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Finite cohesion due to chain entanglement in
polymer melts

Shiwang Cheng,†a Yuyuan Lu,†b Gengxin Liua and Shi-Qing Wang*a

Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress

relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a

finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there

is little hastened stress relaxation from step-wise shear up to g = 0.7 and step-wise extension up to the

stretching ratio l = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop

stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other

words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress

relaxation follows identical dynamics whereas the GLaMM or Doi–Edwards model indicates a monotonic

acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation.

Furthermore, a sudden application of startup extension during different stages of stress relaxation after a

step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of

entanglement strands in the cross-sectional area survives beyond the reptation time td that is over 100 times

the Rouse time tR. Our results point to the existence of a cohesion barrier that can prevent free chain

retraction upon moderate deformation in well-entangled polymer melts.

Introduction

Entangled polymers as a leading class of soft matter exhibit a rich
variety of phenomena, some of which are common to other forms
of soft matter while others are unique. When the basic building
units are chain-like molecules, unique physics emerges to dictate
rheological behavior. In particular, chain entanglement controls
both linear and nonlinear rheological responses of high molecular-
weight polymers.1,2 Extensive studies on this subject have been
made since de Gennes’ reptation idea3 over 40 years ago. Doi and
Edwards treated intermolecular interactions in terms of a confining
smooth tube in order to develop a microscopic model for polymer
chain dynamics based on the reptation mechanism.4–8 Today, the
Doi–Edwards tube model is widely used as the standard model to
not only depict the quiescent polymer dynamics9,10 but also explore
the nonlinear rheological behavior of entangled polymer melts
and solutions.11–19 By construction, the confining tube represents
the intermolecular interactions in the sense that a test chain in
the tube undergoes initial affine deformation before barrier-
less chain retraction on the Rouse time scale (tR) and restores

equilibrium contour length. Such barrier-free chain retraction
has two consequences: (a) an appreciable stress decline owing
to the chain retraction at a time around tR; (b) the affine elastic
deformation is negligibly low when the Rouse–Weissenberg
number WiR = _gtR or _etR { 1.

Recently, particle tracking velocimetry (PTV)20 has become
available to complement the conventional rheometric character-
ization of the nonlinear behavior of entangled polymer solutions
and melts. For well-entangled polymers, large deformation produces
remarkable strain localization such as shear banding21 and non-
quiescent relaxation.22 Although the constitutive continuum
model can also show the emergence of shear banding upon startup
shear23–26 such calculations do not produce a molecular picture for
shear banding. On the other hand, questions have emerged from
recent molecular dynamics simulations concerning27–31 whether
the tube model’s smoothed-out treatment of intermolecular
interactions32,33 may have oversimplified the essential (physical
network) picture of entangled polymers undergoing large
deformation.

Many studies of stress relaxation at large step strain have been
carried out to validate the tube model34–56 under the assumption
that quiescent relaxation prevails. Slip-link models have also
been applied to describe strain softening from step shear under
the assumption of quiescent relaxation.57–61 Unaware of any wall
slip62 and localized elastic yielding22 that give rise to excessive
strain softening, many experiments applied magnitudes of step
strain that are too high to ensure quiescent relaxation.63 At the
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end of interfacial yielding62 (i.e. wall slip) or elastic yielding64 in
the bulk, the sample heals, recovering its linear-response relaxation
dynamics, coinciding with the tube model’s prediction beyond tR

when the reptation dynamics dominate. When the magnitude of
the step strain is low enough or the entangled polymers are
inherently incapable of undergoing strain localization,65,66 stress
relaxation can take place quiescently.

In the present paper, we perform both step-wise simple-
shear and uniaxial-extension of moderate magnitude so that the
stress relaxation is guaranteed to occur quiescently. By avoiding
strain localization, we can compare experimental observations
with the GLaMM model.15 In Fig. 7a and b of a previous paper33

we only briefly mentioned the discrepancy between the shear
stress relaxation and the DE tube model. Here we provide the
missing details. More importantly, new experiments of step-wise
extension have been carried out to examine the universality of
the comparison. Both shear and extension tests show that there
is no accelerated stress decline after a sizable step-wise strain, in
contrast to the prediction of the tube model. Recently Graham
et al. also acknowledged this discrepancy.67 In the second part of
this paper, we carry out uniaxial extension experiments to discuss
the effect of geometric condensation and show that the effect
survives for a longer period than the reptation time, rather than
for a transient moment shorter than the Rouse time tR.

Experimental section
A. Material

All the present experiments in both shear and extension modes are
based on one monodisperse entangled styrene–butadiene random
copolymer rubber (SBR153K). It has an averaged molecular weight
Mw = 161 kg mol�1 and contains 25.6% styrene and 74.4%
butadiene, out of which 70% is vinyl. The SBR153K has PDI = 1.05.

