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3.  Polymers

Polymers and polymer solutions form a huge and important class of soft
condensed matter.

Polymers may be:

 synthetic   

•  polystyrene

•  polyethylene

•  other plastics, artifical fibres and glues

of biological origin,

•  rubber

•  starch

•  proteins

•  nucleic acids (e.g. DNA)

Polymers often are major components in complex composite materials,
both natural and artificial:

•  Glass reinforced plastic (glass fibre)

•  Wood

•  Tissue

Despite the very wide variety of different properties of polymers that arise
from the different chemistry that makes them up, many of their physical
properties have universal  characteristics: these characteristics are a result
of generic  properties of long, string like, molecules.  An example of such
a generic property is the fact that two molecules can’t cross one another -
this leads to the effect of entanglement,  which produces dramatic
viscoelastic effects in polymer melts and solutions.  Surprisingly, it proves
possible to construct remarkably simple and general theories to account
for these properties.



PHY 369 /02 - Soft Condensed Matter - R.A.L. Jones section 3 p2

3.1  The variety of polymeric materials:

Variety in physical state

Polymers are found in a variety of different physical states:

Liquid

Polymer melts and solutions are liquids - but they are often very 
viscous and show marked viscoelastic properties

Crystalline

Polymers can crystallise, but usually crystallisation is not complete.

Familiar materials like polyethylene  are usually semi-crystalline.

Liquid crystalline

Some polymers are rather rigid molecules, which can line up to 
form liquid crystalline materials.  These can form the basis of 
very strong engineering material, like Kevlar.  The molecular 
orientation thus obtained can lead to useful optoelectronic properties

in semi-conducting polymers like poly fluorene.

Glasses

Because polymers often find it difficult to crystallise, polymer 
glasses are very common.  Polystyrene  and Poly (methyl 
methacrylate) (Perspex)  are common examples.
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Stereochemistry

Stereochemistry is important for chains with more than one type of group
attached to the main chain carbons.  For example, in polypropylene X=H
and Y=CH3.

Isotactic

C C C C C C

C C C C C C

H H H H H H H H H H H H

X X X X X XY Y Y Y Y Y

Syndiotactic

C C C C C C

C C C C C C

H H H H H H H H H H H H

X X X X X XY Y Y Y Y Y



PHY 369 /02 - Soft Condensed Matter - R.A.L. Jones section 3 p5

Atactic

C C C C C C

C C C C C C

H H H H H H H H H H H H

X X X X X XY Y Y Y Y Y

Atactic chains possess quenched disorder - there is an entropy
contribution that will be present even at absolute zero.

Atactic chains find it difficult or impossible to crystallise.
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Architecture

Chains can be linear  (e.g. high density polyethylene, proteins):

or branched (e.g. low density polyethylene, amylopectin (a component of
starch)

or part of a network (e.g. rubber, epoxy resin)
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Copolymers

Normal polymers (homopolymers) are composed of a single molecular
repeat unit:

AAAAAAAAAAAA

One can have polymers made up of different types of repeat unit - these
are called copolymers.  Different arrangements are possible:

Random copolymers

Repeat units are arranged at random along the chain.  Properties often are
intermediate between the properties of the two homopolymers:

ABBABABBBAAABABABB

Block copolymers

Here the molecule is made up of different blocks containing only a single
monoment:

diblock: AAAAAA AAAAAABBBBBBBBBBBBBBBB

triblock AAAAAAAABBBBBBBBBBBBAAAAAAAAAAA

These molecules can self-organise  into complex structures, in which the
different monomer types microphase separate.

Sequenced copolymers

Proteins and DNA form a special class of polymer in which a variety of
different monomer types are arranged in a particular, well defined but not
repeating, sequence.  This results in the ability of a single molecule to self-
organise into a complex three dimensional structure.
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3.1  The random walk and the dimensions of polymer
chains
What is the mean end to end distance of a polymer chain?

The simplest model is the freely jointed chain:
We assume the chain to be made up of N links, each of length a; the
different links have independent orientations.

