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5.1. INTRODUCTION

Application of photon correlation spectroscopy (PCS) to polymer
dynamics dates back to the inception of the technique in the early 1960s.
Early work demonstrated that the self-diffusion constant of large molecules
could be obtained by application of PCS to dilute solutions. In addition,
some early work dealt with the initial concentration dependence of the
diffusion constant. Nevertheless, major advances in the understanding of
the dynamics of chain molecules has only occurred in the last few years. In
this period there has been a dramatic increase in he amount and signifi-
cance of PCS activity in polymer physics. The purpose of this review is to
summarize and hopefully justify this more recent work.

Two significant factors led to the upsurge of interest by the light scat-
tering community in polymer dynamics. One factor is the application of
new theoretical techniques based on scaling methods, renormalization con-
cepts, and linear response techniques to polymer systems. These methods
not only brought simple interpretation of known results, but also led to new
insights and novel predictions.

t Prepared by Sandia National Laboratories, for the United States Department of Energy
under Contract No. DE-AC04-76DP00789
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The development of small angle x-ray and neutron techniques has also
contributed to the increased interest in polymer physics. These methods are
ideally suited to polymers since they are sensitive to spatial dimensions
characteristic of chain molecules (100 A). In addition, neutron scattering
coupled with deuterium tagging permits unique experimental measurements
such as the properties of a single tagged chain in a matrix of chemically
identical untagged chains. Small angle techniques have primarily elucidated
static properties since flux problems have precluded quasielastic studies of
polymer dynamics. Except for limited experiments based on the newly
developed spin-echo technique, PCS has provided the only microscopic
probe of polymer dynamics.

The goal of this chapter is not to review the PCS literature but rather
to demonstrate how PCS has enhanced understanding of the statistical
properties of chain molecules in solution. Since polymer gels, polymer
glasses, and phase phenomena are treated elsewhere in this volume, these
subjects are not considered. Basic understanding of PCS techniques and
polymer .fundamentals is assumed. In addition, lengthy derivations are
eliminated in favor of ultimate results and interpretation.

For simplicity the single chain problem is treated before adding the
complicating effects of interchain interactions and entanglements. The
dynamics of a single polymer chain are complex, with many possible
approaches to the problem, Therefore, this subject is first treated in a simpli-
fied manner employing scaling ideas and later in more detail and rigor
using the Zwanzig-Mori formalism. In both cases the renormalization or
“blob™ concept is introduced to interpret subtle aspects of the molecular
wright dependence of the dynamics of a single chain. After the single chain
problem, the virial regime is briefly reviewed: The discussion of the virial
regime naturally leads to consideration of semidilute solutions. In contrast
to the dilute case, the semidilute system is sufficiently complex that a rigor-
ous treatment, even with severe approximations, is not possible. Fortu-
nately, however, dynamical scaling yields results which now seem to be
confirmed by PCS measurements in good solvents. Little consideration is
given to the concentrated regime since an adequate model is lacking and
few experimental data are available.

5.2. THE SINGLE CHAIN

5.2.1. Basic Polymer Statistics

Understanding of the statistical properties of chain molecules centers
around two fundamental concepts: the ideal or random-flight chain and
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Figure 1. Schematic picture of a polymer. a* is the volume associated with a monomer.

chain expansion due to excluded volume. Review of these ideas will lay the

- groundwork for the discussion of the dynamical properties both in dilute

and semidilute solution. The next few sections will attempt to develop a

.~ simple and somewhat schematic view of polymers and their dynamical
' motions.

The simplest model of a polymer is that of a series of connected,

* noninteracting balls (monomers) of diameter a as illustrated in Figure 1. If
~ the connections between the monomers are stiff universal joints, then the
- sequence of vectors connecting them defines a random-flight trajectory. In
- the limit of many joints the radius R of such a sequence is well known")

R= <R2>“2 = "l_r).aNUZ {1]

- where N is the number of steps in the sequence or the degree of poly-

merization, n is a constant, and a is the segment length. The constant n is

© related to the chain stiffness and can be calculated from the characteristic
- ratio C,, of the chain.) At this point it is not necessary to precisely define
- the radius R, which may be the end-to-end distance, the radius of gyration

R,, or the radius of hydration R,. These various lengths differ through the

~ factor n. In consideration of dynamic properties R will generally be associ-

ated with the hydrodynamic radius R,. In polymer solutions, ideal or
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Figure 2. The effective potential
a3 between monomers is similar to that
e between any molecules: repulsive at
short range and attractive at larger
distances. Figure 2b shows the tem-
perature dependence of the effective
T=0 interaction  between monomers,
which is called the excluded volume
v. At high temperature, v approaches
a. b. a’,
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Gaussian behavior described by equation (1), is observed in some cases. The
particular temperature at which equation (1) is observed is called the theta
temperature (T = 6) and at this point the effective two-body interaction
between monomers (excluded volume) vanishes.

Away from the theta point, chains may be swollen or collapsed due to
the repulsive or attractive forces between monomers. The forces between
monomers are conveniently characterized by an excluded volume v, a
concept borrowed from the virial theory of dilute gases.®’ If the tem-
perature is high, monomer interaction is dominated by the repulsive part of
the pair potential illustrated in Figure 2a. At high T then the effective
excluded volume is just the hard core volume, v = a®. At lower tem-
peratures the attractive part of the pair potential dominates and the
excluded volume becomes negative, indicative of a net attraction. The point
at which v = 0, illustrated in Figure 2b, is the theta temperature where the
excluded volume or effective two-body interaction vanishes. In this chapter
only the regime v >0 will be considered. The collapsed state (v < 0) is
intimately connected with phase separation and therefore is not treated
here.

The properties of polymers in the swollen state (T > 6) were originally
worked out in the mean-field approximation by Flory.® Basically, Flory
considers the free energy of the chain to consist of an entropic or elastic
contribution plus an enthalpic contribution due to the excluded volume
interaction. Minimization of the free energy then leads to the so-called
Flory law

v \1/3
R = (_3) nl/sN3is (2)

a

Although the Flory approach has well-known shortcomings,® the 3/5
exponent in the molecular weight dependence of R is well established
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experimentally for polymers dissolved in good solvents. Renormalization-
group calculations yield an exponent 2% smaller than Flory’s calculation,
but the difference is beyond experimental resolution at this time.

In solvents of intermediate quality, excluded volume effects are weak
and scaling exponents between 1/2 and 3/5 are often observed experimen-
tally. This intermediate regime can be analyzed by perturbation theory,”®
where R is expanded about T =6 in terms of an expansion factor
Z = va " 3N'2, Perturbation theory is only expected to be valid near the
theta point where v is approximately linear in the temperature increment
1= (T - 0)T

v
S=1-2=0-2), <! &)

where the Flory'® reduced residual chemical potential y and reduced
residual partial-molar entropy y, have been introduced. The validity of
perturbation theory requires Z < 1 or 1 < N~ /2, In addition, the so-called
two-parameter perturbation approach also requires that two-body inter-
actions dominate three-body interactions. In virial language this condition
becomes

v > wp 4)

where w is the three-body excluded volume or third-virial coefficient. By
analogy with simple fluids,"”” w ~ a® so that condition (4) reduces to
3 N~'2 since the density p inside the chain is proportional to N~*/2%
Except for unusual circumstances, therefore, it is unlikely to have weak
two-body interactions which still dominate three-body effects.

Recently, Farnoux et al.’® developed an interesting alternative to per-
turbation theory for the intermediate regime. In this so-called “blob”™
approach short sequences are approximated as ideal (R ~ N'/?) whereas
long sequences are considered fully swollen (R ~ N3/®). In spite of its simpli-
city, this model has been very successful in explaining both static and
dynamic properties of dilute polymers. The blob concept will play a key
role in the analysis of chain dynamics which follows.

t The symbol ~ is used to define power-law dependences and does not imply that both sides
of the equation have the same dimensions.
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5.2.2. Dynamical Regimes

In a photon correlation experiment dynamical information is extracted
from the intensity correlation function {I(g, 1)I(g, 0)), which is directly
related to the intermediate scattering function S(g, t)

lg, D(g, 0)) — <I*) = pS*g, 1), t>0 (3a)

S, 0= 1 T explia - [r0) — r/0)) (5b)

where V is the scattering volume, q is the scattering vector, and r{t) is the
position of the monomer i at time t. f is a constant which depends on
geometrical factors. Interpretation of light scattering experiments then
requires a model for S(g, t) which is consistent with the structure of the
polymer and the laws of physics. Since S(g, r) has been calculated exactly
only for models with severe approximations, the complete interpretation of
scattering experiments is therefore not possible at this time.

Fortunately, considerable progress in the interpretation of PCS experi-
ments can be made on the basis of rather simple arguments. For example,
in the limit gR < 1, S(g, t) is sensitive to fluctuations whose Fourier spatial
wavelength g~ ! is large compared to the size of a single chain. In this
regime it follows immediately that the dominant relaxation process is
center-of-mass (CM) diffusion. By analogy to hard-sphere systems S(q, 1) is
exponential with a characteristic decay rate Q = Dg?. By contrast, when
1 € gR < ga, only internal chain distortions are important and CM diffu-
sion can be neglected. Finally, when ga =~ 1 the motion of single monomers
becomes important and the characteristic time of S(g, t) is related to
monomer mobility.

5.2.2.1. The Fundamental Relaxation Time. The scaling approach to
polymer dynamics rests on the assumption that there is only one fundamen-
tal relaxation rate.”” If the fundamental relaxation rate can be identified
then scaling permits characterization of the relaxation processes in dynami-
cal regimes where the fundamental process is no longer dominant. Support
for the idea of a single relaxation parameter comes from the static proper-
ties of chain molecules. Here a single parameter R, characterizes the
monomer pair distribution function for both ideal and swollen chains. This
single characterstic length underlies static scaling methods.

By analogy to the static situation it is reasonable to believe that the
fundamental chain relaxation process will dominate when gR = 1. That is,
the fundamental rate Q, is associated with the fundamental length R. Since
gR = 1 defines the crossover from CM to internal motion either of these
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processes could be used to define Q,. From the CM diffusion side, £, is the
rate associated with diffusion over a distance R

no =712 (6)

Q, could equally well be derived from the tumbling time of a Brownian
sphere of radius R

kT
Q, = LR (7)

where [, is the overall chain friction constant. Finally, if there is indeed but
one characteristic rate at gR = 1 then chain distortions must also display
consistent dynamics.