B. Apparatus and methods

The linear viscoelastic properties of this sample are determined
from small amplitude oscillatory shear measurements (SAOS)
using a second-generation Advanced Rheometric Expansion
System (ARES-G2). Fig. 1 shows the SAOS curves at a reference
temperature of 30 1C. A terminal relaxation time or reptation
time, td = 1340 s, is estimated from the crossover frequency
in the G0 and G00 curves, and the elastic plateau modulus
Gpl = 0.49 MPa can be read from Fig. 1, corresponding to Me =
4.8 kg mol�1. The number of entanglements per chain is
estimated to be Z = Mw/Me B 33. The Rouse relaxation time tR

can be estimated by the different methods.68 In particular, tRZ ¼

6MZ
p2rRT

� �
Mc

M

� �2:5

¼ 12:3 s and tRo ¼
aM

1:111rRT

� �2

¼ 13, where

Z is the zero-shear viscosity, r is the mass density taken as 0.93 �
103 kg m�3, Mc = 2Me, and a is the prefactor at higher frequencies
for G0(o) = ao1/2. These values happen to be close to tR = td/3Z =
13.5 s. All the experiments were done at 30 1C except for
the elastic recovery experiments that were done at 25 1C where
td = 2578 s.

For the shear stress relaxation experiments, we modified
the surfaces of 8 mm (in diameter) parallel steel plates to
ensure the adhesion of the SBR melt on the shearing surfaces.
Specifically, sand papers (Grit 240 Aluminum Oxide, Virginia
Abrasives, Petersburg, VA) were adhered to the steel plates first.
Then the sand-paper covered plates were heated to 70 1C along
with the SBR melt with thickness of 1.0 mm. A pressure of around
100 g was applied between two plates for about five minutes.
Subsequently, the sample was removed from the shear cell, and a
thin layer of superglue (Loctite 498) was applied onto the sand
paper before reloading with the surface-roughened sample. A period
of at least 20 minutes was allowed to achieve good adhesion.
Different strain rates from 0.1 s�1 to 10 s�1 were applied to examine
the rate effect on the stress relaxation process. To mimic an
ideal step strain experiment, we use the arbitrary wave (AW)
mode to program the machine to reach to the setup strain
within 0.04–0.06 s. For extensional experiments, a first genera-
tion of the Sentmanat Extensional Rheometer (SER) is mounted
onto the ARES-G2 rotational rheometer. To avoid any slip, a thin
layer of the superglue (Loctite 498) is used between the sample and
the double drums on the SER. Different strain rates from 0.3 s�1 to
10 s�1 were applied to examine the rate effect.

Since the axial and torsion transducer compliance is KA =
107 N m�1 and KT = 1418 (mN) rad�1, respectively, for ARES-G2,
the axial response time (TA) and torsion response time (TT) can
be estimated by: TA = 6pZR/(a3KA) and TT = 20pZR3/(3aKT), where
Z is the zero shear viscosity of the testing sample, R is the radius
of the plate and a is the angular displacement. In our tests,
R = 4 mm, ZB Gpltd. For g = 1.0, TA/td B 0.2 o 1.0 and TT/td B
0.001 { 1.0. Thus, the transducer compliance should not affect
our step strain measurements according to Venerus52 and
Vrentas and Graessley.69

In a delayed rate-switching experiment, at various stages
during stress relaxation from a step-wise extension, the relaxing
specimen is suddenly stretched again at a rate that produces a
maximum in the engineering stress. In the elastic recovery
experiments, an SER is mounted onto a controlled-torque
rheometer (Physica MCR-301, Anton Paar). After reaching a

Fig. 1 Small amplitude oscillatory shear measurements of SBR153K at
30 1C. The reptation time is td = 1340 s. The inset shows the Williams–
Landel–Ferry (WLF) shift for this sample in the temperature range from 0 1C
to 60 1C.
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certain strain the sample is set stress free. The elastic recovery
of the sample after deformation is captured, using a video
camera connected to a digital video recorder, up to at least td

under the stress-free conditions on the SER.

Theoretical background

In order to explain the objectives and implications of our
experiments, it is useful to review the prevailing theoretical
description for stress relaxation of entangled polymer melts at
moderate magnitude. By modeling the entanglement network
in terms of a single chain in a tube, the tube model8 has
postulated that a test chain in the tube would actually retract on
the Rouse time tR in a barrier-free manner upon a sudden
startup deformation. Such chain retraction is to occur at any
step strain, i.e. any value of g or l, to result in a dip in the
relaxing stress. Sensitive rheometric instruments should be
able to detect the tiny dip and allow the envisioned chain
retraction to be identified by experiment.

