e ~ r e t i c a l ~ > ~ ~ , ~ ~  and 
experimental4 studies. For polyelectrolytes, an additional uncertainty 
exists in that closely associated counterions may contribute to the effective 
hydrodynamic radius (see Ref. 11). However, provided that the length of 
the polymer is known, information pertaining to the flexibility of the 
polymer can be obtained in the absence of a precise knowledge of b,  as will 
be shown below. 

If an assumed value of b differs from the true hydrodynamic radius (bT) ,  
then 
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where R,(b) is determined from measurement and an assumed value for 
b,  and where 

f(b/b.r,L) = T B ( ~ ) / ~ B ( ~ T )  = DE(~T)/DB(~) (28) 

[Eq. (23)]. The uncertainty associated with b can be substantially reduced 
by determining Rc ( b )  for a series of fragments of varying length, and by 
noting that 

The assumed value of b can be varied until Eqs. (27) and (29) are consistent 
with a single value of P. It should be noted (Fig. 9) that f is only slightly 
dependent on L. For example, if the initial choice for b differs from bT by 
less than 20%, f varies by less than 3% over a fivefold range of L. As an 
added bonus, this analysis should provide a reasonably accurate estimate 
for bT. In principle, an approach entirely analogous to the one presented 
above could be taken if the hydrodynamic radius of the polymer were 
known; however, this latter situation is rarely experienced in practice. 

The most general (and most frequent) situation involves a lack of a 
precise knowledge of either the length (or length per monomer) or the hy- 
drodynamic radius of the polymer. In this case, a more general analysis 
can be performed by imposing the constraint that P is independent of L.  
This constraint follows directly from the basic properties of the isotropic 
wormlike chain. This latter approach will be discussed in detail in the 
following paper." 

Applicability of the Equilibrium-Ensemble Approach to the Study 
of the Diffusion of Wormlike Chains 

In the present analysis it has been assumed that the behavior of a flexible 
wormlike chain undergoing pure rotational diffusion can be effectively 

40 80 120 

L h b  
Fig. 9. Plot of f ( b / b ~ J )  as a function of L for rigid cylinders having various assumed radii 

( b ) ,  compared to a standard value ( b T ) .  
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described at any instant by a collection of chains having an ensemble- 
averaged configuration identical to the time-averaged configuration of the 
original chain and whose individual friction tensors are given by the in- 
stantaneous, frozen configurations of each chain in the ensemble. This 
assumption has been almost universally applied to the study of the hy- 
drodynamics of flexible chains (for example, see Refs. 12,33,36,37), and 
is based, in part, on the work of Kramers,38 who concluded that the diffusion 
problem could be solved correctly using the rigid-body approach (Kramers 
neglected hydrodynamic interactions). The Kirkwood formalism16 is based 
on this approach. 

One of us showed some time ago39 that the Kirkwood-Riseman results 
for the viscosity number of Gaussian chains at small velocity gradients could 
be obtained independently of whether the chains were assumed to be 
flexible or rigid, and Gotlib and Svetlov4° later showed that this was still 
true for chains with an arbitrary intersegment interaction potential. 
However, in both cases the hydrodynamic interaction tensor was preav- 
eraged. 

The studies referred to above all suggest that an ensemble of flexible 
polymers undergoing rotational or translational motion can at least 
sometimes be treated as an equivalent ensemble of instantaneously rigid 
chains. In the absence of a complete hydrodynamic analysis of flexible 
polymers-one that considers a general intramolecular potential, as well 
as intramolecular hydrodynamic interactions, and avoids preaveraging 
(perhaps through a dynamical approach)-the above conclusion must re- 
main nonrigorous. However, any subsequent modification of the above 
conclusion is expected to introduce only second-order corrections to the 
present analysis. 

It has also been assumed that the segmental motions of the wormlike 
chain are more rapid than is overall rotational diffusion, thus allowing the 
use of ensemble-averaged rotational diffusion coefficients to describe the 
orientational relaxation process. This assumption can be at least ap- 
proximately validated for short chains by computing the relaxation spec- 
trum for transverse motions, using the formula derived by Barkley and 
Zimm41 (which includes intrachain hydrodynamic nteractions); namely, 