The dynamics of the distortional breathing mode can be established by
balance of elastic forces with viscous forces as the chain expands or con-
tracts from its equilibrium distribution.”® The elastic force can be obtained
from linear response theory by imagining that the chain ends are subjected
to a fictitious force f. Since the energy associated with the resulting distor-
tion or is f - dr, then the mean distortion is

{or) = é Jér exp(—pHy + 1 - or) (8)

where Q is the partition function and H, is the energy in the absence of f.
For small distortions equation (8) can be linearized

2
(Uorly = o)

Inversion of (9) gives the elastic force associated with a distortion ér. When
this force is balanced by the viscous force, we find

<T <161 > = Ll (10

where (., is still the friction constant associated with the entire chain.
Equation (10) implies an exponential time correlation function S(g, ¢) with
decay rate equivalent to equation (7). All three possible relaxation pro-
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cesses, therefore, give the same relaxation time since (6) and (7) are consis-
tent with the Einstein formula for D

kT
D~— 11
Ccll { )

5.2.2.2. Models of Chain Friction. The fundamental relaxation rate Q,
depends on the self-diffusion constant D (or equivalently on {_,). It is D that
contains model specific information. Because of the connectedness of the
chain, the motions of the individual monomers are coupled by elastic as
well as hydrodynamic interactions. Within certain approximations,
however, the coupling can be handled and a simple picture of polymer
dynamics emerges.

A reasonable starting point for calculation of D is the Kubo formula®

kT 11 [*=
‘ JD=_‘&_=§JHF i <§: V,,(O}-%V,,,(t}> dt (12)

where V,(f) is the instantaneous velocity of monomer n at time t. The
monomer velocities are correlated because the motion of one monomer
necessarily leads to a velocity field in the solvent. This solvent motion then
leads to a hydrodynamic force which moves other monomers. Solution of
equation (12) requires detailed knowledge of the velocity correlations
between monomers, and different levels of approximation have been con-
sidered to treat this problem.

Within what is known as the Rouse model, hydrodynamic interactions
between monomers are completely ignored so that (V,(0)- V(1)) =
0,m{V,(0) - V_(2)> and equation (12) reduces to

D,
Dx-= (13)

where D,, is the monomer diffusion constant and » is the solvent viscosity,

1 o
p,=*r_1 f Vi) - V(0 dt (14)
cm 3 0

In the Rouse model then

Q=238 (15)
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Although the Rouse model is generally associated with ideal chains,
equation (15) depends only on the lack of hydrodynamic interactions and is
not dependent on ideal statistics. In spite of the drastic approximations
involved in the Rouse model, Rouse-type dynamics may be expected under
certain conditions. At extremely short times, for example, S(g, ) may not
reflect hydrodynamic interactions due to the finite relaxation time associ-
ated with the solvent viscosity. Also, in concentrated solution and melts,
where hydrodynamic interactions are screened by other chains, Rouse
behavior is expected. The latter case is just now under study by quasielastic
neutron scattering.®?

Solution of equation (12) with hydrodynamic interactions was orig-
inally obtained by Kirkwood and Riseman'*® (KR), and their calculation
has been summarized in the present context by de Gennes. The central
approximation in the KR approach is that temporal and spatial correla-
tions contained in equation (12) are independent so that a given monomer
is assumed to feel the average rather than instantaneous flow field of all the
other monomers. The result of the KR approach is relatively simple,

kT /1
D=— <—-> (16)
6mn \r

where {1/r) is an average over the static monomer pair correlation function
g(r). In the infinite chain limit there is only one length scale and {1/r) is
proportional to R~ so that

D~ 17

and the fundamental relaxation time follows from equation (17)

kT

Qy ~ R (18)

when equation (18) is specialized to theta conditions (R ~ N'/?), the result is
generally associated with Zimm,"* ") who first calculated the mode structure
for the case of an ideal chain with hydrodynamic interactions. Equation (18)
is more general, however, and should be valid for swollen chains as well.
The form of equation (18) arises because of the form of the flow field
which results from monomer motion. This field, which is described by the
Oseen tensor, is long range (decaying as 1/r) so that monomers substantially
removed from each other become hydrodynamically coupled. As a result,
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the effective friction constant in the KR approximation is greatly reduced
compared to the Rouse case. The particular average in equation (16) is
called the hydrodynamic radius R,,,

Ry = <~f;>' (19)

5.2.2.3. Scaling'®). Having established the rate of the fundamental mode
at gR = 1, it is now possible to proceed to the neighboring limiting regimes
using scaling ideas."*?) In particular, for gR # 1 the relaxation rate is pre-
sumed to follow power law behavior,

Q = Qq(qR)* (20)

where the exponent x is to be determined. For example, when gR < 1 then
equation (20) should reduce to a diffusional form, i.e., Q ~ g2, so that x = 2,
and using(18),

Q=Dg*>, gR<1 (21)

as expected. In the opposite limit, gR > 1, the relaxation processes of inter-
est are distortions internal to the chain so €2 should be independent of R.
Therefore, from (18) and (20), x = 3 and

kTq?
~ Tq, ga<€1<gR (22a)

Equation (22a) predicts the g dependence of the relaxation rate for a Zimm
chain with hydrodynamic interactions. If the same scaling argument is used
for a Rouse chain (no hydrodynamic coupling) one finds

kTq*
n

Q ~

(22b)

Some evidence exists for Rouse behavior in melts.(¢*

In the limit ga =1 a new relaxation process associated with the
monomer mobility comes into the problem so that scaling is certain to fail.
Nevertheless it is reasonable to expect that monomer translational diffusion
will dominate and that

Q~D,q (23)
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Figure 3. Schematic picture of E o, = 1
the normalized relaxation rate - .
YD, q* associated with S(g, 1). = I I 1
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This regime is not accessible by light scattering but is a subject of investiga-
tion by quasielastic neutron scattering.!*>

5.2.2.4. Summary and Experimental Data. The above analysis indicates
that three dynamical regimes will be observed depending on the value of
gR. The three regimes are indicated schematically in Figure 3, where the
reduced relaxation rate Q/D,q* is plotted versus log gR,. In the regime
gR, €1, Q ~ Dyq*> as expected for center-of-mass diffusion of a chain
whose diffusion constant is D, at infinite dilution. At gR, = 1, a crossover is
observed to the regime where Q ~ g>. The crossover is expected to occur at
qR; = 1 since R, is the length scale associated with the fundameptal relax-
ation rate Q,. In the regime gR, > 1 scaling predicts ¢*> dependence regard-
less of solvent quality. In this intermediate regime ga €1 <€ gR, Q is
sensitive to internal dynamics or Rouse-Zimm modes. Finally, when
ga = 1, a crossover is expected to diffusional motion of individual mono-
mers with monomer diffusion constant D,,.

The general features of Figure 3 are reasonably confirmed by experi-
mental data. Figure 4 shows measured reduced relaxation rates for poly-
styrene in several solvents ranging from a theta solvent (CH = cyclohexane)
to a marginal solvent (EA =ethyl acetate) to good solvents
(TOL = toluene, BZ = benzene, and THF = tetrahydrofuran). The mean
relaxation rate 2 was obtained from the initial slope of the intensity correl-
ation function defined in equation (5a):

g - —lim 1005 0/55, O]
t—+0

=Dy,q*>, 4gqR<l, ¢—0 (24b)

(24a)
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Figure 4. Normalized relaxation rate for PS in several solvents. A universal curve is seen with
Q ~ ¢* in the intermediate region regardless of solvent quality. The log-log plot obscures
slight differences in the relaxation rate in theta solvents as opposed to good solvents.

D, is the diffusion constant at infinite dilution and ¢ is monomer volume
fraction.

The data in Figure 4 demonstrate both the beauty and limitations of
the scaling approach. In the regime gR < 1, diffusional behavior is observed
and the relation Q = D, g* has been found in many systems. The precise
meaning of Dy, however, is not defined by scaling, and in fact questions still
exist concerning the dependence of D, on the molecular weight. In the
following sections a more detailed analysis of D, is presented.

Figure 4 shows that the crossover regime spans about one order in g.
This crossover regime, which is not subject to scaling analysis, covers many
experimental situations. Fortunately, the crossover can be treated by
methods outlined in Section 5.2.4.

In the intermediate region, ga <€ 1 < qR, the data are consistent with
scaling predictions, namely, Q ~ g>. The scatter in the data, however,
obscures any differences which might exist between the data sets in theta vs.
good solvents. In fact, slight differences are predicted by linear response
theory and these differences are analyzed in more detail in Section 5.2.4.

The high-g regime, where monomer diffusion dominates, is not subject
to study by light scattering since the conditions ga ~ 1 cannot be realized.
Nevertheless, some results from quasielastic neutron scattering are avail-
able, and these data are consistent with the existence of crossover to Q ~
D, q* at high q. Figure 5 shows data of Nicholson er al*® taken by
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Figure 5. Normalized relaxation rate in the regime ga ~ 1. These quasielastic neutron data''®
are consistent with a crossover to diffusive behavior near ga = 1. For ga > 1, the relaxation
rate is diffusive, the diffusion constant being that of monomer or segment.

neutron spin-echo techniques. The line in the figure is calculated on the
basis of the theory outlined in the following section. These data suggest a
crossover to ¢ behavior at high g, but they are certainly not definitive.

5.2.3. Center-of-Mass Diffusion (¢R < 1)

Almost all photon correlation experiments performed to date in dilute
solution have investigated the regime gR < 1 where the decay constant Q is
proportional to the diffusion constant D of the chain, equation (21). The
profusion of diffusional data is due to the relatively long wavelength of
visible light as well as the difficulty of preparing very high molecular weight
chains. In theta systems, interpretation of D, (D at infinite dilution) is rela-
tively straightforward since D, is inversely proportional to the hydrody-
namic radius R, =<{r !>"! ~ D~!, which in turn scales as N'? by
equation (1). In better solvents, however, interpretation of D, is not trivial
since D, is found to scale with molecular weight to a power intermediate
between the ideal value of 1/2 and the Flory exponent 3/5 [equation (2)].
Much of the rest of this section is devoted to an analysis of these interme-
diate exponents in terms of the so-called “ Blob” model, which is a simple
conceptualization of the renormalization concept as applied to polymers.

5.23.1. Theta Systems. The first systematic study of D, in theta
systems by PCS is the work of King et al."* on polystyrene (PS) in cyclo-
hexane (CH). The molecular weight dependence of Dy for PS in CH at the
theta temperature is shown in Figure 6. Equation (17) suggests that D,
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Figure 6. Molecular weight dependence of the diffusion constant in dilute theta solution.!*#
D, is obtaiged from the relaxation rate of S(g, ) at gR < 1 and infinite dilution. The line is of
slope — 1,2 as expected for an ideal chain. T = 35°C, PS in cyclohexane.

should scale as N~ '/2 in this system since the chains are ideal. The line in
Figure 6 shows this power law dependence.

5.2.3.2. Marginal and Good Solvents. (a) Molecular Weight Dependence.
In good solvents, when the chains are highly swollen, both scaling argu-
ments and linear response theory predict Q ~ (r™'> ~ N™™ where v, =
3/5 is the Flory exponent. All recent light scattering experiments, however,
show weaker power law dependence. Table 1 summarizes the measured
exponents v, found for polystyrene (PS) and poly-a-methyl styrene (PAMS)
in several solvents. A reasonable explanation > '® for the anomalous expo-
nents is that the hydrodynamic radius R, = {r™!) is sensitive to short
sequences within the chain and therefore Ry does not reach its asymptotic
limit (N — oo) within the range of experimental values of the molecular
weight.