According to the Doi–Edwards (DE) tube model, the stress
relaxation takes place in two steps: (a) the contour length
retracts back to its equilibrium value on tR, and (b) the chain
orientation relaxes toward the isotropic distribution through
the reptation on td. The time-strain separability occurs when
tR { td. Specifically, for a large step-wise simple shear, the
effective relaxation modulus is given by8

s(g,t)/g = G(g,t) = h(g){1 + [a(g) � 1]exp(�t/tR)}2Geq(t),
(1)

where Geq is the equilibrium relaxation modulus, and [a(g) � 1] is
the chain stretching contribution to the shear stress. The damping
function h(g) is given in terms of the orientation function Qxy as
h(g) = Qxy(g)/gB 1/(1 + g2/5). Similarly, for a large step-wise uniaxial
extension, we have

s(l,t)/(l2 � 1/l) = Gext(l,t) = g(l){1 + [a(l) � 1]exp(�t/tR)}2Geq(t),
(2)

where g(l) is given by f (l)/(l2 � 1/l), with f (l) given in eqn (7.140)
and (7.141) of ref. 8. An analytical approximation of a(g) and a(l) is
given in the inset of Fig. 2. As shown in Fig. 2, the stretching factor
a varies with the shear strain g and the stretching ratio l respectively,
where a B13% stress drop for a step-wise shear of g = 0.7 and a
B15% stress drop for a step-wise extension of l = 1.5 can be found
around tR. Such a stress decline should be readily observable in
experiments if it occurs.

In this work, we compare our results with the original DE tube
model and the latest version of the tube model, the GLaMM
model. For the calculations of the original DE tube model (Fig. 6a
and b), we measured Geq(t) from the linear-response experiments
as shown in Fig. 3 and inset it into eqn (1) and (2). For the
calculations of the GLaMM model (Fig. 6c and d), we choose the
standard parameters13,67 i.e., ad = 1.15, cn = 0.1 and Rs = 2.0 for
the contour length fluctuations, constraint release and retrac-
tion terms, respectively, and impose the same strain histories
as those of the experiments to ensure a direct comparison.

Results and discussion
A. Linear responses in shear and extension

We first carried out small step-wise strain in both shear and
extension to determine the linear-response characteristics.
Defining the equilibrium relaxation modulus as Geq(t) = s(t)/
g(t) for simple shear and Gext

eq (t) = s/(l2 � 1/l) for uniaxial
extension, we can present the stress relaxation as a function
of time as shown in Fig. 3. The fact that the two curves overlap
confirms that in this linear-response regime the preceding two
formulas hold respectively for the small strains. In both experi-
ments, it takes ca. 0.03 s to reach the prescribed strains of g =
0.1 and l = 1.2 respectively. The actual time dependence of
Geq(t) and Gext

eq (t) is the same as expected.

B. Beyond linear response: large step-wise deformation

B.1 Experimental protocol. An ideal step strain involves the
application of a prescribed strain within an infinitesimal
amount of time. However, in experiments a step strain always

Fig. 2 The chain stretching factor a2 versus the imposed strain for either
shear or extension according to the tube model. The chain stretching
would elevate the shear stress by 13% for g = 0.7 and extensional stress by
15% for l = 1.5.

Fig. 3 Linear stress relaxation behavior comparisons of shear and extension.
The relaxation moduli show identical time dependence throughout the
relaxation. Here the prescribed strains of g = 0.1 and l = 1.2 were applied in
the arbitrary wave mode and were reached within 0.03 s.
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takes a finite amount of time. Fig. 4a–d examine the rate effect
in both step-wise shear and extension and show that the long-
time stress relaxation behavior is insensitive to the rate used
(and the corresponding elapsed time) to produce the step-wise
strain. If it takes t1 to produce the step-wise strain, then as long as
we are interested in the stress relaxation characteristics on time
scales much longer than t1, no information is lost. Since we are
interested in the stress relaxation on time scales shorter than the
Rouse time tR B 13 s at 30 1C, for step shear we elect to use the
arbitrary wave (AW) mode on the ARES-G2 that allows the preset
strain to be applied within the shortest time, i.e., around 0.02 to
0.04 s. For step extension, we apply a high Hencky rate _e = 10 s�1.