The end to end vector is the vector sum of the N jump vectors which
represent the direction and size of each link.

r = a1 + a2 +K+aN = ai
i=1

N

∑

The mean end to end distance is

r ⋅ r = ai
i=1

N

∑





⋅ a j
j=1

N

∑







Expanding the sum gives us
r2 = a i

j
∑

i
∑ ⋅ a j

Thus
r2 = Na2 + a i ⋅ a j

i≠ j
∑

If the chain is freely jointed the directions of different links are completely
uncorrelated and we get the familiar random walk result

r2 = Na2

The overall size of a random walk is proportional to the square root  of
the number of steps.
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Real polymer chains - short range correlations

This seems terribly unphysical as a model for a polymer chain; elementary
chemistry tells us that successive links along a polymer chain have definite
bond angles.  Thus the cross terms do not disappear; neighbouring vectors
are correlated.

Consider a model in which the bond angle is fixed at q, but is free to

rotate:

θ

now r i ⋅ r i−1 = a2 cosθ , and in general r i ⋅ r i−m = a2 cosm θ .

Thus the correlation dies away along the chain.  This means we can
conceive of breaking the chain up into subunits, whose size we choose to
be larger than the range of the correlations.
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Now, suppose there are g links per subunit, whose vectors are ci  , we can
write

r2 = N
g

c2 = Nb2

where b is an effective monomer size, the statistical step length.
In practise the effect of correlations along the chain is often characterised
in terms of the characteristic ratio C∞:

C∞ = b2

a2 .

If you know the chemical details of your polymer the characteristic ratio
may be calculated; alternatively one can extract its value for a given
polymer from experimental data on chain dimensions.

This simple example is typical of the way in which polymer physics tries to
proceed: the long range structure (in this case the scaling of chain
dimensions with the square root of the degree of polymerisation N) is
given by statistics and is universal - i.e. independent of the chemical
details of the polymer in question.  All these chemical details go into one
parameter, which may either be calculated on the basis of detailed theory
at the atomic level, or extracted from experiment.
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Excluded volume

In the argument above for the mean end to end distance of a polymer we
accounted for interactions between neighbouring links of the chain, but
we neglected interactions between distant points on the chain.  It turns
out that for an isolated chain these interactions are important, and affect
the long range structure of the chain.

At the simplest level, we know that the chain cannot intersect itself; the
monomer units have finite volume and two cannot be in the same place at
the same time.  We have a self-avoiding walk.  The mathematics of
SAW's is much more complicated than for simple random walks; instead

of finding r2
1
2 = aN

1
2, the random walk result, we find r2

1
2 = aNυ ,

where the exponent n  > 0.5.  The effect of excluded volume, then, is to
swell the polymer chain over the random walk value.

What is the value of the exponent n  ?  An simple mean-field argument
due to Flory gives a value of 3/5.  This is amazingly close to the actual
value, which can be computed using complicated renormalisation group
techniques and is (to three decimal places) 0.588.

Experimentally, the chain dimensions of very dilute chains in good
solvents are found to be swollen in the way predicted (though available
experimental precision is not really able to distinguish between the Flory
value of 3/5 and the more exact value).
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Chain statistics in polymer melts - the Flory theorem

In dilute solution, polymers do not follow random walk statistics - because
of excluded volume interactions, the chain is swollen.

What happens as we make the solution more complicated, ultimately
arriving at the polymer melt?  Counterintuitively, rather than becoming
more complicated, things become more simple: in the melt chains follow
ideal random walk statistics!

This was first realised in 1949 by Flory and put on a sound theoretical
footing by Edwards in 1966, when he introduced the idea of screening.
Here is a simple plausibility argument.

Consider schematic plots of the segment concentration across a section
through space; for a dilute solution chains are isolated and segments do not
interact with segments from different chains:
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The effect of the excluded volume interaction is to include an unfavourable
energy proportional to the probability of two segments being close
together; that is proportional to c2.  This leads to a force on the segments

proportional to c
dc
dx  , which tends to make the chain expand.  Now as the

concentration is increased chains start to overlap; 
dc
dx  is smaller and the

repulsive force is reduced.
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Finally, in the melt, the concentration of segments is essentially uniform:
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Thus there is no repulsive force between the segments and the chain
follows ideal random walk statistics.  This result was confirmed by neutron
scattering in the early seventies.
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Measuring the size of polymer chains

The dimensions of polymer chains are most directly measured by
scattering.

This method relies on the interference of waves scattered from different
parts of an extended scattering object.

At large angles, waves scattered from different parts of the object interfere
destructively.

The way the intensity drops off with angle depends on the relative
magnitude of the inverse size of the object and the scattering vector  q,
which is related to the wavelength of the wave λ and the angle through
which it is scattered θ:

q = 4 π sin(θ) /λ.