It has been known for many years that short chains and short
sequences within chains show less swelling than longer chains.”® This scale
dependence of swelling coupled with the sensitivity of Q to short distances
explains the observed intermediate exponents. Basically the probability of
intrachain contact increases with molecular weight so short chains with few
intrachain contacts are nearly ideal.

The ideality of short sequences can be crudely modeled by considering
the chain to be a sequence of *“blobs” or renormalized monomers as shown
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Figure 7. A schematic picture of the thermal blob model of polymers.® The actual chain on
the lefi is divided into blobs on the right whose temperature-dependent radius &, is the mean
distance smaller than the radius at which the chain is ideal. Inside the blob the chain is
assumed to be ideal, whereas the renormalized chain, consisting of a sequence of blobs of
radius £, is swollen due to excluded volume. The blob model correctly predicts many polymer
properties but it is a drastic oversimplification."” Most global properties are not strongly
affected, however, by correcting''® the deficiencies of the blob model.

in Figuré 7. The actual chain on the left is divided into a sequence of blobs
of radius £,. Within the blob the chain is ideal so that

61‘ = {nNt)uza (253)

where N, is the temperature-dependent cutoff for ideal behavior. N, can be
obtained by equating equations (1) and (2) with the result [v = a®(1 — 2y)]

3

n
N =————
‘=M= 29 (25b)
The renormalized chain or sequence of blobs shows swelling so that by
analogy with equation (2)
N 3/5
R~{—
e

A qualitative explanation for the intermediate exponents v, in Table 1
follows from equations (25) and (26). That is, since D, is proportional to the
first reciprocal moment of the monomer pair distribution function, it is
sensitive to sequences short compared to ¢&,. Since short sequences are
nearly ideal, exponents closer to 1/2 than 3/5 are reasonable even in rela-
tively good solvents where the radius of gyration R, scales with molecular
weight dependence near N3/ '

Akcasu and Han''® have worked out a detailed expression for D,
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within the blob model. Their result depends on x = N /N, the ratio of the
chain to the blob molecular weight

kT 1 12 ”22(1_5)

©= g LN2 (6m)' 2 * 3

l—x) @)

+ (x*'=1)—

1—v 2—v
where L ~ na is an unknown length scale which is equal to a for a com-
pletely flexible chain. Equation (27) shows the expected crossover from ideal
to swollen behavior as x increases:

KT 12 1 .
Po=mL Gy 1=z —wn~ " > X< @
po=—L 16 N-uz g (29)

~ 6myL (6m)12N12

Figures 8-12 show the existing literature data for the molecular weight
dependence of the diffusion constant of PS in various solvents. In all cases
the line is a best fit to the data using equation (27) with L and N, as

100.0 LI I N I N B B A B B B
PSIN EA 7 "
_ 100 |~ —
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.3
10 Mw

Figure 8. Molecular weight dependence of D, for PS in ethyl acetate'??) which 1s a near theta
solvent. The line is a fit to equation (27) with L and N, as parameters. These parameters are
listed in Table 1. For this system, N, = 2600, which means a sequence must contain 2600
monomers before showing appreciable swelling due to excluded volume interactions.
T = 25°C.
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Figure 9. Molecular weight dependence of D, for PS in methyl ethyl ketone,?"’ a marginal
solvent. T = 25°C.

parameters. The values of these parameters are collected in Table 1 for
these data and others for poly-a-methyl styrene (PAMS).?” Examination of
N, in Table 1 indicates that N, is a measure of solvent quality. For good
solvents such as THF and TOL, N, is of the order of 100 monomers
whereas for marginal solvents such as EA, N, ~ 103, Increasing N, correl-
ates directly with decreasing values of the apparent exponent v,. The Flory

1000 T TTI 1 T 11 T i 1 11
B PSIN BZ T
.310,0
s
s
[
o
-
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0.1 NI EEEEI ENNE ] B
1 10 100 1000
-3
107M

Figure 10. Molecular weight dependence of Dy, for PS in benzene.*® Benzene is probably best
classified as a marginal solvent, T = 20°C,
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Figure 11. Molecular weight dependence of D, for PS in THF.123:8:87 The data are plotted
for T = 25°C. Data of References 68 and 87 have been reduced to 25°C assuming D ~ T/n.

reduced residual free energy y can be calculated from N, using equation
(25b) and the results are shown in Table 1 as y,,. For comparison, x
measured by other means is also shown and the agreement is surprisingly

good.

The blob model is known to be a drastic oversimplification since short
sequences can deviate substantially from ideality."'’-'® Nevertheless, the
blob concept provides a simple framework to understand polymer statistics
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Figure 12. Molecular weight dependence of D, for PS in toluene. Toluene is a good solvent so
the data approached a slope of — 3/5 at high molecular weight.
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in the intermediate molecular weight range. In this regime no completely
satisfactory theory is available.

(b) Temperature Dependence. The temperature dependence of chain
swelling can also be treated within the blob model. Unfortunately there is
very little experimental data on the temperature dependence of the hydro-
dynamic radius, probably because most organic solvents boil at a relatively
low temperature.

The temperature dependence of D, follows from equation (27) if the
temperature dependence of N_ is known. Near 1 = 8 the excluded volume is
expected to be approximately linear in the temperature increment
T = (T — 8)/T, so that

a\? , n3
N, ~ (;) n ~{———l ~ )i (30)

assuming n is temperature independent. Unfortunately, existing data are
insufficient to confirm this temperature dependence for N,.('®

5.2.4. Internal Dynamics and the Dynamic Structure Factor

5.2.4.1. Preliminary Considerations. The scaling analysis outlined in
Section 5.2.2.3 shows that the basic form of the dynamic structure factor
can be obtained by simple scaling analysis. In particular, three regimes
separated by gR, = 1 and ga = 1 were identified and the functional depen-
dence of the relaxation rate on temperature, molecular weight, viscosity,
and g were established. In spite of the success of this analysis, many short-

comings are present in the scaling approach. In the present section, more !

detailed analysis of S(g, ¢) is reviewed for several models of chain molecules.
This analysis both justifies the scaling approach and fills in details which
cannot be obtained by scaling.

The limitations of scaling analysis include the following problems.
First, no underlying justification for scaling or power laws was given.
Second, the shape of S(g, t) and the relationship between the characteristic
frequency Q and S(g, t) is not obvious. In addition, scaling yields power law
exponents but not coefficients. Information on chain statistics and
monomer interactions is available from coefficients as shown below.
Finally, scaling does not treat the transition regions ga =1 and ¢R = 1.
These regions are important experimentally and fortunately S(g, 1) is avail-
able in the crossover regimes for certain simplified models of polymer
chains.

Ideally, interpretation of dynamic scattering experiments requires a
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theory that can predict S(g, f) under actual experimental conditions which
are characterized by temperature, concentration, and a chain model consis-
tent with the chemical structure of the polymer. Unfortunately, exact
expressions for S(g, t) are available at present only for a single unperturbed
(®-condition) Gaussian chain without hydrodynamic interaction (Rouse
model), and in the infinite chain limit, with hydrodynamic interaction and
preaveraged Oseen tensor (Rouse-Zimm model). In this sense, a complete
interpretation of dynamic scattering experiments on polymer solutions is an
unsolved problem. Nevertheless the interpretation of scattering experiments
can proceed in terms of the initial slope (q) of the normalized intermediate
scattering function S(g, t). The initial slope is defined by equation (24a) and
should reduce to gD as g— 0. Q{g) turns out to be identical to the relax-
ation rate Q which was derived by scaling analysis in Section 5.2.2.3. By
using linear response theory, €(gq) can be calculated for many different
models. For example, Q(q) as a function of temperature and concentration
has been calculated in terms of the “blob” model.*?

No attempt will be made in this section to derive S(q, t) and Q(q) for
the various models. Rather, the results of these various calculations will be
analyzed graphically to demonstrate the effect of various experimental par-
ameters such as hydrodynamic coupling, monomer excluded volume, tem-
perature, and momentum transfer g. Ideally one should start with a theory
for S(g, r) which somehow incorporates hydrodynamic coupling and a
temperature-dependent distribution function in a form which does not
require approximations such as preaveraging of the Oseen tenor, moment
expansions, or asymptotic limits, Unfortunately, such a theory is _not avail-
able so it is necessary to resort to various levels of approximatlon to study
the influence of various factors on the dynamics.

Table 2 lists the models which are currently available with the appro-
priate theoretical and experimental references. Akcasu, Benmouna, and
Han?® have treated most of these models starting from a general formal-
ism based on the eigenfunction method and linear response theory. For this
review only selected models are discussed to illustrate trends. For example,
the ¢ dependence of S(g, t) is analyzed for a Rouse-Zimm ring (model 3)
which is the only realistic model for which S(q, 1) is available for gR, ~ 1.
Data on polystyrene in cyclohexane and toluene are compared with this
theory. The dependence of S(g, ) on hydrodynamic coupling is analyzed
using models 1 and 4 which are valid only for gR » 1. The effects of
excluded volume and hydrodynamic preaveraging are discussed only with
respect to the characteristic frequency (qg) since full calculations of S(g, t)
are not available. In all cases, comparison with experimental data is shown
when data are available.

In 1965, Pecora showed?® for the first time that the intermediate
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scattering function S(g, t) for a flexible polymer chain can be calculated by
using a Green’s function solution of the Fokker-Plank equation for the
bead-and-spring model. Later, de Gennes and Debois-Violette***! calcu-
lated S(g, £) in the intermediate g region, that is, for gR, > 1 > ga, where R,
is the radius of gyration of the polymer and a is the segment length of the
polymer. They demonstrated the g* and g* dependence of relaxation rate in
‘the cases with and without hydrodynamic interaction for a Gaussian chain. -
They also showed that S(g, t) will follow a universal shape in this interme-
diate region if time is scaled by a characteristic frequency.