B.2 Stress relaxation from large step strains. We examine
the stress relaxation behavior at moderate magnitude of strain
in both shear and extension respectively. Specifically, discrete
step-wise shear tests were carried out involving the magnitude
ranging from g = 0.1 to 1.1, as shown in Fig. 5a. The inset of
Fig. 5a shows that the prescribed strains were reached at
around 0.04 s and there are inherent overshoots of the applied
strain. The tiny vertical displacement of the stress curves
relative to one another indicates that the shear stress s(t) does
not increase exactly linearly with the applied strain g. For the
step-wise extension, the normalized Gext(t, l) in Fig. 5b shows a

significant vertical spread. This simply means that the tensile
stress growth is weaker than the formula of s = G(l2 � 1/l) from
the rubber elasticity theory, which has been observed before in
both entangled polymer melt70 and crosslinked rubber.71

The strain softening factors are summarized as 1.0 � G(t =
1 s, g)/G(t = 1 s, g = 0.1) for shear and 1.0 � Gext(t = 1 s, l)/G(t =
1 s, l = 1.2) for uniaxial extension in Fig. 5c. Recently, similar
strain softening was described in terms of tube dilation and
chain retraction.72 It will be interesting to compare the theore-
tical prediction with the strain softening observed in cross-
linked rubbers, i.e., the Mooney–Rivlin effect,71 where chain
retraction cannot take place. Any further discussion of the
origin of this softening is beyond the scope of the present study.

To see more clearly how the stress relaxation varies with the
magnitude of the step strain, i.e., to compare the ‘‘shapes’’ of the
relaxation modulus, we vertically shift the curves by normalizing
the strain softening effect in Fig. 5a and b according to Fig. 5c to
match at the initial times so that an effective relaxation modulus
Geff(t) can be compared for different magnitudes as shown in
Fig. 5d and e. Over the explored range, the Geff(t) shows little
magnitude dependence, for shear strain from 0.1 to 0.7 (Fig. 5d)
and for the stretching ratio from 1.2 to 1.7 (Fig. 5e). The lack of
any strain dependence on the relaxation modulus Geff up to g = 0.6

Fig. 4 Relaxation modulus obtained under different modes to impose the prescribed step strain for both simple shear (a) and (b) and uniaxial extension
(c) and (d). Here AW designates the arbitrary wave mode where preset strain is produced in a rate as fast as the machine can achieve. For a strain of 0.1
and 0.6, it takes less than 0.04 s to reach. The other rates are clearly labeled inside each figure. The Rouse Weissenberg number is defined as WiR = _gtR for
shear and WiR = _etR for extension. The arrows indicate the time when the applied deformation terminates for each deformation rate.
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as shown in Fig. 5d has justified the employment of the
parallel-disc for the stress relaxation measurements that involve
the imposition of varying strains radially across the sample. In
other words, the parallel-plate measurements are rigorously valid
for comparison with the theoretical prediction for g o 0.7.

C. Comparison with the theoretical prediction: a cohesive
barrier against barrier-free retraction

According to the DE tube model, the relaxation modulus G(t)
in eqn (1) and (2) drops below the equilibrium relaxation

modulus Geq around the Rouse time scale because barrier-free
chain retraction occurs. The magnitude of the decrease, as a
function of the magnitude of the step strain, is determined by the
a factor of Fig. 2. Specifically, based on Geq available from the
experimental data in Fig. 3, we can plot the theoretical estimate
(DE) for different magnitudes as shown in Fig. 6a and b. We also
present the calculations of the GLaMM model in Fig. 6c and d.

To quantify the difference between Fig. 5d, e and 6a–d at
relatively long times, we plot the ratios Geff(t, g)/Geff(t, g = 0.1)
and Gext

eff (t, l)/Gext
eff(t, l = 1.2) as a function of g and l, respectively,

Fig. 5 (a) Relaxation modulus as a function of time for different magnitudes of the step-wise shear, ranging from g = 0.1 to 1.1, imposed within 0.04–0.06 s.
(b) Relaxation modulus as a function of time for different stretching ratios l ranging from 1.2 to 1.7, imposed with a Hencky rate of 10 s�1. (c) The amount of
vertical shift due to strain softening. (d) and (e) replots of (a) and (b) after the vertical shifts according to (c).
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for t = 5tR, 10tR, 20tR, 50tR, as shown in Fig. 7a and b. On one
hand, the normalized relaxation modulus remains constant up
to g = 0.6 for step shear and up to l = 1.5 for step extension,
as indicated by the horizontal dashed lines in Fig. 7a and b.
On the other hand, the tube model predicts a notable systema-
tic downward deviation from the horizontal lines as shown by
the red half-filled squares (the DE tube model) and green half-

filled squares (the GLaMM model) respectively. The noticeable
difference in Fig. 7a between the DE tube model and the
GLaMM model may be expected. The chain stretching was
incorporated into the DE model as an independent contribution
to stress whereas the GLaMM treat chain stretching and orien-
tation as coupled. Since the tube model anticipates a stress drop
from barrier-free chain retraction at a time scale around tR,

Fig. 6 DE tube model calculation of shear modulus for a range of g from 0.1 to 1.1 (a), and extensional relaxation modulus for the stretching ratio l
ranging from 1.2 to 1.7 (b). The GLaMM model calculation of the shear relaxation modulus for a range of g values from 0.1 to 1.1 (c), and the extensional
relaxation modulus for the stretching ratio l values ranging from 1.2 to 1.7 (d).

