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ABSTRACT: We use molecular dynamics simulations of the Kremer−
Grest (KG) bead−spring model of polymer chains of length between 10
and 500, and a closely related analogue that allows for chain crossing, to
clearly delineate the effects of entanglements on the length-scale-dependent
chain relaxation in polymer melts. We analyze the resulting trajectories
using the Rouse modes of the chains and find that entanglements strongly
affect these modes. The relaxation rates of the chains show two limiting
effective monomeric frictions, with the local modes experiencing much
lower effective friction than the longer modes. The monomeric relaxation
rates of longer modes vary approximately inversely with chain length due to
kinetic confinement effects. The time-dependent relaxation of Rouse modes
has a stretched exponential character with a minimum of stretching
exponent in the vicinity of the entanglement chain length. None of these
trends are found in models that allow for chain crossing. These facts, in combination, argue for the confined motion of chains for
time scales between the entanglement time and their ultimate free diffusion.

■ INTRODUCTION

The structural relaxation of polymer melts has been the subject
of considerable experimental and theoretical investigation due
to its relevance to the processing of these viscoelastic materials.
The relaxation of chains strongly depends on the degree of
polymerization (or chain length), N, in a manner that is
qualitatively captured by the Rouse−Zimm and reptation
models for short and long chains, respectively.1 The question
that logically follows is how the internal relaxations of the
chains depend on the length of the subchain under
consideration. For long enough chains, it is thought that
short subchains relax according to Rouse dynamics and the
longest by reptation with an intermediate crossover behavior.
The crossover between these two limiting behaviors occurs
around the critical molecular weight Nc ∼ Ne − 2Ne, which
depends on the details of the polymer local architecture and
packing2,3 and is generally attributed to the topological
constraints of entanglement that arise for large N.
Perez-Aparicio et al.4 studied the dynamics of unentangled

PEP melts using neutron spin echo (NSE) spectroscopy and
molecular dynamics (MD) simulations. They found that the
relaxation of the chains deviates from Rouse behavior at short
length scales (i.e., below 2 nm), which are still larger than the
Kuhn length of the chains (∼1.1 nm). Analogous deviations
from Rouse behavior at time scales shorter than Rouse time
were also observed for 1,4-polybutadiene, polyethylene, and
poly(ethylene oxide).5−7 These results are now thought to be
due to chain stiffness, other local packing effects, and local
frictional variations. For longer chain lengths, Richter et al.8,9

found that there is a crossover where chain relaxation is
significantly slowed down due to the presence of entangle-

ments. Clearly, it is important to understand how topological
constraints control the relaxation of different subsections of a
chain in this crossover regime. This is the focus of the present
work.
To provide context for our studies, we begin with the

simplest model for the dynamics of short polymer chains in a
homopolymer melt, the Rouse model.10 A chain is represented
by a sequence of beads connected by harmonic springs, each
spring with mean-squared bond length b2. This model is known
to describe the dynamics of short, unentangled melts
reasonably well, though deviations appear at shorter length
scales. While these deviations have been thought to be due to
local excluded volume interactions and chain stiffness,11 more
recent work has suggested that these effects could also arise
from hydrodynamic interactions operating over a range of
length scales.12 For long, entangled chains, the Rouse model
describes the dynamics at intermediate time/length scales even
though the longer scale dynamics are strongly affected by
constraints formed by surrounding chains. The Rouse modes (p
= 0, 1, 2, ..., N − 1) of a chain of length N are defined as13 X⃗p =
(2/N)1/2∑i=1

N ri⃗ cos[(pπ/N)(i − 1/2)]. The p = 0 mode
describes the motion of the chain center-of-mass, while the
modes with 1 ≤ p ≤ N − 1 describe internal relaxations with a
mode number p corresponding to a subchain of (N − 1)/p
segments. The autocorrelation of the Rouse modes is predicted
to be ⟨X⃗p(t)·X⃗p(0)⟩ = ⟨X⃗p

2⟩e−t/τp; i.e., each mode should decay
exponentially and the modes are independent. Here the square
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of the pth mode amplitude is ⟨X⃗p
2⟩ = b2/[4 sin2(pπ/2N)], and

its reciprocal relaxation time is τp
−1 = (12kBT/ζb

2) sin2(pπ/
2N), where ζ is the monomeric friction coefficient. In contrast
to these predictions, the simulation determined autocorrelation
function of Rouse modes for chains in a homopolymer melt has
been found to be well fit by a stretched exponential

relaxation:14−16 ⟨X⃗p(t)·X⃗p(0)⟩ = ⟨X⃗p
2⟩e−(t/τp)