If one follows the approach of Zwanzig and Fixman?°:3273% by
assuming that the distribution function, ¥, of the monomers is a function
which satisfies a dynamical equation

W _
== =Dy 31)

with D as a linear, time-independent diffusion operator, then, one can define
- a self-adjoint operator £ through

DyA)y= —yZLA (32)
where A is an arbitrary dynamical variable such as Fourier transform of the

monomer density p(q, t) = ) ; e .
The intermediate scattering function can be written as

S(g, t) = {p(q, O)p(q. 1)}

={(p, e “p)

= <{p, p(1)> 33)
‘For an eigenvalue problem'®: **

_?.?Un = w,V, {34)

Equation (33) can be written as

S(g, ) =Y, {p, v,)<v,, e “p)

=Y e <oy, PO I? (35)
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‘s

Also the characteristic frequency {(g) can be obtained through dlﬂ'er-}
entiation as

Qg) =Y, o,|<v,, p>1*/S(g, 0)

= {p, Lp>[Kp, p> (36)

Whenever a model polymer can be solved as an eigenvalue problem, inl
principle the corresponding scattering problem is solved. This principle canr
be seen from cases 1 through 4 in Table 2. t
In the case in which S(g, t) cannot be solved, progress may still be;
possible through the calculation of the characteristic frequency (g). This;
procedure is discussed later. One should observe from equation (36) that!
the initial slope of S(q, t) or characteristic frequency Q(g) is actually al
weighted average of all the relaxation times (or eigenvalues). S(g, t) always
decays exponentially at short time, but this short-time decay rate, which is
the characteristic frequency (Xg), bears no simple relationship with the}
shortest or longest (terminal) relaxation times.
Intermediate Scattering Function, S(q, ). (a) ¢ dependence. Inj

the generalized Kirkwood diffusion equation,®® a linear flexible polymer ist
approximated by a bead-and-spring model. All forces are concentrated on
these beads. The frictional force on the jth bead is |

f=—l,—v) 37|

where { is the frictional coefficient, v; is the velocity of the jth bead, and v is
the velocity of the solvent at the jth bead’s position produced by all other
beads through hydrodynamic interaction which is again approximated by
the Oseen tensor as

v; = ; T {(v, — v)) (38)
with
1

and Tj; = 0. {(V; — V) is the force exerted on the fluid by the Ith bead.

The eigenvalues have been calculated by B. Zimm''" in 1956 for a
preaveraged Oseen tensor. The corresponding case with no hydrodynamic
interaction was solved in 1953 by Rouse.®” In the ring polymer
case,'®: 3839 because of the cyclic boundary condition, both cases with and
without hydrodynamic interactions can be calculated analytically at any
chain length N [see Equations (17)72) of Reference 20]. :

Figure 13 shows the variation of S(g, ¢) as a function of €(g)t. For a
ring polymer the initial slopes of all curves are equal to — 1. It is observed
that the shape function tends to a straight line when gR, < 0.87 or ga > 10.}
The curves also cluster around the curve corresponding to ga = 1.5 when
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: Figure 13. The variation of the shape function In S(g, ) with normalized time Qt for various
values of ¢ in the presence of hydrodynamic interaction (B = 0.38). Also shown is the variation
of the initial slope £¥q) with (ga).

qR,» 1 but ga <2 These tendencies become more apparent as N
increases. At the same time, the characteristic frequency €)q) approaches a
q° dependence (see insert of Figure 13).

Since the open and closed chains are identical as chain length N — oo,
the normalized intermediate scattering function S(g, t) with preaveraged
Oseen tensor can be found in this limit as

~
a0 a6 -1
S(g, t) = (e*‘*‘"" +2 z e'“’"”)(l + 2 E e_”) (39)
s=1 =1
where
_ 1 (", 1 —exp(—a,t)
Pty =s + > J._#dp T —cos p COS ps

o, = 2W(1 — cos p)[1 + 2BZ(p)]

2=y 8

et (M)

q*a*
6

(2.

 where B is the draining parameter defined below.
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In Figure 14, S(g, t) at various ga values is plotted for the Rouse-Zimm
case. In the Rouse case, S(g, f) can be recovered from equation (39) by
letting B = 0. The Rouse case is displayed in Figure 15 for various ga
values.

The form of the normalized S(g, t) in the intermediate g region where
ga <1 and gR,> 1 can be obtained from equation (39) in the limit of
ga— 0. The gR, > 1 has already been taken into account through N — 0.
The general expression is

© B
» = d — W Q » -~
S(q, t) J; u exp[ u-—J (u, t \/E)] (40a)

where

1 + BQ2n/xa)'/?
x <1 —exp [—(ﬂt}x’ T+ 2B(a/)' ]} (40b)

Q) =7 (’%‘")qw [1 ¥ (2 ﬁB )} (@1)

With
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tion In S(g, t) with normalized time, €, 4 2 4 8 8 w w2
for a Rouse chain. ot
where B is the draining parameter
B = 21 (42)
./ 6m
The Rouse model is recaptured with B = 0 as
" 2 u
S(g, 1) = L du exp{—u — Q)¢ [(m)uz]} (43a)
-where
2 {* cos xu
glu) = ;.[; dx 2 [1 — exp(—x?)] (43b)
and the characteristic frequency
1 [kT
Ag) = (—) g'a? (44)
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Figure 16. Experimental correlation data of PS (M, = 44 x 10% in cyclohexane at a scat-
tering angle 6 = 120° with a delay time of 5 usec. The dashed curve is the best fit using the
asymptotic shape function, and the solid line is the corresponding initial slope. T = 35°C. (

On the other hand, the Rouse-Zimm limit can be reached as ga < 2B(61r.]”2l
as

S(g, 1) = Imdu exp{ —u — (@1)**h[u(Qr)~*"*]} (45a)
0

® 32
hu) = % L dx "";"“ [1 - exp( ,:;i )] (45b)

The initial slope follows as:

where

1 /kT
Qq) = pam (?) q° (46)

The following points should be noticed:

(i) S{g, t) is expressed in the intermediate ¢ region as a function of a
single variable, {(q)t, which combines both g and . When time is scaled as
T = {}qg)t, a universal curve as a function of t, is obtained for all g values in
this g region. This conclusion justifies the interpretation of (g) as a
“characteristic frequency ” in the sense of dynamic scaling.

(ii) €X(g) is the initial slope of S(g, t) at t = 0.

(iii) The q dependence of Q(g) follows a power law in the intermediate g
region.
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nSiqt

Figure 17. The effect of the drain-
ing parameter B on the shape
function In S(g, 1).

(iv) For large times S(g, t)— exp[ —(2//n)¥Q)"/?] in the Rouse case
and S(g, 1)— exp[ — 1.35(Q¢)>*] in the Rouse-Zimm case, although this
asymptotic region may not be reached in the realistic experimental time
range, i.e., Qt < 10.

In Figure 16, experimental data of In[C(q, t) — 1] = In[BS%4q, t)] for
polystyrene with molecular weight of 44 x 10°, ¢ =0.11 mg/ml, and
g= 3.2 x 10° cm™"! is plotted vs. time to demonstrate the asymptotic shape
function. Here C(q, t) = {I(g, )I(g, 0))/{I*) is defined in equation (5). The
dotted line is the best fit to equation (45). The solid line is the initial slope
of the asymptotic function fit. It is clear that the experimentalﬂrange is
controlled by the signal-to-noise ratio at large times. In this case, correla-
tion data are truncated at 400 usec in the analysis.

Hydrodynamic Interaction Strength. The notation B = Coman\/é_n is
used to represent the hydrodynamic interaction strength. It should be noted
that in order to keep the dynamical operator as positive definite and avoid
degeneracy, B has to be smaller than ~0.6.2% 4548 In Figure 17, the
asymptotic shape function is plotted with several B values to demonstrate
the change from the Rouse-Zimm limit (a Flory value of B = 0.38 is used'!))
to Rouse limit of B = 0.

In general, the effect of B on the shape of S(g, Q) is such that S(g, Q)
increases with decreasing B at fixed Q¢ and ga (see Figure 17) from the
Zimm value given by equation (45) to the Rouse value given by
equation (43). It has been conjectured in the literature that the Rouse limit
may be followed as polymer concentration is close to 1.

5.2.43. Characteristic Frequency €g). Hydrodynamic Interaction
Strength B. In cases where S(g, t) can be calculated, (g) can easily be
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Figure 18. The variation of the initial slope €{g) with (ga) under ® conditions for various
values of the draining parameter B and two values of N. Note that the curves for different B's
and a fixed N coincide at small values of ga.

obtained through differentiation as shown in the previous section. When
S(q, t) cannot be calculated, progress may still be possible by using the
procedure developed by Akcasu and Gurol®* in 1976 to calculate the]
characteristic frequency €)(g). For example: the effect of preaveraging Oseen
tensor can be compared for both Gaussian (or @) chain and excluded
volume chain at different hydrodynamic interaction strength.

In Figure 18, the variation of Q(g) with ga for a @ chain of two
different chain lengths, N, and various values of B are displayed. Notice
that the curves for different B’s coincide for a given N at small values of ga.
The curves are plotted following equation (17) of Reference 20, are calcu-
lated with a preaveraged Oseen tensor, but the effect of preaveraging the
Oseen tensor can also be studied through the Akcasu—Gurol formalism.

Preaveraging. With the preaveraged Oseen tensor, {Xg) can be
expressed in the small ga region as

Qg (-2 —v) AL — w2y, k2) — k] A2 — )2y, K3)
#D, - 2 12, k) =k, P/, kD)

47

where
k3 = (qR)*(1 + vX1 + 2v)/3
R, = IN[21 + )1 + 2v)] "1/

_ kT[3a(1 + v)(1 + 20)]~*72
" Rl — )2 —v)

j~
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Figure 19. Variation of Qq)/q*(kT/n) with (ga) under © conditions with a preaveraged and
nonpreaveraged Oseen tensor. Note that the maximum difference (15%) is reached at ga = 1.

and where

Wy, x) = J.xd: t" 1 exp(—1)

0

is the incomplete gamma function. This expression yields Q(q) in the
©®-condition with v = 1/2, and in a good solvent with v = 3/5.

The expression for (g) has also been obtained without the approx-
imation of preaveraging the Oseen tensor. Again, in the small ga region, it
can be reduced as

mq) —_ 3{1 — V}{Z _ l—') x{—l*l;‘vi[Jildu “ - u}e—u"xi]_l
0

¢’D, 16v
Kyl 1/2v
XI du(l—u”,)“”h_z
0 Ky
uli2
X [—u'”z +Q2+u"Ne ™ I dt e"] (48)
0

where D,, k,, and R, have the same meaning as in equation (47). This result
is valid for both theta and good solvents with v = 1/2 and v = 3/5, respec-
tively.

In Figure 19, the effect of preaveraging the Oseen tensor is demon-
strated for a ® chain. The important feature is in the intermediate region
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Figure 20. Variation of the reduced first cumulant Q as a function of gR, at the ® condition
with concentration correction.