Fig. 7 Normalized relaxation moduli based on experiment, the original Doi–Edwards tube model and the GLaMM model at ‘‘long time’’ from 5tR to 50tR

for both (a) shear and (b) extension. The results from both the DE tube model calculation and the GLaMM model calculation are identical at different times
from 5 to 50tR.
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we regard such differences to be qualitative, revealing the inade-
quacy of the basic premise of barrier-free chain retraction, upon
which any version of the tube model was built. In other words,
the experiment uncovers a new concept that we term ‘‘finite
cohesion’’: the entanglement network would remain intact after
fast external deformation unless the magnitude of the stepwise
deformation exceeds a sizable magnitude. Our present work
focuses on the identification of such a threshold since the
elastic yielding behavior at higher magnitude (leading to strain
localization) has been investigated previously for both stepwise
shear22 and extension.73 As shown in Fig. 7a, the stress relaxation
is independent of the strain up to g = 0.6 in contradiction to the
depictions by the GLaMM and DE models presented in Fig. 6a
and c as well as in Fig. 7a. At higher strains, i.e., for g 4 0.7, the
cone-plate based measurements would be necessary. Alternatively,
for the parallel-disk measurements, the GLaMM calculations of
the stress relaxation can be carried out for the parallel-disk
configuration. Given the sufficiently large discrepancy between
the experiment and theory in Fig. 7a up to g = 0.6, we deem it
beyond the scope of this study to make such GLaMM calculations.
Moreover, it is remarkable that the idea of finite cohesion associated
with the entanglement network bears out for both shear and
extension, illustrating the universality of the observed behavior.

To better understand the qualitative differences observed
between experiments and the predictions of the tube model, we
seek a more detailed analysis of the nature of the stress.
According to the GLaMM model, both chain orientation and
stretching contribute to the stress, which separate after the
barrier-free chain retraction at tR. The orientational portion of
the stress can be calculated by following a previous procedure30

within the frame of the GLaMM model. As shown in Fig. 8a
and b, the contributions of chain stretching to the shear
stress quickly vanish around tR in all cases, with sor/s converging
to unity after t/tR = 1. The convergence involves as much as
25% drop in the relaxing stress for g = 1.1, and nearly 10% for
g = 0.6. It is this diminishing stretching component of the stress
that causes the overall stress in the GLaMM model to show
discernible dependence on the magnitude of the stepwise
deformation.

However, the lack of accelerated stress relaxation in the
experimental data up to a strain of around g = 0.6 and an
elongation ratio of around l = 1.5 implies that chain retraction
did not really take place after stepwise deformation at the low
magnitude. Then, the essential question is why chain retraction
could not occur at moderate strain magnitude. Since the chain
retraction cannot take place on time scales much shorter than
the reptation without either dragging the surrounding chains
with it or altering its conformation, our experiments suggest
that entanglement strands in the deformed network remain
stretched at moderate magnitude of stepwise deformation,
i.e., chain retraction does not occur in a barrier-less fashion, which
is consistent with the recent molecular dynamics simulations.29–31

Therefore, we propose that there is a barrier due to interchain
uncrossability to resist spontaneous chain retraction, of which the
nature requires further investigation in the future. At higher
magnitude, e.g., beyond g = 0.6 and l = 1.5, when the stress
relaxation quickens, the deformed strands still need to fight
against the barrier. As a consequence, the stress relaxation is
only moderately faster with increasing magnitude as shown in
Fig. 7a and b, unlike the predictions of GLaMM that assumes
barrier-less chain retraction.

D. Probing the state of chain entanglement during stress
relaxation

To learn more about the stress relaxation process, we follow the
same protocol previously applied to study the relaxation behavior
after a step-wise shear of entangled solutions.66 Namely, we carried
out delayed rate-switching experiments to probe the change of the
state of chain entanglement during stress relaxation from a step-
wise extension. Specifically, after a step-wise extension to various
magnitudes given by the stretching ratio l1 = 1.2, 1.5, 1.8 and 2.2
respectively, involving a Hencky rate _e = 1.0 s�1, the specimen is
allowed to relax for a period tw starting from the end of the tensile
deformation before another startup extension with _e = 0.3 s�1 is
imposed on the relaxing sample. Here the different waiting time
tw ranges from tR/2 to several td values.