βp

. Here, we note
that intramolecular bond correlations, excluded volume effects,
and chain stiffness cause ⟨X⃗p

2⟩ to deviate from the expected p−2

scaling, especially for large p.17 Such effects along with
additional hydrodynamic coupling between different chain
sections recently discovered by Farago et al.12,18 may be the
source of these stretched exponential time correlations of the
Rouse modes. The effective relaxation time of mode p can be
obtained by integrating this relaxation function:14−16 τp

eff =

∫ 0
∞e−(t/τp)

βp

dt = (τp/βp)Γ(1/βp), where Γ(x) is the gamma
function. The effective monomeric relaxation rate (monomeric
Rouse rate) can be calculated using Weff = 3kBT/ζb

2 = 1/[4τp
eff

sin2(pπ/2N)]. For the Rouse model, this quantity should be
independent of mode number and only depend on the
monomer friction ζ, temperature, and statistical segment length
b.
Padding and Briels15,19 have conducted MD simulations of

polyethylene using a coarse-grained model in which one bead
represented 20 methylenes. Using this model, they simulated
melts as long as 50 beads (or 1000 methylenes) and found that
the effective exponent βp is dependent on mode numberfor
the shortest modes (largest p) they found βp ∼ 0.8. With
decreasing mode number βp decreases, reaching a minimum
∼0.5 for modes that are in the vicinity of N/p ∼ Ne/3,
independent of chain length. For small p, they find an
asymptotic value of βp ∼ 0.8. Li et al.15 found similar results
for the value of βp but with its minimum value occurring close
to N/p ∼ Ne for a bead−spring model with chain length N =
500. Shaffer suggested that this minimum (as well as the
presence of stretched exponential relaxations) results from
kinetic constraints experienced by long chains.14 Several
questions become apparent from this set of simulations: (i)
Are these results general? (ii) Is the minimum of 0.5 in the
vicinity of ∼Ne a general result, and how does it correlate with
the concept of entanglements?
More recently, Likhtman20 has examined several aspects

relative to the applicability of the Rouse model and a Rouse
mode analysis to melts of short, unentangled chains and longer
entangled analogues. His results reiterate several important
points that are critical to the current work. First, the normalized
amplitude of the static Rouse modes, ⟨Xp

2⟩ sin2(pπ/2N), are
dependent on mode number, pthis result reflects the power
law decay of intramolecular correlations in melts. Second, there
is coupling between the dynamics of the different modes, for
example the first and the third modes (of a chain of length N),
and this coupling only relaxes on the time scale of the slowest
mode. While these results thus clearly violate the fundamental
principle of mode decoupling in the Rouse model, we shall
continue to use this description for the following two reasons.
First, as we shall discuss below, experimentalists still tend to
model chain dynamics in the language of the Rouse model.
Understanding experimental results therefore require us to
analyze the simulations in the same manner. Second, our
overall goal is to understand the role of nanoparticles in chain
melts. Exploring these concepts based on the Rouse model thus

seems to be the easiest means, at least in the context of current
experimental practice.
Here, we study the internal relaxation of a series of

monodisperse polymer melts with different lengths (N = 10−
500) using molecular dynamics (MD) simulations. We analyze
the results of the simulations using Rouse modes. Results for
two representations of polymer chains, namely the Kremer−
Grest (KG) bead−spring model and chain-crossing model (in
which the chains are unentangled for all N), are compared.
Comparison of these two models shows unequivocally that
chain uncrossability for long-enough chains gives rise to the
minimum in βp and also a significant slowing down in the
relaxation of the longest chain modes.

■ MODEL
Polymer chains are represented by the coarse-grained bead−
spring Kremer−Grest (KG) model.21 Nonbonded monomers
interact through the Lennard-Jones (LJ) 12−6 potential: U(r)
= 4ε[(σ/r)12 − (σ/r)6] for r ≤ rc, where ε is the LJ energy scale
and σ is the monomer diameter. The LJ time scale is τ = (mσ2/
ε)1/2, where m is the mass of a monomer. For most of the
studies the LJ interaction was cut off at rc = 2.5σ, though some
simulations were run with shorter cutoffs for comparison. Two
successive segments in a chain are connected by a finitely
extensible nonlinear elastic (FENE)21 potential with k = 30ε/σ2