(ga <1 and gRg > 1). In both cases—with and without preaveraging—(q)
approaches ¢> dependence but with different magnitude. Actually, the same
effect also appears in the excluded volume chain case.
In this intermediate g region, this effect can be summarized as follows:
For the © chain:

Qq) = 0.053 %ﬂ— q° with preaveraged Oseen tensor

kT
= 0.0625 "y q® without preaveraged Oseen tensor
For the excluded volume chain:

T
Qg) = 0.071 k? q° with preaveraged Oseen tensor

kT
= 0079 Y g®  without preaveraged Oseen tensor

In Figures 20 and 21,“® Q(q)/[(kT/n)g>] is plotted vs. gR, for various
molecular weights of polystyrene in @ (CH, 35°C) and good (TOL and
THF) solvents, respectively. Also the calculated curves according to |
equations (47) and (48) were included. It was concluded®® that the dynamic
light scattering experiments in the diffusion, transition, as well as in the
intermediate g regions can be interpretated on the basis of the characteristic
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Figure 21. Variation of the reduced first cumulant Q as a function of gR, in good solvents.
Curves A and B are the same as in Figure 20, except v = 0.6.

frequency €X(q) as far as trends are concerned. In both ® and excluded
volume chain cases, experimental data agree better with the preaveraged
Oseen tensor calculation. It is suggested that the Oseen tensor approx-
imation needs improvement, but the preaveraged Oseen tensor calculation
may be interpretated as a better model. This result, however, cannot elimi-
nate the possibility that the equilibrium distribution function itself needs

improvement, especially at short distances.
Effect of Temperature (Excluded Volume). In the previous section, we

discussed two extreme cases of excluded volume effect: the ®-chain case,
which has no excluded volume at all, and the excluded-volume chain case,
which has excluded volume effect everywhere along the chain. In this
section, we use the blob model to demonstrate Q(q) as a function of tem-
perature, although we should keep in mind that Q(g) can be calculated for a
better model through the Akcasu—Gurol formalism when it is available.

In the blob model, chain statistics of mean-square distance are
expressed as'® 51:2%)

(RZ> =|n—-m|a* ifln—m|<Nrt (49a)
and

In—m]

2v
(R, =( = )63 if |n—m| > N, (490)

where N, is defined in equation (25b)

N, ~17? (49c¢)

T
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Figure 22. Variation of ﬂ(q}fq*"(k?fq} with {ga) using a nonpreaveraged Oseen tensor, in good
solvent, in @ solvent, and for an intermediate temperature corresponding to N, = 30. This
figure also illustrates the tendency to a crossover from good to ® conditions when g is
increased from g < g* to g > g*.
and

¢ =N.a? (49d)

The characteristic frequency €g) has been calculated with”® and
without#® preaveraging the Oseen tensor as a function of temperature
t = (T — ©)/T. In Figure 22, the effect of temperature crossover according
to the blob model is illustrated. The plateau corresponding to £gq) ~ q°
behavior is replaced by a smooth transition from 0.0790 to 0.0625. The
transition occurs at around g*, which is defined as g* = \/5;’5,.

A transition to theta behavior at high g, similar to Figure 22, has been
reported by Richter et al.®? using quasielastic neutron scattering. The
observed crossover, however, occurs very near the temperature where PS
shows a change in flexibility,®® so it is possible that the transition rep-
resents a change in the effective segment length na rather than the crossover
predicted by the blob model. For the static structure factor, no transition to
theta behavior is observed® at high g, so it would be surprising if the
dynamics reflected such a crossover. The blob model represents a severe
approximation and it seems unlikely that crossovers as abrupt as Figure 22
will ever be observed.!”+1®

5.3. VIRIAL REGIME

In this section we will discuss various predictions of the concentration
dependence of diffusion constant, D, in the dilute region as a function of
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temperature and molecular weights. Some experimental results are included
for comparison.

The concentration dependence of D can be examined through the
Gibbs-Duhem expression'® as

kT N
D=C—(1—"TVIC)(1+2A2M0+”-) (50)
ch

where T is the temperature of the solution and {, is the frictional coeffi-
cient of the polymer molecule in solution. 4, is the second virial coefficient
of the osmotic pressure, V; is the partial specific volume of polymer with
molecular weight M, and N, is Avogadro’s number. In this expression the
concentration dependence of D is separated into two parts: The first contri-
bution is from the chemical potential, which involves the virial coefficients.
The second contribution is due to the hydrodynamic interaction, which is
included in the frictional coefficient {_,. One can immediately draw several
conclusions: (i) The concentration dependence of D can be nonzero at ©
temperature, because {, may still be concentration dependent even at
T = @®. (ii) If we write D(c) = D(0) + Sc, the sign and magnitude of the
initial slope S of D as a function of concentration at a given temperature
and molecular weight will depend on the relative magnitudes of 4, and the
concentration coefficient of (.

In the theoretical calculations, the concentration dependence of D is
normally expressed as

D(c) = D(OX1 + kpc,) ' (51)

with concentration coefficient k, and concentration ¢, which is the volume
fraction occupied by polymer chains and defined as

c, =cN, /M (52)

when v, is the hydrodynamic volume of the polymer molecule.

In the theoretical calculation of kj, it is the calculation of {237
which depends on the model and approximations used. In Figure 23,
several theoretical calculations are included. Curve 5 represents the calcu-
lation of Yamakawa‘® 3% by using the bead-and-spring model with the drift
velocity correction. Curve 6 is calculated by Pyun and Fixman®* using the
interpenetrable sphere model. Curve 7 is the calculation of Altenberger and
Deutch®® for hard spheres. Akcasu and Benmouna®®® and Akcasu®” have
also calculated k; through the intermediate scattering function S(g, t),
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Figure 23. Second virial coefficient of the diffusion constant as a function of the ratio of the
hard spherg radius to the hydrodynamic radius.

rather than using the Gibbs—-Duhem formulation. In their calculation,
various models and potentials (curves 1-4) were used.

Included in Figure 23 are also some experimental results for poly-
styrene with various molecular weights, temperature, and solvents.(23: 27 58
All models and experimental results show similar trends as regards the
temperature dependence of kj;, except for the hard sphere model, which does
not apply at lower temperature. In all cases, k, vanishes at a temperature
corresponding to S/R, = 0.72 with § defined as (3M2A4,/16xN ,)*/>. This
value of §/R, marks the transition from theta to good solvent behavior. In
the good solvent region kj, > 0 and the diffusion coefficient increases with
concentration. In this region, Yamakawa’s result (curve 5) and that of
Akcasu et al.®® (curve 4) are in good agreement with experimental results.
The assumption of replacing the distance between two monomers belonging
to two different molecules by their center-of-mass separation®® is justified
probably because the molecular interpenetration is not serious. This
assumption could be the cause of k;, = 0 at ® condition in the calculation
of Akcasu et al. where the molecular interpenetration could be significant.

In the poor solvent region, k;, < 0 and the theoretical predictions are
very sensitive to the models used to describe the translational diffusion of a
pair of interacting molecules. Calculations of Pyun and Fixman,** Yama-
kawa,? and Akcasu®” all give correct negative k,. But it seems that more
refined models and more precise measurements are still needed in this
region.
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5.4. SEMIDILUTE SOLUTIONS

5.4.1. Introduction

As the concentration of a polymer solution is increased, eventually the
virial expansion [equation (51)] is inadequate. The virial method would
certainly be inadequate when the chains begin to overlap and entangle
because new dynamical processes involving interchain interactions and dis-
entanglement come into the problem. The number concentration at the
overlap is approximately

prn SN (53)

" 4nR}

and virial expansions certainly fail for p > p* For typical polymers
(N ~ 1000), chain overlap occurs at concentrations of about 1% by volume.
In a sense then the solution is still dilute since a particular monomer is still
surrounded overwhelmingly by solvent molecules and seldom is in contact
with monomers. The regime p* < p < a™? is called the semidilute regime.
The system is dilute in terms of overall monomer density but the system
still displays strong dynamical effects due to the interchain contacts.

The transition from dilute to semidilute is illustrated in Figures 24 and
25, which show the mean relaxation rate Q/q? for polystyrene of various
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Figure 24. Concentration depen- v
dence of the relaxation rate for PS S
in EA“? in the dilute and semi- 1 I
dilute region at 25°C. p* is defined " L SEMIDILUTE LIMIT i
as the concentration where the a L -
molecular-weight-dependent  dilute ] [
curves intersect the semidilute limit.
EA is a near theta solvent. At low
concentration the ordinate is the
self-diffusion constant and at high ol ol el )
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molecular weights in ethyl acetate (EA) and tetrahydrofuran (THF). Several
observations can be made concerning these data, the most important of
which is that the Q becomes independent of molecular weight at concentra-
tions near p*. The regime where Q is independent of molecular weight is
called semidilute and the molecular-weight independence results from the
fact that concentration fluctuations relax without overall chain motion. It
should also be noted that for a given molecular weight the semidilute
regime occurs at higher concentrations in marginal solvents (EA) than good
solvents (THF). This difference is a consequence of the greater degree of
swelling in good solvents.

In contrast to dilute systems, the dynamics of semidilute solutions are
not firmly established either theoretically or experimentally. On the theo-
retical side, the results of the self-consistent field calculation of Freed and
Edwards®®® contrasts with the scaling approach of de Gennes.""'? Contra-
dictory experiments also exist with inconsistent conclusions reported by
different groups working on the same system. In some sense then, it is
premature to review semidilute systems at this time. Nevertheless, this
report is more optimistic and an attempt is made to resolve the body of
conflicting information through a careful identification of the conditions
under which theoretical assumptions are satisfied. The general approach is
that of Reference 22, although the details of the model are somewhat
refined.

5.4.1.1. Hydrodynamic Screening. The concept of hydrodynamic
screening is central to the understanding of semidilute polymer solutions.
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Figure 26. Schematic picture of the hydrodynamics of a single chain. A force f is exerted on
the solvent by monomer i. This force leads to a solvent flow field decaying as 1/r. This flow
field leads to a solvent velocity at monomer j which couples the motion of the two monomers,
If the flow fields of all monomers are summed self-consistently, then the chain friction constant
is the same as that of a sphere of radius R, = {1/r)> !, where r is the intersegment distance in
the chain.

Screening can be understood by first recalling the situation for a single
chain in dilute solution. Here, the Kirkwood-Riseman calculation*® shows
that the solvent flow caused by the motion of any monomer leads to a
solvent-mediated coupling with other monomers in the chain. In fact, in the
regime of gR < 1, the motion of the chain is equivalent to that of a hard
sphere of the same hydrodynamic radius. This situation is represented sche-
matically in Figure 26 where the flow field around a single moving
monomer is shown as well as the equivalent hard sphere.

In semidilute solution, the single-chain picture remains correct for
short distances. That is, short sequences are coupled hydrodynamically and
tend to move in a correlated manner. The situation for widely separated
monomers on the same chain, however, is quite different because a distant
monomer also feels the flow field caused by monomers on other chains. The
flow fields from the neighboring chains are not correlated with that arising
from monomers on the same chain so that the motion of widely separated
monomers on the same chain becomes uncorrelated. This situation is
shown schematically in Figure 27, which shows the equivalent hard sphere
picture of a semidilute solution. Conceptually the system is replaced by a
space-filling (or in some cases overlapping) group of spheres (concentration
blobs of radius £,) whose motion is uncorrelated. The radius of the spheres,
¢,, is roughly the distance between interchain contacts and is proportional
to the range of the static pair correlation function. Experiments sensitive to
distances small compared to £, (g€, > 1) should yield results similar to a
single chain, whereas in the opposite limit (¢, < 1) dynamics characteristic
of the diffusion of sphere of radius £, are observed.