To provide the necessary background, we first present in
Fig. 9a the stress–strain curves at both _e = 0.3 and 1.0 s�1,

Fig. 8 Orientational contribution sor to the total stress s for both (a) shear and (b) extension calculated by the GLaMM model. Note that insets are the
total stress s, the orientational stress sor, and excess stress (s � sor) at g = 0.8 for shear and l = 1.5 for extension, respectively.
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obtained from freshly loaded equilibrium samples. At _e = 1.0 s�1,
the engineering stress sengr only monotonically increases until
rupture around l = 14. At _e = 0.3 s�1, there is a characteristic
stress peak sengr0(max) at 1.0 MPa. Here, we choose sengr = F/A0

instead of true stress because the engineering stress maximum
sengr(max) is an effective macroscopic measure of the molecular
events such as chain disentanglement.74,75 During startup
extension, the loss of entanglement strands competes with the
growing stretch of the surviving strands. Thus, the peak of sengr

signifies the global yielding of the entanglement network74 when
further stretching of the surviving entanglement strands is offset
by the massive chain disentanglement. These features can be
exploited to learn about the state of chain entanglement during
stress relaxation.

Since up to l = 2.0 the stress–strain curve does not deviate
much from the linearity at an elongation rate of _e = 1.0 s�1, the
extension should be nearly affine. In affine deformation, there is a
geometric condensation effect as indicated by the inset in Fig. 9a.
The same (load-bearing) entanglement strands condense into a
smaller cross-sectional area because of the homogeneous uniaxial
extension. During relaxation, the condensation of the entanglement
strands will disappear over time by molecular diffusion. Our delayed
rate-switching experiment can actually quantify such a change in
the state of entanglement by determining when the step-extended
sample returns to the ‘‘non-condensed’’ equilibrium state, having
a smaller cross-sectional area than the initial by a factor of l.
According to our understanding, the condensation effect may
survive after step extension until the reptation time td, as depicted
in Fig. 9b. In contrast, if chain retraction takes place on the time
scale of tR, the condensation should vanish for tw 4 tR as shown
in Fig. 9b by the cartoon below the stress relaxation curve.

If affine deformation prevails in the preceding step-wise
extension to a stretching ratio of l1 and the same total number
of the original entanglement strands would participate in

resisting the subsequent startup extension even after a certain
amount of waiting time tw at l1, then we may see the same level of
the tensile force although the cross-sectional area is now lower by
a factor of l1. In other words, before the effect of geometric
condensation vanishes through molecular diffusion, there is still
the same number of load-bearing entanglement strands across
the specimen in spite of the areal reduction by l1.

Therefore we probe the stress relaxation process after a step-
wise extension by application of a startup extension with _e = 0.3 s�1

at different stages of relaxation. Fig. 10a–d present these discrete
delayed rate-switching experiments, where the engineering stress
sengr at various stages is defined as the total tensile force F divided
by the initial total cross-section area A0: sengr = F/A0. The fact that
up to tw = 100 s the startup extension produces a similar stress
peak level for l1 = 1.2, 1.5 and 1.8 is an indication that (a) there is
nearly affine deformation and (b) the corresponding effect of the
geometric condensation persists up to tw = 100 s.

We have used the value sengr(max) to assess whether the original
entanglement strands are still present and participate to resist
the applied startup extension after various amounts of relaxation.
The stress response eventually drops, consistent with the reduced
cross-sectional area by l1, after full relaxation when the new
entanglement strands are at the equilibrium density.

Treating the step-extended specimen as a ‘‘fresh’’ sample with
an initial cross-sectional area of A0

0 = A0/l1, we plot the engineering
stress sengr2 = F/A0

0 arising from the startup extension as a function
of time in Fig. 11a and b, where sengr from the startup extension
on an equilibrium sample is also plotted as reference (solid
dots). The fact that the curves represented by the open symbols
systematically stay above the solid dots is consistent with the
picture depicted in Fig. 9b. For tw B 1500 s 4 td at l1 = 1.2, and
tw = 7500 s = 5.6td at l1 = 1.8, even though the peak value of
sengr2, i.e., sengr2(max), has returned to sengr0(max), the shape of
these curves still deviates slightly from the original curve (solid