The size of the object is characterised by the radius of gyration  Rg

Formally the radius of gyration is defined as the mean squared distance of
each point on the object from its centre of gravity.  For a random walk it
can be shown that R Rg end to end

2 2 6= − − .
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How do we decide what type of radiation to use?  The two factors that are
important are:

•  wavelength
 the radiation must have a wavelength comparable to the inverse 

size of the object, so that we can detect scattering from the object.
 
•  contrast

the radiation interacts differently with the object than with the 
medium it is immersed in.

The types of radiation used are

•  light:
 contrast based on refractive index differences
 long wavelength means that large objects scatter to wide angles
 
•  x-rays
 contrast based on differences in electron density
 smaller wavelength means that large objects scatter to smaller angles
 
•  neutrons

contrast based on differences in nuclear interactions
scattering very different for hydrogen and deuterium

 smaller wavelength means that large objects scatter to smaller angles

Although neutron scattering is expensive, the fact that it can distinguish
between hydrogen and deuterium means that it can measure chain
dimensions in concentrated solutions and melts - this cannot be done any
other way.
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Dilute solution of polymers - light, x-ray or neutron scattering can be used
to determine chain dimensions.
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Concentrated polymer solution or melt - scattering experiments cannot
pick out an individual polymer chain, and thus cannot measure the overall

chain dimensions.

One chain has been labelled  with deuterium - a neutron scattering
experiment can now measure the chain dimensions of an individual

molecule in a melt or concentrated solution
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Elasticity of a single polymer chain

For a simple random walk (i.e. the freely jointed chain model of a
polymer) we derived the mean squared end-to-end distance as r2 = Na2

We can also derive the distribution of possible end-to-end distances, by
relatively straightforward statistical mechanics.  The result is that the
probability distribution function P(r,N) that gives the probability that a
chain with N links which has one end at the origin has its other end at
position r is given by

P N
Na

( , ) expr
r∝ −











3
2

2

2 .

We can use this to write down the configurational entropy  of a
polymer as a function of its elongation:

S
k

Na
B( )r
r= − +3

2

2

2 constant.

When a polymer is stretched, its entropy is lowered.  This results in an
increase in the free energy:

F
k T

Na
B( )r

r= +3
2

2

2 constant.

A polymer chain behaves like a spring; if it is stretched beyond its ideal
random walk size there is a restoring force proportional to the extension.
This force is entirely entropic in origin.
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3.2  Rubber elasticity

The first statistical mechanical theory of the mechanical properties of a
polymeric material was the classical theory of rubber elasticity.

A rubber is a polymer melt in which crosslinks, randomly placed between
adjacent chains, covalently bond the chains together to form a
macroscopic network.  At a local level, the material behaves like a liquid;
in particular the bulk modulus is rather high and to a first approximation
the material may be taken as incompressible.  However the crosslinks
mean that macroscopic bulk flow cannot take place, and the material has a
finite shear modulus.  The classic theory of rubber elasticity uses statistical
mechanics to calculate the shear modulus.

x
x

x
x x x

xx x x
x

xx x
x

Schematic drawing of a rubber: "x" marks a crosslink, joining strands of
polymer of average number of monomer units Nx.  The length of each
monomer unit is a.

To calculate the modulus, we start by making an important assumption:
that when the rubber is deformed each individual crosslink point moves in
proportion to the deformation of the whole sample.  This is the assumption
of affine deformation.
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l x λ  l xx

ly λ  l yy

Thus a point at coordinates (x,y,z) Æ (lx x, ly y, lz z).

Consider a single strand between two crosslink points; take the origin at
one crosslink and the second crosslink at x,y,z.

The mean end to end distance of the strand when the rubber is
undeformed is given by the random walk formula:

ro
2 = x2 + y2 + z2 = Na2

After deformation we have

r1
2 = λ x

2x2 + λ y
2y2 + λ z

2z2

As we saw above, the entropy of a random walk with mean squared end
to end distance r is given by:

S(r)= − 3
2

k
r2

Na2

Thus the change of entropy of a strand on deformation is

∆Sstrand = −3k

2Na2 (λ x
2 −1)x2 + (λ y

2 −1)y2 + (λ z
2 −1)z2[ ]

If there are n strands per unit volume, and using the relation

x2 + y2 + z2 = 1
3

Na2

we can write the total entropy change per unit volume as

∆Stotal = − nk
2

(λ x
2 + λ y

2 + λ z
2 − 3).