The characteristic length ¢, is called a screening length. In fact, the
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Figure 27. Schematic picture of screening in semidilute solution. In contrast to Figure 26, the
flow-induced coupling is shorter ranged since distant monomers feel the random fields induced
by the uncorrelated motion of monomers on other chains. The blob picture on the right shows
the size of the effective Rouse blob in semidilute solution. Hydrodynamic coupling exists
within the blob, but the motion of different blobs is uncorrelated even though they may share
a common chain.

radial dgpendence of flow field (screened Oseen tensor) in semidilute solu-
tion has the classic Debye-Huckle form'5?

Glr) ~ = e~ (54)

r

and thus the identification of £, as a screening length. Equation (54) con-
trasts with the flow field in dilute solution which is described by the Oseen
tensor whose radial dependence decays as 1/r. A reasonable body of
evidence!??’ shows that the screening length &, is proportional to the range
of the pair correlation function. This proportionality is reasonable since in
the Kirkwood-Riseman picture, interchain contacts determine both the
range of the pair correlation function as well as the range of hydrodynamic
interaction.

An alternative but equivalent description'’® of semidilute polymers
can be obtained from a balance of elastic and frictional forces. The elastic
force arises from the osmotic rigidity of the transient network formed by
interchain contacts and the frictional resistance is that of a blob described
above. The term “ pseudogel ” is often used to describe semidilute solutions
when g{, < 1 € gR,. This term reflects the similarities between the tran-
sient network in semidilute solution and the permanent network in cross-
linked swollen gels.

5.4.1.2, Reptation. In addition to screening and concentration blobs,
one further concept, reptation, is necessary to appreciate semidilute-
polymer dynamics. Reptation is the snakelike motion by which a chain
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completely renews its configuration.” ®® In congested systems, an individ-
ual chain is severely restricted by neighboring chains and effectively moves
in a “tube” created by surrounding chains.’ The reptation time Ty is the
time required for a chain to completely escape a given tube and thereby
renew its configuration. When the relaxation time of concentration blobs
(described above) becomes comparable to Ty, then analogy to gels breaks
down and a new dynamical process involving overall chain motion is
important. Later we show that the reptation becomes the dominant process
for g*R2 < p*/p.

5.4.2. Dynamical Regimes

The aspects of polymer dynamics which are probed by PCS are con-
tained in the intermediate scattering function S(g, t) in equation (5). A com-
plete theory for S(q, t, p) is obviously a formidable many-body problem so it
is not surprising that simplified models are necessary. Fortunately, armed
with the concepts of hydrodynamic screening, concentration blobs, pseudo-
gels, and reptation, it is possible to predict the general properties of S(g, ¢,
p). A developing body of experimental evidence confirms many of these
predictions.

Following Figure 27, S(g, t) can be broken down into contributions
due to chains p, concentration blobs or “strands” s within chains, and
monomers i, j within strands. If r;=r, +r, +r, is the fosition of
monomer i, then

S(g, 1) = % <Z expliq - [r,(0) — r,(01} ¥, exp{iq - [r,(0) — r, ()]}
X % exp{iq - [r(0) — r,{1)]}
+ 2 exp{iq - [r(0) — 1,0} ¥ exp{iq - [r,(0) — r,(1)]}

5*s

x Y exp{iq - [r,{0) — r_.,,{t)]}> (55)
i

Equation (55) presumes that the center-of-mass r, of different chains is
uncorrelated. This assumption is true in dilute solution and is also true
within the reptation model of semidilute solutions. In order to simplify
S(g, #), it is convenient to specialize to three dynamical regimes and to



] D. W. Schaefer and C. C. Han

10 T T T T T T T T

SEMIDILUTE &”

-

-
-—-—-_"

Figure 28. Comparison of the g dependence of the relaxation rate in dilute and semidilute
solutions. The solid line is a best fit to the data in Figure 4, and the points are for a semidilute
solution of PS in THF (M = 4.1 x 105, ¢ = 0.01 g/mi). The dotted line is to guide the eye. The
blob model implies that the dotted line would intersect the solid line near g, = 1 and that the
asymptote to the ordinate occurs at Q/Dyq” = R,/¢,.

examine the concentration dependence of the relaxation processes within
each dynamical regime separately.

5.4.2.1. The Single-Chain Limit: g&, » 1. In the regime g¢, > 1, fast
relaxation processes characteristic of monomer motion within strands
dominate. In this limit r(0) =r,t) and r,(0) =r,(f) so equation (55)
becomes

S(g, t) = pg,exp{iq - [r{0) — v f0)]}> (56)

where the correlation function in equation (56) has been examined in
Section 5.2.2.3 by scaling and in Section 5.2.4 by linear response theory.
Basically single-chain dynamics are recovered with the mean relaxation rate
Q scaling as ¢° as in equation (22).

Figure 28 shows data in the regime g, 2 1 for PS in semidilute solu-
tion. The line in the figure is the line which fit a similar plot (Figure 4) for
polystyrene in dilute solution. The data in Figure 28 are not extensive, but
it suggests that the crossover to ¢> scaling occurs over a very broad range
in g. It is also possible that the transition to g* behavior occurs at gR, = 1
rather than at g¢, =1 as expected from the blob model. Clearly, more
experimental data are needed.
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5.2.2.2. The Pseudogel Regime: ¢, <1 < gR,. When ¢¢, < 1 <¢R,,
equation (55) becomes

S(g, 1) = f (g2 expliq - [r,0) — r,(B]}> (57)

where p is the monomer concentration and g, is the number of monomers
in a blob of radius ¢,. Equation (57) assumes different blobs are uncor-
related due to screening as discussed above. In this equation we are con-
cerned with the motion of the center of mass of a concentration blob whose
dynamical properties have been obtained by de Gennes through analogy to
cross-linked gels.'®) Equation (57) requires a Fokker-Plank equation for
the time-dependent distribution function P(Ar ,; ¢t) for the center of mass L
of a piece of chain between interchain contacts. The Fourier components of
this distribution function, however, should follow the same dynamical equa-
tion as the Fourier components of the displacement r =r,, as Tanaka"?
assumed for his calculation of S(q, t) for cross-linked gels. The equation of
motion for P(Ar;t) is determined by a balance of osmotic and frictional
forces which lead to a Fourier-transformed dynamical equation of this
form(63: 65).

—Eoq*Pg; 1) = gﬁ L,(1 — ¢) 1B(g; 1) (58)

P

where P is the distribution function hidden in equation (57), E, = ¢ dn/dc is
the osmotic rigidity, {, > 6nn¢, is the blob friction constant, and p/g, is the
density of blobs. Solving for P in equation (58) and using (57), we obtain

g, 1) = gﬂ (g2 exp[~D,(1 — $)g*t1>e, ~ pg, e ™ (59)
[l
L ~ C0dp (©0)

—_— =D =
(1—¢)a> 7 pbmnt,

Here D, is the cooperative diffusion constant. The average over ¢, in
equation (59) arises because there is a distribution in blob radii £, which is
determined by the monomer pair correlation function. Experiments in
cross-linked gels show that measured correlation functions are nearly expo-
nential, so little generality is lost if the final average is ignored and ¢, is
identified with the range of the pair correlation function.”? The various
parameters in equation (60) depend on solvent quality (i.e., temperature), so
to predict the concentration dependence of the decay rate g,, &,, and E,
must be determined. With the exception of theta systems all these par-
ameters depend on the probability of binary contacts.
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Good Solvents. In good solvents the osmotic rigidity E, follows from
scaling analysis.’® In the semidilute regime the osmotic pressure is pre-
sumed to follow the power law

AN *
n N( ) p>p (61)

where p* ~ N™%° [see equation (54)] and the exponent is fixed by the
requirement that n be independent of N for p > p*. This requirement leads
tox =5/4s0

n~p (62)

Equation (62) is now well confirmed for polymers in good solvents.!”?
The osmotic rigidity E, ~ p dn/dp immediately follows from (62):
-

Eq ~ p7* ‘ (63)

Since = is proportional to the number of binary contacts between chains,
the number of monomers between binary contacts g, also follows. That is,
since p/N is the number of chains per unit volume, p**(N/p) = Np>'* is the
number of binary contacts per chain. Therefore,

N
— ~ Np** (64)
9z
or
ga~p (65)

In good solvents g, =g, since concentration blobs are identified with
strands between binary contacts.
The distance £, ~ £, between contacts follows

&, ~g3fan~p ¥t (66a)
~ a1 — 2y) 14 (66b)

using equation (2). ¢ is the monomer volume fraction. Equation (66b) does
not follow directly from the simple arguments presented here.??: 7
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Figure 29. Concentration dependence of the collective diffusion constant D, for polystyrene in
semidilute solution in toluene. Toluene is a good solvent and scaling is observed below
¢ = 0.08. This data may show a small marginal regime between ¢ and ¢'. All the data have
been corrected to 25°C. Most of these data were measured by gradient diffusion. The data for
the 1.8 x 10° sample due to Rehage and Ernst and are recorded in Reference 75.

In semidilute good solvents, density dependence of the relaxation rate
Q follows from equations (60), (63), (65), and (66):

2 g g )

TPl

For reasons which should become clear later, the scaling law
equation (67) is seldom observed experimentally. Although scaling behavior
has been claimed for many systems, it appears that only the PS/TOL and
PDMS/TOL systems show unequivocal scaling exponents. From Table 1,
these two systems represent a very good solvent (N, small for PS in TOL)
and a very flexible molecule (n =~ 1 for PDMS). In addition to these two
systems, the work of Yu et al.®® shows a clear scaling regime for PS in
THF at 30°C. These data, however, seem inconsistent with other data on
PS in THF at 25°C, so they will be analyzed later.

Figure 29 shows data on semidilute PS in TOL obtained both by PCS
and by gradient diffusion. This latter method is expected to yield the co-
operative diffusion constant D, when the gradient is small.*® The data in
Figure 29 are consistent with equation (67) for ¢ < 0.07. Above ¢ = 0.07
there appears to be two transitions which are discussed below.
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Figure 30. Concentration dependence of the collective diffusion constant for polydimethylsil-
oxane (PDMS) in toluene. PDMS is a very flexible chain, so no marginal regime is observed.
=2°C. w

PDMS is a very flexible molecule with n = C_/6 ~ 1. This system also
shows a large region in semidilute solution where the scaling law is obeyed.
The data of Munch et al.®? for this system are shown in Figure 30 with a
line of slope = 0.75 drawn through the data below ¢ = 0.1. Above ¢ = 0.1
a transition to a larger slope is observed. Below we show that such a
transition is expected for a very flexible chain.