Fig. 9 (a) Engineering stress sengr versus the measure of extension, l � 1/l2, for the two applied Hencky rates of 0.3 and 1.0 s�1, respectively, plotted on
double-X and double-Y axes. Up to l = 2.0, the stress growth is essentially linear at _e = 1.0 s�1. Thus, up to the elongation ratio of l = 2.0, the affine
deformation condition holds well. The inset illustrates the geometric condensation effect on the entanglement strands, where the dots represent the
entanglement strands viewed in the transverse cross-section where the entanglement strand density is higher. (b) The states of the entanglement network at
different stages before, during and after a step uniaxial extension. If chain retraction would take place at tR, the geometric condensation effect would be
absent during much of the stress relaxation. Conversely, the geometric condensation effect will survive for moderate magnitude of the step extension if finite
cohesion is present to prevent chain retraction. A0 denotes the initial cross-section area and A0

0 represents the cross-section area after step strain.
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dots), indicating that the relaxing sample has not fully returned
to the equilibrium state. This is consistent with the accumulating
literature that reported longer recovery time than td to the
equilibrium state.76

Plotting the ‘‘normalized’’ peak stress sengr2(max) read from
such data as those in Fig. 11a and b as a function of tw, we can
more clearly demonstrate, in Fig. 12a, the effect of molecular
relaxation on the geometric condensation. There are several
remarkable features in Fig. 12a. First, sengr2(max) remains essen-
tially constant up to 100 s for l1 = 1.2, 1.5 and 1.8. In other
words, sengr2(max) remains higher than sengr0(max) by a factor
close to l1 for a period as long as eight times the Rouse time tR.
Second, for l1 = 1.2, it takes about one reptation time t (i.e., tw B
td = 1340 s) for sengr2(max) to return to sengr0(max), when the effect
of the step extension completely disappears. Third, for l1 = 1.5
and 1.8, the peak stress remains higher than sengr0(max) for tw

as long as (4–6)td, which is hundred times longer than the
Rouse time.

It is equally revealing to ‘‘renormalize’’ the peak stress level,
i.e., to simply plot sengr(max) = sengr2(max)/l1 versus the waiting
time tw as shown in Fig. 12b. First, we see that all the data up
to l1 = 1.8 remain around sengr0(max) = 1.0 MPa for tw o 100 s
although the relaxing tensile stress has decreased by a factor of
two as shown in Fig. 10a to c. Had chain retraction occurred

around the Rouse time tR = 13 s, the geometric condensation
effect should have disappeared long before 100 s and sengr(max)

would have dropped below sengr0(max) since the cross-sectional
area is smaller by l1. Second, Fig. 12b is consistent with the
idea of finite cohesion of the entanglement network. The initial
overlapping of data for l1 = 1.2, 1.5 and 1.8 indicates that the
entanglement network starts to return to its ‘‘non-condensed’’
state only after 100 s, independent of the value of l1. Third, except
for l1 = 1.2, it takes several reptation times td for the effect of step
extension to vanish. In other words, the effect of the preceding
extension remains strong even after a relaxation time of tw B td.
When the equilibrium state is recovered, the startup extension
should produce a peak stress that is lower than sengr(max) =
1.0 MPa by a factor of l1, i.e., equal to sengr0(max)/l1 = (1/l1) MPa
because the specimen’s cross-sectional area A0

0 is smaller than
the original A0 by a factor of l1. The filled symbols on the right
Y axis indicate these values. Lastly, there is a progressive
decrease of the sengr2(max) when l1 is as high as 2.2 as shown
in Fig. 10d and 12a, suggesting a loss of load bearing strands or
entanglements from the very beginning of the stress relaxation
process. Such an observation is consistent with our observations
in Fig. 7b and supports the idea that the cohesion barrier is
finite and can be overcome when the elastic stress of a chain is
high enough.64

Fig. 10 (a–d) Delayed rate-switching (to _e = 0.3 s�1) experiments during stress relaxation from step extension (produced with _e = 1.0 s�1) of magnitude
corresponding to l1 = 1.2, 1.5, 1.8 and 2.2 respectively, where the subsequent startup extension after a period of relaxation tw produces a maximum in
sengr as shown, along with the preceding stress build-up and relaxation data. In each of (a) to (c), sengr(max) remains the constant close to sengr0(max) in the
first 100 s. Except for l1 = 1.2, sengr(max) does not decrease to sengr0(max)/l1 within the reptation time td. For l1 = 2.2, the specimen underwent breakup at
tw = 300 s due to localized elastic yielding. The elastic yielding64 also causes sengr(max) to decrease momentarily.
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E. Quantifying the elastic state during startup extension:
elastic recovery

When the Rouse–Weissenberg number WiR = _etR is below unity, the
intermolecular griping force is negligible as suggested in a previous
study of large extension behavior of entangled melt.77 When WiR o 1,
startup extension ceases to be affine beyond a stretching ratio
l = exp(WiR). According to the tube model, sengr exhibits a
maximum because of the combination of saturated chain orienta-
tion and shrinkage of the cross-sectional area. In other words,
the non-monotonicity does not signify any breakdown of the
entanglement network. We carry out the elastic recovery experi-
ment to further explore the concept of the cohesion associated
with the chain entanglement as well as the concept of cohesive
yielding at the maximum of the engineering stress sengr(max).