Now the simplest type of deformation is simple elongation in the x
direction, for which
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λ x = λ , λ y = λ z = 1
λ ,

where we have used the fact that rubber is incompressible.  Thus we can
write the entropy change as

∆Stotal = − nk
2

(λ2 + 2
λ

− 3).

Associated with this change in entropy is a change in free energy given by

F(λ ) = nkT
2

λ2 + 2
λ

− 3




.

We can now obtain the relation between stress t and strain e by noting that

l=1+e, and t=
dF
de ; thus

τ = nkT (1+ e)− 1

(1+ e)2





.

This is a non-Hookian stress/strain behaviour (see the graph below), but we
can expand for small strain to find that the Young modulus is E=3nkT.
Once again assuming incompressibility (and thus a Poisson's ratio of 0.5)
this gives for the shear modulus G

G=nkT.

Another convenient way to express this results, that we will use later, is in
terms of Mx, the average molecular weight between crosslinks, and the
density r:

G=
rRT
Mx   .
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Stress strain relationship for rubber, showing both experimental behaviour
(points) and the prediction of simple theory.
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3.3  Viscoelasticity in polymers and the reptation model

Viscoelasticity: the phenomenology

What is the difference between solids and liquids?  We expect solids to
behave elastically, with Hooke's law relating shear stress and shear strain:
σ = G e.
For liquids, however, it is the shear strain rate that is related to the shear
stress, via the viscosity h:

σ=η 
de
dt   .

Thus we distinguish between two types of behaviour.  Solids behave
elastically; a deformation stores energy in the form of strain energy, and
when the stress is relaxed the bodies original shape is recovered.  On the
other hand liquids flow irreversibly, losing all memory of their original
shape, and losing energy in dissipative processes.

In fact all materials can show both types of behaviour, depending on the
timescale of the measurement; a material has a relaxation time τ, such
that measurements on a time scale shorter than t produce elastic
behaviour, and measurementson a long time scale show viscous behaviour.

Small molecule liquids have very small values of τ (perhaps 10-11 s or so)
and so behave for most purposes in a completely viscous way, while
crystalline materials such as metals may have relaxation times that may be
many years (recall the earlier section of the course about creep behaviour).
Some materials, however, have relaxation times of order seconds, and it is
these that are normally thought of as viscoelastic.  Examples of such
materials are polymer melts, polymer solutions, and suspensions and other
concentrated colloidal dispersions.
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Creep Compliance

Apply a constant stress at t=0, and look at the strain as a function of time:

1 Ton

Time

e

0

Stress applied here

If the applied stress is s0, then the strain as a function of time t is given by
e(t) = σ0 J(t)

where J(t) is the creep compliance
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Stress relaxation

Apply a fixed strain e0, and watch the stress decay with time:

σ

Time

Strain applied
here

0

s(t) = e0 G(t)

G(t) is the stress relaxation modulus
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Oscillatory deformations

If an oscillatory shear strain of the form

e(t)= e0 cosωt

is applied then the stress is given by

σ(t) = e0 ′G (ω)cos(ωt) − ′′G (ω)sin(ωt)[ ]

where G* (ω) = ′G (ω) + i ′′G (ω) is called the complex modulus.
This is related to the stress relaxation modulus through a Fourier
transform:

G* (ω) = iω e−iωtG(t)dt
0

∞

∫ .

Thus G* can be divided into:

in phase component G' - the storage modulus; the elastic component of
the response;

out of phase component G'' - the loss modulus; the viscous component of
the response.

The phase angle of the response is usually called δδδδ, given by tanδ = ′′G
′G
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Linear viscoleasticity and the Boltzmann superposition principle

For small deformations we can assume that each loading step makes and
independent contribution to the total loading history, and the final
deformation is simply the sum of the response to each step:

Input

Response

Time

S
tr

es
s

S
tr

ai
n

∆σ1

∆σ2

∆σ3

e (t)
1

e (t)
2

e (t)
3

τ τ τ1 2 3
Thus we can write:

e(t)= J(t− τ )dσ(t)
−∞

t

∫ = J(t− τ )
dσ(t)

dτ−∞

t

∫ dτ

Likewise:

σ(t) = G(t − τ )
de(t)
dτ−∞

t

∫ dτ .