The breakdown of scaling at high concentration is due to the fact that
the chains are ideal at small length scales in contrast to the assumption of
equation (67), which depends on the fact that the chains are swollen: ie.,
&, ~ g5'°. We know from Section 5.2.3 that swelling is found only for dis-
tances greater than ¢, the temperature-dependent length which character-
izes the statistics of the single chain. The volume fraction $ where
equation (67) breaks down is found from equating £, in equation (66) with
£, in equation (25) or

3(1 - Zx)
4nn’

¢ (68)

(3

& is tabulated in Table 4 for several systems. Note that the predicted cutoff
for scaling behavior is generally below ¢ = 0.05.

Marginal Solvents. Above ¢ the chains are nearly ideal on all length
scales and binary interactions are weak. In such a system, binary contacts
occur at random with a probability proportional to ¢* ~ p?. Following the
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Table 3. Exponents for the Density Dependence of Various Quantities®

Quantity  Good Marginal  Theta Quantity Good Marginal  Theta

9, —5/4 -1 -2 D, 3/4 1/2 1
&, —-3/4 -1/2 -1 Te/N? 32 5/2 3
g2 —5/4 -1 -1 E, 9/4 2 3
g, —-3/4 —1/2 —-1/2 Eg 9/4 2 2
P — -2 -2 N2D, ~7/4 -5 -3
& — —1 —1 n,/N? 15/4 9/2 5
g —5/4 -2 -2 5 —1/2 —1/2 -1
& —3/4 -1 -1

* &, is the range of the pair correlation function and is proportional to the hydrodynamic screening length.
£, and ¢, are the distance between binary and ternary contacts. £, is the radius in the repetation model.
0 G2 §3» g, are the number of monomers associated with the above lengths. T;; is the tube renewal time.
E® and E_,, are the osmotic and elastic modul. D, is the self-diffusion coefficient. n is the viscosity, and s is
the sedimentation constant.

logic of equations (64)-(66) then, one finds

n~Eq~p? (69)
Go~ga~p " (70)
g~y ~gytan~pT i (71)
n?a
=Gy "
or using equation (60)
Q

D, =—5——~¢'? (73)

-9 ¢

Once again, the coefficients in equation (72) do not follow directly,?? but
this equation will be useful later.

Experimental results consistent with equation (73) are observed in a
large number of systems.22- 4 75:7® Figures 31 and 32, for example, show
PS in EA and MEK. Both systems show over a decade in concentration
where D, ~ ¢/? is predicted by equation (73). Table 1 shows that these
systems are marginal in the sense that excluded volume effects are weak but
not absent (N, ~ 10%). These solvents are generally called marginal solvents
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Figure 31. Concentration dependence of the collective diffusion constant for PS in MEK at
25°C.

e

and the regime above ¢ is called marginal semidilute. In the PS/MEK
system there is a hint of a transition to steeper slope or scaling behavior
below ¢ = 0.004. In the PS/EA system, on the other hand, there appears to
be a transition to steeper slope above ¢ = 0.08. These transitions are prob-
ably manifestation of similar behavior found in PS/TOL in Figure 29.
Other systems have been studied which may show marginal behavior such
as PS/BZ and PS/THF. Interpretation of these systems is more complex,
however, so discussion is deferred until the end of this section. PAMS
dissolved in toluene'”® and PS in ethylbenzene and chlorobenzene”® also
show marginal behavior for ¢ > 0.01. These observations are reasonably
consistent with ¢ calculated from equation (68) using N, from Table 1.

Marginal systems described by equation (73) are usually associated
with Edwards, who first obtained equation (73) in the mean-field approx-
imation. Because of this approximation this regime is also called the mean-
field regime. To confuse the situation further, British scientists often call
¢ > ¢ the semiconcentrated regime. Continental scientists generally treat
the marginal regime with patched-up scaling laws.*3- 2%

Theta Systems. As the concentration is increased or the binary inter-
action parameter, va~? = 1 — 2y, is decreased and eventually three-body
interactions dominate two-body effects. This situation can be expected
either near the theta temperature or at high concentration. These systems,
which are generically referred to as theta systems, cannot be described by
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Figure 32. Concentration dependence of the collective diffusion constant for PS in ethyl
acetate at 25°C,

the preceding theory where two-body interactions determine E,, g,, and
¢,- In theta systems, both the osmotic pressure and osmotic rigidity E, are
proportional to the probability of ternary contacts:

E'D —~ E3 ~ p3 (?4)

Therefore, the blob friction constant in equations (58) and (60) must be
calculated for a strand spanning ternary contacts that is {, ~ {; and

!gp ~ g,

g, ~gs~p 2 (75)

E,~Ey~gita~p! (76)
an? ~

TR 7

where w is the three-body excluded volume (w ~ a®n,). Equation (77) was
first obtained by Moore for the static correlation range'’® and was applied
by Schaefer et al.*? to dynamics. Application of equations (74}H77) to
equation (60) yields

Q

D =——m+— ~
g1l —¢)

p~d (78)
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Figure 33. Concentration dependence of the collective diffusion constant of PS in cyclohexane
at the theta temperature. Data were obtained by gradient diffusion.

w

Equation (78) is expected to apply to theta solvents for all concentrations
above p* and to other systems where the p is high enough that three-body
effects dominate. This concentration, p', can be found by equating
equation (77) with equation (72) assuming w = n3a5,

¢t =pla® =~ (1 -2 (79)

This equation is highly approximate since the assumption w = a®n® is
unverified. For a few systems,”” v and w are known from static properties
and it appears that equation (79) is correct within a factor of 3.

Unfortunately, experimental data on cooperative diffusion in theta sol-
vents are very limited. This scarcity is due to the fact that very high molecu-
lar weights are required to achieve chain overlap below ¢ = 0.1. In theta
solvents, however, high molecular weight chains are heavily self-entangled,
making it difficult to achieve equilibrium systems. In fact, months or even
years may be required to prepare such systems.?®®

Although PCS data is lacking on theta systems, both gradient
diffusion®® and sedimentation”® results exist which are consistent with
equation (78). Figure 33, for example, shows Roots and Nystrom’s gradient
diffusion data®® for PS in CH at the theta temperature. Although the
concentration range covered is limited, the data are consistent with a power
law exponent of 1.0.
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Figure 34. T-C diagram for a 20-unit chain with n = 1.5. The excluded volume parameter v is
assumed to be linear in the temperature increment t = (T — @)/T.

Thetalike behavior is also observed in good and marginal solvents at
high concentration. The systems PS/TOL, PS/EA, and PDMS/TOL in
Figures 29-31 all show power-law exponents near unity at high concentra-
tion. There are numerous potential experimental problems at high concen-
tration, so these @-like exponents above ¢ = 0.1 may be questionable. In
fact, several workers have observed concentration independence or negative
exponents at high concentration 2 69 )

T—-C Diagrams. The various pseudogel regimes described above can be
collected graphically through a temperature-concentration diagram (T-C
diagram) as proposed by Daoud and Jannink.®® Such a diagram is shown
in Figure 34 for a 20-unit chain with n = 1.5 and (1 — 2)) = 7. The various
lines in the figure represent the approximate transition regions where the
nature of polymer dynamics changes. The line ¥, for example, separates
dilute theta systems (region I) from dilute swollen systems (region I'). The
equation for this line follows from equation (25b) with N, = N. Lines ¢§
and ¢% represent the crossover to semidilute solution and follow from
equation (53) for theta and good solvents.

As discussed above, the semidilute regime is subdivided into good (II),
marginal (IIT), and theta (IV) domains with the crossovers ¢ and ¢' defined
by equations (68) and (79). Finally, the crossovers ¢, to the concentrated
regime V are determined by the condition £, = na and follow directly from
equations (72) and (77).
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A more universal form of the T—C diagram can be constructed by use
of the parameter (1 — 2y) = va™? instead of temperature on the ordinate.
The semilog version of such a plot is shown in Figure 35 for N = 3000 and
n = 1.67. This value of n is chosen for PS where n = C_/6 = 1.67 when
equation (1) is applied to the radius of gyration. The behavior of PS in
various solvents can be predicted from horizontal lines at the appropriate
values of (1 — 2y) obtained from Table 1. Lines appropriate to several sol-
vents are included. Plots like Figure 35 should accurately reflect trends with
temperature, chain rigidity, and solvent quality, but caution should be exer-
cised in quantitative predictions based on the diagrams. After all, the
assumptions leading to the diagram are crude, and although power law
exponents are probably accurate, the coefficients required for quantitative
analysis are largely unknown.

0.5 T T I T 7T T LI
n= 187
04| Xy = 0.2 -
N = 3000
0.3F 1
ry @
0.2 —
o*
0.1 B Figure 36. T-C diagram for PS in
cyclohexane. This diagram assumes
1] 1 L gl 1 11 L= 0.2 and that {1 - 21:} is linear in
0.001 0.01 0.1 1 the temperature increment

VOLUME FRACTION, ¢ T=(T — @)/T.
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Figure 37. T-C diagram for a
completely flexible chain. This
diagram should be appropriate for
PDMS. 1-2¢ for PDMS in
toluene is shown as a horizontal
line.

For systems like PS in CH where va™? is a strong function of tem-
perature, it is possible to construct a temperature—concentration diagram as
shown in Figure 36. This diagram assumes y, = 0.2 and should be reason-
ably accurate for PS in CH and probably is fairly close for PS in cyclo-
pentane as well.

The marginal regime (III) is found only in stiff polymer chains.
Figure 37 shows the T-C diagram appropriate to a highly flexible chain
such as PDMS where n = C_/6 = 1.0. For n £ 1 region III is small and
crossover may occur directly from good-solvent scaling behavior to theta
behavior. Such a crossover is consistent with the PDMS data in Figure 30,
where a distinct transition to higher slope is observed near ¢ ~ ¢,f‘= 0.1.

Other Systems. Conflicting data and/or interpretations exist for co-
operative diffusion of PS in BZ and THF. In BZ, for example, Adam and
Delsanti®® and Munch et al.®® report exponents consistent with scaling
laws, whereas Schaefer®" finds an exponent of 0.5 consistent with marginal
behavior. Similar discrepancies exist for PS in THF.

Figure 38 shows existing data for PS in BZ. These data can be fitted
nicely with the scaling exponent of 0.75, confirming the observation of
Adam and Delsanti?® and Munch et al.®® Scaling behavior at these high
concentrations, however, is inconsistent with the T~C diagram in Figure 35
and also conflicts with viscosity®® and sedimentation data.”® The sedi-
mentation data, in particular, are consistent with ¢* ~ 0.03. In other words,
it appears that most of the data in Figure 38 are in the crossover region
between marginal and theta power laws as evidenced by the upward curva-
~ ture of the data and the limiting slopes shown on the figure. The apparent
exponent near 0.75 is a consequence of an attempt to fit the data in a
crossover region and is not necessarily indicative of scaling.
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Figure 38. Collective diffusion constant for PS in benzene. The limiting slopes of 0.5 and 1.0
suggest that BZ is a marginal solvent. T = 20°C. The data of Reference 85 were taken at 25°C
and reduoe& to 20°C assuming D, ~ T/n.