where T ;  is the bending relaxation time of the kth normal mode, Kk is the 
wave number [satisfying the relation, COS(KL) cosh(KL) = 11, b is the cylinder 
radius, P is the persistence length, and l o  is the solvent viscosity, and where 
K ( K ~ )  are modified Bessel functions. This formula is approximate in the 
present context (for small values of h )  in that i t  employs harmonic wave 
functions and neglects end-effect corrections to the intrachain hydrody- 
namic interactions. In the range of validity of this formula ( L  < P ) ,  the 
longest transverse (bending) relaxation time (7;) is much faster than the 
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corresponding rotational relaxation time for the wormlike chain (roughly 
one order of magnitude shorter for L = P).  For chains of L > P ,  no ade- 
quate description exists for the internal motions of the wormlike chain; 
however, the schematic “correlation diagram” of S t ~ c k m a y e r ~ ~  can be used 
as a rough guide. It suggests that the fundamental bending mode of the 
weakly bending rod correlates with the second (triply degenerate) relaxation 
time for the random coil, which is approximately three times shorter than 
the first (longest) relaxation time.39,43 As for the “rigid-chain” assumption 
discussed above, this approach must remain nonrigorous (for chains of L 
> P )  in the absence of a proper analysis of the internal motions of moder- 
ately flexible wormlike chains; however, in view of the above discussion, 
it is plausible to assume that a substantial amount of segmental motion 
occurs on the time scale of overall rotational diffusion and, therefore, that 
an ensemble-averaged rotational relaxation time adequately represents 
the rotational diffusion of short wormlike chains. 

It is, however, instructive to consider the other extreme case, namely, 
the rotational diffusion of an ensemble of wormlike chains having internal 
coordinates that are fixed on the time scale of rotational relaxation. For 
this case, the relaxation of the optical anisotropy would represent a su- 
perposition of a continuum of relaxation processes corresponding to the 
various relaxation times for the individual chains (Table I), weighted ac- 
cording to the configurational distribution as well as the contribution of 
each configuration to the overall optical anisotropy. For this static model, 
the terminal portion of the decay curve represents the weighted contribu- 
tions from the most extended chains. Therefore, the application of the 
ensemble-averaged model to molecules which are not undergoing rapid 
(compared to rotation) segmental motions would lead to an overestimate 
of the true persistence length. 

Effects of Coupling Between Rotational and Translational Motions 

In assuming that individual wormlike chains experience pure rotational 
motion, effects due to the coupling of translational and rotational mo- 
t i o n ~ ~ ~ * ~ ~  have been neglected. Since individual chains usually manifest 
a rather low degree of symmetry, coupling is expected to occur; however, 
for the wormlike chains considered in this analysis, the influence of such 
coupling on rotational diffusion is not significant. For example, in com- 
puting the apparent rotational diffusion coefficients (which include con- 
tributions from coupling) for an ensemble of 10 chains (LIP = 2), the con- 
tribution due to coupling was found to be less than one part per thousand 
for the ensemble, and less than three parts per thousand for any individual 
chain (Hagerman and Zimm, unpublished work). An occasional chain may 
possess a fair degree of helicoidal symmetry, thus leading to a significant 
degree of coupling44; however, such chains are rare and do not contribute 
significantly to the properties of the ensemble. 
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CONCLUSIONS 

The foregoing analysis has provided a means by which the rotational 
diffusion of moderately flexible polymers can be quantitatively related to 
their persistence lengths. The rotational relaxation times of these polymers 
are extremely sensitive to changes in configuration, and studies of the be- 
havior of these relaxation times should prove to be a powerful approach 
for the investigation of the influence of various agents (solvent composition, 
ionic strength, ligand binding, etc.) on polymer flexibility. Furthermore, 
since molecules can be studied in a size range where excluded-volume effects 
are negligible (LIP < 5) (see Ref. ll), the uncertainties involved with this 
latter effect have been removed. 

In addition, the persistence lengths of polymers having local hydrody- 
namic radii that are not known precisely can still be determined with rea- 
sonable accuracy by studying the rate of departure (as a function of in- 
creasing L )  of the observed rotational relaxation times from those expected 
for rigid cylinders having the same axial length. Moreover, this approach 
should yield a reasonable estimation of the hydrodynamic radius. 

Finally, the exploitation of the full sensitivity of this analysis demands 
a precise knowledge of the axial lengths of the polymers being investigated. 
For DNA, this condition can be satisfied by using restriction fragments 
which have been entirely sequenced.ll However, if changes in flexibility 
and/or local structure are under investigation, without regard to absolute 
values of P ,  then the method is equally applicable to systems where precise 
length information is not available. 
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