and R0 = 1.5σ.21,22 These parameter values ensure noncrossing
of the chains. In addition, a three-body bending potential of the
form Ubend = kθ(1 + cos θ) is used to control the stiffness of the
chains with kθ = 0, 0.75, and 1.5ε in three separate sets of
simulations. The entanglement length Ne for these three values
of kθ are ≈85, 45, and 28, respectively.23−25 We have
considered chain lengths N = 10−500 to study the relaxation
of chains in both unentangled and entangled homopolymer
melts.
To evaluate the role of entanglements, we also performed a

series of simulations that allow for chain crossing (CC)these
latter class of models have no entanglement effects, even
though their static properties (e.g., chain dimensions) closely
match their entangled analogues. Following Likhtman20 and
Duering et al.,26 this is done by “softening” the nonbonded
polymer segment pair interactions to Useg−seg(r) = A[1 +
cos(πr/rc)], with A = 6.5ε and rc = 1.6σ and switching the
bonds from their FENE form to a softer harmonic form
Vspring(r) = (k/2)(r − r0)

2 with k = 20ε/σ2 and r0 = 1.222σ.
These parameter values were chosen so that there is no
significant effect on the static properties of the melts while still
enabling chain crossing. (A detailed calculation for two bonds
crossing at 90° yields a minimum energy of ∼2kBT per bead,
corresponding to a bond crossing probability of ∼0.15.)
Most of the simulations are carried out on the NERSC Cray

XE6 Hopper using the large-scale atomic/molecular massively
parallel simulator (LAMMPS).27 The initial configurations of
the systems are prepared at random at a constant number
density while allowing for overlaps among beads. The overlaps
are removed by initially using a soft potential between
monomers and then by gradually increasing the strength of
the potential. After all overlaps are removed, the LJ interactions
between monomers are turned on and the volume of the
simulation cell is allowed to adjust at a constant pressure P* =
0. Systems of chain length N = 100−500 are equilibrated
following the double-bridging algorithm.22 The shorter N melts
are equilibrated by running isobarically and then at constant
volume until the chains have moved their own size.

Macromolecules Article

dx.doi.org/10.1021/ma500900b | Macromolecules 2014, 47, 6925−69316926



After equilibration, the systems are run at constant volume
with a Langevin thermostat with damping constant Γ = 0.1τ−1.
All simulations are run at temperature T* = kBT/ε = 1.0 with a
time step of 0.01τ. For longer chain lengths we find that the
average pressure P* = 0 ± 0.05 ε/σ3, whereas for shorter chains
P* = 0 ± 0.1 ε/σ3. We simulated homopolymer melts of M
chains of length N for [M, N] as shown in Table 1 for kθ = 0.75.
Additional systems with kθ = 0.0, 1.5ε for chain length N = 500
were also simulated to study the effect of bending stiffness on
the relaxation.

■ RESULTS
Chain Stiffness Effects. We first present results for the

effect of chain stiffness on the structure and relaxation of
entangled chains of length N = 500. For rc = 2.5σ, the
monomer number density ρ = 0.89σ−3 for P* = 0, N = 500 and

for all three kθ = 0, 0.75, and 1.5. These simulations were run
for a total time of 5 × 107τ for kθ = 0 and 0.75ε and 8 × 107τ
for kθ = 1.5ε. For comparison, we also ran the system of chains
of length N = 500 with a purely repulsive LJ potential (rc =
21/6) for kθ = 0 at the same density.
All autocorrelation functions, i.e., for the different Rouse

modes of index p, different stiffness and cutoffs (Figure 1)
decay to zero, implying that the chains are fully relaxed.
Attraction seems to have a relatively minor effect (Figures 1a vs
1b, also open squares vs closed squares in Figure 2), but the
curves for a given mode p are shifted toward longer time with
increasing stiffness (from Figures 1b to 1d). The scaled
amplitudes of the Rouse modes, ⟨X⃗p

2⟩ sin2(pπ/2N) = b2/4
representing the mean-squared bond distances of chains,
asymptotically approach the characteristic ratio, which increases
with chain stiffness (Figure 2a). For small p, ⟨X⃗p

2⟩ sin2(pπ/2N)
= AR[1 − c(N/p)1/2],28,29 where the constant of proportion-
ality, AR, is found to be linearly proportional to the
characteristic ratio, C∞. These results simply reflect the
importance of local intramolecular correlations in the chains
and that the chains follow Gaussian statistics at long length
scales.
Our results in Figure 2b for the monomeric relaxation rates

are not consistent with the Rouse model prediction that Weff

should be independent of N/p. Indeed, only on the shortest
length scales (N/p < 20) is the polymer relaxation Rouse-like.
The effective monomeric relaxation rates reach a plateau value
at large N/p, which we postulate as being due to the crossover
to reptation-like scaling arising from constraints to chain
motion from the neighboring chains. To lend credence to our
postulate for smaller p modes, we note that the relaxation time
for the longer chain modes should scale as τp ∼ [N/p]2[1 +
(N/Ne)