The PS/THF system has been studied by at least four groups with
different results and conclusions. Figure 39 shows the data of Schaefer
et al.,?? Mandema et al.,*® and Amis and Han.®® Although the scatter is
substantial below ¢ = 0.05, the data seem to follow power law behavior
with a slope of ~0.6. From Table 1, this system should show scaling behav-
ior below ¢ ~ 0.05 so we attribute the intermediate exponent to mean that
the data are in the region-I-region-II crossover. The data of Yu et al.®®® are

100 T LA B | T LI B |
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-
-
8
"
w
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1
0.001 0.01 0.1 1.0

VOL FRACTION ¢
Figure 39. Collective diffusion constant for PS in tetrahedrofuran (THF) at 25°C.
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Figure 40. Collective diffusion constant of PS in THF measured at 30°C and reduced to 25°C.
These are the only data that show two distinct transitions. The theory outlined here implies
that the slope should be 0.5 between $ and ¢'. The data, however, show a substantially
smaller slope.

not numerically consistent with Figure 39, but these data do show the
expected crossovers. These data are plotted in Figure 40 where the ordinate
is reduced to 25°C assuming D, ~ T/n. These data show scaling below
¢ = 0.02 and a thetalike power law above ¢ = 0.1. In the marginal regime
between 0.02 and 0.1, however, the power law exponent appears to be
smaller than 0.5. It seems that in spite of the abundance of data, the
PS/THF system is not well understood.

Table 4 tabulates the various crossovers both inferred from the model
presented here and from the experimental data. Although some of the

Table 4. Crossover Points
é ¢!
System Equation (68) Observed Equation (79) Observed

PS in
EA 0.002 — 0.04 0.08
MEK 0.004 (0.004) 0.08 —
BZ 0.004 - 0.1 0.03
THF 0.01 0.02 0.2 0.1
TOL 0.02 0.07 03 02
PDMS in

TOL — —_ 0.1 0.1
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observed crossovers differ from the predicted values by as much as a factor
of 5, there is a reasonably consistent trend with solvent quality. In view of
the simplicity of the model used, even accuracy within a factor of 5 is
encouraging.

5.4.2.3. Reptation: gR, < 1. As g is decreased, one probes concentra-
tion fluctuations of longer Fourier spatial wavelength. Eventually, the con-
dition is approached where the collective relaxation time (D, g%)~! becomes
comparable to the reptation time T. At this point, reptation becomes the
dominant relaxation mechanism and Q is expected to reflect the chain
self-diffusion constant D,. Both T; and D, can be found from the simple
reptation model described above.

The reptation time and self-diffusion constant can be obtained by a
model based on one-dimensional diffusion of blobs in a tube. That is, a
polymer is pictured as a Rouse chain of renormalized monomers (blobs) of
radius {,, where the Rouse monomer radius or tube radius &, is determined
by the space-filling condition:

p= ?;_ (80)

Here g, is the number of monomers in a “ tube blob.” Equation (80) coupled
with the appropriate chain statistics

Ge~gia,  d<v<i (81)

yields the tube radius as listed in Table 3 for the various concentration
regimes described above. Note that in marginal systems the tube radius is
not proportional to {, ~ ¢,. The multiplicity of length scales in marginal
systems has led to considerable confusion in the interpretation of experi-
ments which are sensitive to reptation. The model proposed here is not
without conceptual problems, so reptation in marginal systems should still
be considered an open question. In good solvents problems do not arise
since all lengths (£,, ¢,, &) have the same concentration dependence.

The friction constant associated with the Rouse blobs in the tube is not
necessarily proportional to &' because screening tells us that monomers
are hydrodynamlcally coupled over distances comparable to the range ¢, of
the pair correlation function, not the tube radius &,. Therefore, the fnctlon
constant of a tube blob { is

¢~ bnne, (82)
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Using D, = g, kT/N{ it is possible to calculate the time for the chain to
escape its tube by one-dimensional diffusion'®

(tube length)? N N3¢, &
D, grzgka ’

Th o<1 (83)

The reptation time calculated by equation (83) is listed in Table 3.
The crossover point for transition from cooperative diffusion to rep-
tation can be found by equating the cooperative relaxation time (D, ¢%) ™!

with Ty, with the final result
pt 9/4

in good solvents. For g>RZ < (p*/p)®’*, reptation is the dominant relaxation
process. In marginal and theta systems, equation (84) is slightly modified
[4R? = 0.44(p*/p)’].

The data of Yu et al.®® shown in Figure 41 illustrate the transition to
slower reptation dynamics at small g. These data show that as concentra-
tion increases, the correlation function is increasingly dominated by a slow
relaxation process when gR, < 1. The strong g dependence of Q/g” at high
concentration may explain the discrepancies in values of D, reported by
different groups working on the same system such as the PS/THF system
described above.
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The form of S(g, t) in the reptation regime can be obtained®” by
evaluating equation (55) for ¢£, < 1, qR, <€ 1

S(g, ) = pg, {ﬁxp[—qz{ﬂs + D1 — ¢)t]

' [(gﬂ) _ 1]exp[-q=o,(1 - qm} (85)

where we have assumed that the chain center of mass relaxes by self diffu-
sion, D, being the three-dimensional self-diffusion constant. Equation (85)
predicts a bimodal decay, and this fact accounts for the nonexponential
correlation functions which are generally reported in a semidilute solu-
tion.®V In cross-linked gels, by contrast, the second term of equation (85) is
absent and the observed correlation functions are exponential.

The amplitude A of the collective and self terms in equation (85) shows
that

y = 5/4 (good)

A, (N p)’ .

—=—)—-1z=({—]), = | (marginal 86

A, (gp) (P* g (marginah 9
y = 2 (theta)

In other words, reptative self-diffusion becomes more important at high
concentration. This behavior is seen not only in Figure 41 but also in the
bimodal correlation functions of Jamieson et al.®") shown in Figure 42.
Here a slow relaxation process becomes increasingly important at high
concentration for gR, < 1.

In the limit gR, <€ 1 or t > (D, %)™, equation (85) simplifies to

S(g, t) = pN exp[—q*D,(1 — ¢)t] (87)
This equation implies that the reptative diffusion constant D, can be mea-
sured by PCS. The concentration dependence of the relaxation rate I' =

D,q*(1 — ¢) can be obtained through the tube model. That is, since a
time T is required for the chain to escape its tube whose trajectory is of

dimension R,
R2 N\2 2 '
o[ (9)
~=|(5) &| T (882)

~kTN *g,9,&,'n7", @ <1 (88b)
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Figure 42. Measured correlation function for PS in THF at three concentrations.®!’ At high
concentration S(g, t) is bimodal, reflecting both a collective and reptation relaxation mode.
The data are for M = 3.9 x 10* at 30°C. The upper curve is in the dilute regime.

The concentration dependence obtained from equation (88b) is listed in
Table 3. For convenience, other quantities'® are also listed, such as the
elastic modulus E_, and the viscosity 5, = E , Tz and the sedimentation
coefficient s =g, ¢, *. *

Very little experimental work has been reported on the slowly decaying
translational mode in semidilute solution, although forced Rayleigh scat-
tering has been reported.®? Amis and Han,®® however, have studied this
mode for PS in THF, and their data are shown in Figure 43. Here NI’/
g*(1 — ¢) is plotted vs. volume fraction ¢ and lines are drawn with the
appropriate slopes for good marginal and theta behavior. In the figure, I is
the relaxation rate of S(q, ¢) for t > (D, ¢*)~'. N’TI'/g*(1 — ¢) should equal
D, in equation (88) if the model used here is correct. Here (1 — @) is a
backflow correction. The data are reasonably consistent with equation (88b)
with the crossover ¢ occurring at 0.01, which is close to ¢ = 0.02 found in
Figure 40 for the same system. At the highest concentrations, the curve
drops precipitously and is not consistent with the ¢~ behavior predicted
above ¢'. It must be realized that the precision of the data is poor for these
very long correlation times, so ¢~ behavior is not necessarily out of the
question. These data are also at the upper limit of semidilute solutions and

very likely interchain interactions limit the validity of the friction constants
used.



240 D. W. Schaefer and C. C. Han

1E7

tf 1

<] J
[

4 S
L

-'_'ﬁ..!-

il Li

1E6

LU LR B AL |

1E5

1E4

10"82D, = N%x 107 1g?(1-¢) [cm?is]

M REF, 1
* 3.0E4 a4 1
1000 & 1765 84 -
7 1.0E6 B4 k
L BOEE B4

100 |- E
L 4
10 E

i .

i i i PEETE | 1 i L i i i i
0.001 0.01 0.1 1

VOL FRACTION ¢

Figure 43, Self-diffusion constant taken from the measured relaxation rate I' of the slowly
decaying mode of S(q, t). The ordinate should be N2D, and should follow the power laws
indicated by the lines in the figure.

5.4.3. Conclusions

In this discussion of semidilute systems we have attempted to develop a
framework that is useful to understand a large body of data that appear
contradictory. In many cases, our interpretation conflicts with that of the
experimenters themselves. Unfortunately, we have been forced, because of
space limitations, to ignore these credible alternative interpretations. The
model presented here, however, makes a broad range of predictions which
have been subject to only limited experimental study.

It is interesting to note that in this entire review the concept of an
“entanglement ” has been completely ignored. Although entanglements may
be important to certain viscoelastic properties, there is no evidence as yet
that they play a significant role in S(g, t, p) in the domains easily accessible
to PCS measurements.

If rubberlike elasticity due to entanglements were playing a role in
S(g, 1), then D, would be proportional to E,,, rather than E,.“* In good
and marginal solvents E_, ~ E,, so the observed concentration dependence
of Q would not change. In theta solvents (T = @ not ¢ > ¢'), however, D,
would be concentration independent in contradiction to Figure 33. Thus,
based on limited data available, entanglements do not seem to affect co-
operative diffusion.

If entanglements played a significant role in the reptation process, then
D, should show a dependence on N to a power larger than 2 and should
also display a distinct change in behavior below the critical molecular
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weight for entanglements.®® To our knowledge, neither expectation is rea-
lized. Recent experiments by Selser'”® and theory by Ronca”® do suggest
that the detailed shape and g dependence of S(q, t) reflect entanglements.
This effect, however, appears as a small quartic term in the reptation part of
S(g, t). It appears, then, that although the broad features of semidilute
dynamics do not reflect entanglements, undoubtedly they will be necessary
to explain increasingly detailed aspects of polymers at high concentration.
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