Following the same protocol as used in a previous study66 that
elucidated the meaning of the stress overshoot in startup ‘shear,
we perform a set of elastic recovery experiments involving
startup extension at different Hencky rates. Fig. 13a shows a

series of startup extension and subsequent elastic recovery,
covering a range of WiR from 0.25 to 2.5. Strikingly, there is
nearly complete recovery before the engineering stress max-
imum sengr(max) even for WiR o 1. For example, at _e = 0.01 s�1,
sengr(max) occurs at emax = 0.76 (corresponding to an elongation
ratio of lmax = 2.14), i.e. it takes 76 s ({td = 2578 s at T = 25 1C)
to reach the maximum as shown in Fig. 13b. Since the Rouse
time tR at 25 1C is only 25 s, 2/3 of this extension should be
taking place under non-affine deformation conditions if chain
retraction at tR actually took place. The 95% elastic recovery
from a step extension of l = 2.14 at WiR = 0.25 indicates that the
extension of the entanglement network is well beyond a Hencky
strain of 0.25, i.e., beyond l = 1.28. The lack of complete elastic
recovery only occurs beyond lmax. Thus, the data in Fig. 13a and b
also reveal the significance of the engineering stress maximum as
a signature of yielding of the entanglement network. Note that for
WiR = 2.5, there emerges a local maximum first at lmax = 4.1 as
shown in Fig. 13a before the specimen eventually shows a mono-
tonic increase until rupture. Even in this case, there is lack of full

Fig. 12 (a) Engineering stress maximum from the startup extension applied during stress relaxation from the step extension of four different magnitudes,
defined as the total tensile force F divided by the actual cross-sectional area A0/l1. (b) Renormalized engineering stress maximum sengr(max) = Fmax/A0 =
sengr2(max)/l1 as a function of the duration of the stress relaxation tw. Here the filled symbols on the right-hand-side Y axis indicate the equilibrium values
sengr0(max)/l1 that sengr(max) is expected to reduce in the long time limit when the step-extended sample fully relaxes to the equilibrium state. For l1 = 1.5
and 1.8, it takes several td values to reach sengr0(max)/l1. The dashed lines indicate the equilibirum state for each elongation ratio.

Fig. 11 Engineering stress sengr2 as a function of time, resulting from the startup extension applied at various stages (designated by tw) during stress
relaxation from three different step extensions of (a) l1 = 1.2 and (b) l1 = 1.8 respectively. The solid dots represent the stress vs. time curve from an
equilibrium sample (i.e., l1 = 0) in terms of sengr = F/A0.
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elastic recovery beyond lmax = 4.1 to indicate that the nature of the
process after the first peak is viscoelastic. Future molecular
dynamics (MD) simulation will clarify the molecular origin of
the engineering stress non-monotonicity displayed in Fig. 13a.

Conclusions

We carried out three different types of homogeneous-deformation
experiments to explore the existence of finite cohesion associated
with chain entanglement. None of our experiments involves strain
localization and non-quiescent relaxation and therefore can be
more readily compared with the prevailing theoretical description.
Specifically, step-wise shear and extension of moderate magnitude
were performed to determine whether there is any sign of chain
retraction to accelerate the stress relaxation. The observed lack of
any speed-up in the stress relaxation independent of the deforma-
tion is consistent with the picture64 that there is a cohesion barrier
in the entanglement network. In other words, the nearly identical
stress relaxation dynamics for step-wise shear with magnitude from
g = 0.1 to 0.7 and for step-wise extension from l = 1.2 to 1.5 suggests
that chain retraction did not occur. This assertion was made
because the tube theory predicts an appreciably faster stress
relaxation after any magnitude of step-wise deformation.

The state of chain entanglement after a step-wise extension
is delineated during stress relaxation by a sudden application
of a startup extension. The data analysis indicates that the
geometric condensation associated with the affine extension
still remains observable even after several reptation times td

let alone after merely one Rouse time tR, which is shorter than
td by a factor of 100. Finally, the full elastic recovery from step-
wise extension, produced with WiR o 1 at any magnitude
before the engineering stress maximum sengr(max) is consistent
with the idea that there is finite cohesion.

The results of the present study are consistent with the
recent MD simulations29–31 that have revealed significant chain
stretching and lack of barrier-free chain retraction. Thus, the
previous messages33,78 remain valid that there is merit to
explore a more realistic conceptual framework for the nonlinear
rheology of entangled polymers.
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