1.4]. From here we can show for small p that the Rouse

Table 1. Details of Simulations for kθ = 0.75

⟨R2
g⟩

1/2

chain
length N

no. of
chains M

length of simulation
box L/σ

KG
model

chain crossing
model

10 2000 28.49 1.6 1.5
20 1000 28.37 2.4 2.3
40 500 28.28 3.4 3.4
60 500 32.38 4.4
80 500 35.62 5.1 5.0
100 500 38.37 5.7 5.6
150 500 43.91 6.9
200 500 48.33 8.2 8.0
400 500 60.80 11.4 11.4
500 500 65.56 13.1

Figure 1. Normalized autocorrelation function of different Rouse modes p for a melt of chain length N = 500 with varying chain stiffness: (a) kθ = 0
with rc = 21/6σ, (b) kθ = 0, (c) kθ = 0.75ε, and (d) kθ = 1.5ε with rc = 2.5σ. The dashed black lines are fits to stretched exponentials.
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rates follow Wp
eff ∼ [1 + (N/Ne)

1.4]−1. This scaling is well
followed by long chain segments (Figure 2c). For intermediate
length scales (i.e., for 20 < N/p < 90), we conjecture that there
is a crossover between these two behaviors.
The stretching exponent βp from fitting a stretched

exponential form to the autocorrelation function is a non-
monotonic function of N/p with larger values in the Rouse and
reptation regimes and a minimum at the crossover around the
entanglement length Ne. For large N/p, βp decreases from 0.9
to a value 0.5 around Ne (Figure 2d) with decreasing N/p,
independent of chain stiffness. Li et al.16 also found that the
minimum in βp occurs around N/p ∼ Ne for kθ = 0. Previous
works by Padding and Briels15 and by Shaffer14 suggest that this
minimum in βp is due to kinetic constraints on the chains.30,31

Our results agree with this general conclusion, and the location
of the minimum of βp does track qualitatively with the
reduction in entanglement length with increasing stiffness. That
is the minimum occurs for N/p ∼ 40 for kθ = 1.5 and N/p ∼ 90
for kθ = 0. (For comparison, the entanglement lengths are ∼45
and ∼85, respectively.)
Previously, almost all simulations of this model have used a

purely repulsive (rc = 21/6σ) interaction between beads to
reduce computational resources necessary to reach long times.
Our results in Figure 2 clearly show that the interaction cutoff
has almost no effect on the Rouse modes of the chain. We also
carried out a primitive path analysis following Everaers et al.23

and found that the entanglement length Ne is independent of rc.
Chain Length Effects. The effective monomeric relaxation

rate of chains with different N is presented in Figure 3a for kθ =
0.75ε. For N < 40 the rate Weff is essentially independent of N/
p (or that the relaxation time follows Rouse scaling, Figure 3b),
except for the largest p where chain stiffness presumably enters.

Chains of length N = 100 show that Weff changes by a factor of
∼2 over the p values studied. As Ne ∼ 45, it appears that
entanglement effects on Weff start around Ne. The behavior of
longer chains is reminiscent of the behavior that we found for N
= 500 in Figure 2a. In addition to a plateau for large p (i.e.,
small N/p) there is a plateau for small p (i.e., large N/p). In this
longer chain length small p regime, the effective monomeric
relaxation rate is expected to scale as Wp

eff ∼ [1 + (N/Ne)
1.4]−1,

which is what is found when chain length is varied (Figures 3a
and 2c). The longest relaxation time (p = 1) (Figure 3d) shows
that its dependence on chain length changes from N2

(unentangled, Rouse-like chains) for short chains to N3.4

(entangled) for long chains consistent with experimentally
observed behavior.32

Consistent with these ideas, the effective relaxation times of
the different modes, especially for large N/p fall on a reptation-
motivated master curve for different chain lengths as shown in
Figure 3c, while the shorter length scale modes follow Rouse
scaling (Figure 3b). Figure 3c also suggests that this constraint
dominated regime is applicable for N3.4/p2 > 107, which implies
that only chains longer than N = 100 (∼ 2Ne) are in this
regime. The stretching exponents βp (Figure 3e) increase
monotonically with N/p for short chains, while for longer
chains there is a well-defined minimum in the vicinity of Ne.

Chain Crossability. Results for the chain-crossing (CC)
model are shown in Figure 4. In the CC model, chain
relaxations are Rouse-like for any given N as topological
constraints are eliminated by chain crossing. The effective
monomeric relaxation rates are constant for N/p > 5 (Figure
4a). For smaller N/p, the results are similar to those for the KG
model (Figure 4b). The effective relaxation times for different
length scales fall on a master curve which scales as τp ∼ (N/p)2

Figure 2. (a) Amplitudes of the autocorrelation function of the Rouse modes for chains of length N = 500. Lines correspond to the scaling
relationship ⟨X⃗p

2⟩ sin2(pπ/2N) = AR(1 − c(N/p)1/2. (b) Effective monomeric relaxation rates of melts of chain length N = 500 with different
stiffness. (c) Effective monomeric relaxation rates for chains of different lengths with stiffness kθ = 0.75ε for high N/p scaling. (d) Exponent βp from
fitting a stretched exponential to the autocorrelation function of the Rouse modes for N = 500.
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(especially for small p) as shown in Figure 4c. The stretching
exponent βp monotonically increases with N/p (see Figure 4d)
as for unentangled noncrossing chains (Figure 3e). Comparison
of the CC chains to the chains that cannot cross (Figure 4b)
clearly shows that entanglements affect the relaxation starting at
the intermediate length scales around Ne. The extent of the
effect depends on N as Weff decreases gradually with N/p in the
KG model, whereas it is constant in the CC model. For large
N/p, the plateau in Weff for the CC model shows that it better
satisfies the assumptions inherent in the Rouse model than the
KG model. The much lower plateau values of Weff for the
entangled chains clearly show that the presence of topological
constraints serve to significantly slow down chain motion.

■ DISCUSSION AND CONCLUSION
The major point of our analysis is that the Rouse modes of the
chains show characteristic trends in the regime of chain lengths
where entanglement effects become prominent. The relaxation
of chain segments smaller than this topologically defined size
follow Rouse-like behavior, although local correlations also lead

to departure from Rouse behavior at the shortest length scales.
Our results, especially on the monomeric relaxation rates Weff

of the chains, and their mode number dependence, are in good
agreement with the experimental results of Richter et al.8,9

These workers found that the effective relaxation rates decrease
dramatically when one goes through the entanglement
crossover (see Figure 3a). However, these workers did not
see any minimum in the apparent stretched exponents as a
function of mode numberrather, the mode relaxations of
these very modestly entangled chains were described by a
normal exponential relaxation. The reasons for this difference in
behavior between our simulations and the experiments might
arise from the fact that the experiments were conducted for
chains which are only weakly entangled. (Previous theories on
short chains, below the entanglement length, also show
deviations from Rouse behavior due to local packing effects
and local friction. The experimental evidence for such non-
Rouse behavior is weaker, and we do not understand the source
of these discrepancies between simulations and experiments at
this time.)

Figure 3. (a) Effective monomeric relaxation rates for chains of different lengths with stiffness kθ = 0.75ε. (b, c) Effective relaxation times of melt
chains of different length for kθ = 0.75ε. (d) Longest relaxation time (p = 1) of chains of different length is compared with CC model. Lines are
provided for guidance. (e) Stretching parameter βp for chains of different lengths.
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One question is why we choose to use the Rouse modes of
the chains to describe motion rather than true normal modes,33

which are guaranteed to be orthogonal to each other. Our logic
has a twofold rationale. First, as discussed above, experiments
are normally analyzed in terms of the Rouse model. Using the
same language as the experiments is a prudent means to make
connections of our models to reality. Second, previous works
by Hess,34 Ronca,35 and Edwards36 have shown that the
equations of motions for long, entangled chains in a polymer
melt can be reduced to a generalized Rouse form, but with
spectra at short and high frequency showing distinctly different
dependences. This is precisely what is seen in Figure 3a, in
good agreement with previous theoretical works.
Our Rouse mode results for polymer melts show very

interesting trends which greatly expand our understanding of
relaxation of different length scales of chain and the role of
entanglements on the dynamics of polymers. For all chain
lengths, the effective monomeric relaxation rate (friction) for p
∼ N is not affected as Weff is same for all N. The relaxation of
intermediate length scales is greatly affected by entanglements
and depends on N in the studied crossover regime.
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