If we have a steady shear rate this recovers Newton's law of viscosity (i.e.

if 
de(t)
dτ

= «e = constant );

σ(t) = η0«e where η0 = G(t − τ )dτ
0

∞

∫  ;

here η0 is the zero shear viscosity.
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Time Temperature superposition

It is found experimentally that curves of viscoelastic quantities as a
function of time (or frequency) at different temperatures may be
superposed onto a single curve using a quasi-universal shift factor aT:

log(aT ) =
−C1

g(T − Tg )

C2
g + (T − Tg )

where Tg is the glass transition temperature of the polymer, and the

constants C
g
1  and C

g
2  have (almost) universal values C

g
1  = 17.4 and C

g
2  

=51.6 K.  This expression is known as the WLF equation (for Williams
Landel and Ferry)

This result is experimentally very useful as it allows us to build up data sets
covering very wide effective ranges of timescales on an instrument whose
actual range of timescales is much smaller.

Its theoretical significance is that it shows that all the microscopic
timescales in the problem of viscoelasticity scale in the same way with
temperature; thus we can expect that a microscopic theory of
viscoelasticity will contain only a single temperature mobility parameter - a
"segment mobility".
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Time-temperature superposition for polyisobutylene.  On the left is stress
relaxation data as a function of time for different temperatures.  The data
can be collapsed onto a single curve (right) by applying temperature shift
factors (inset).  The shift factors are given by the WLF relation.
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Viscoelasticity: results for monodisperse polymer melts

The relaxation modulus for linear, monodisperse polymer melts of high
molecular weight has the following form (shown schematically for two
molecular weights)

Log(time)

Lo
g(

G
(t

)
R
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n 
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Terminal time

ττ1 2

Plateau
modulus

MW MW
1 2

Note that at short times the curve is independent of molecular weight.  For
intermediate times there is a wide range of times for which the modulus is
essentially constant - this is the plateau modulus.  The plateau ends at a
terminal time which does depend on degree of polymerisation, according
to a power law  τt ~ Nm where the exponent m lies between 3.3 and 3.4.
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The storage modulus shows very similar features - here is experimental
data for polystyrene:

For times above the terminal time one has essentially viscous behaviour;
that is the creep compliance J(t) ~ t.  We can relate the zero-shear viscosity
h0 to the plateau modulus Gp and the terminal time τ

t
 as  η

0
 ~ Gp τ

t
 , and

as Gp is independent of molecular weight this shows us that the molecular
weight dependence of the viscosity should be the same as that of the
terminal time, i.e. η0 ~ N

m
, where we would expect m once again to be

between 3.3 and 3.4.
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This molecular weight dependence of the viscosity is indeed what is
observed above a certain critical molecular weight Mc:

Log(zero shear viscosity) versus Log(molecular weight) for a variety of
polymers.
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Entanglements

The peculiar viscoelastic properties of polymers are due to the
entanglement  of their chains.  We can interpret the plateau modulus as a
rubber type elasticity in which instead of having permanent cross-links we
have temporary entanglements.

The distance along the chain between entanglements can be estimated
from the rubber elasticity formula:

Gp = ρNA kT
M e

where r is the density of the polymer and Me is interpreted as the
molecular weight between entanglement points.

The entanglements are not permanent, but have a finite lifetime, which is
the terminal time.

Me is a material constant for a given polymer; it is about twice the value of
Mc for the same polymer.  A simple-minded interpretation of this is that
one needs one entanglement per chain for the viscosity to be dominated
by entanglements, and two per chain to see rubber-like elasticity.



PHY 369 /02 - Soft Condensed Matter - R.A.L. Jones section 3 p34

The theory of reptation

The physical nature of entanglements was clarified by the theory of
reptation , due to de Gennes and Doi and Edwards.

The basic constraint felt by one chain due to all the other chains is that it
cannot cross the other chains.  This effect can be represented by imagining
the test chain to be contained inside a tube.  The motion of the chain is
restricted in the lateral direction, but the chain may still wriggle along the
tube.  This wriggling motion is called reptation .
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Left: the crosses represent chains coming out of the plane of the paper.
The test chain cannot cross these chains, and so it is confined to move in
an effective tube (right).

The terminal time is now to be interpreted as the time it takes for the chain
to move completely out of its original tube.  This can be estimated by
noting that within the tube motion is viscous.  Thus we can define a
segment mobility µseg.  If we were to pull a chain with N segments
through the tube the chain mobility would be simply µtube= µseg/N.
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Using Einstein's relation we can write down a diffusion coefficient to
describe the Brownian motion of the chain inside the tube;

Dtube =
µsegkT

N
.

The chain will completely leave the tube after a time τ ~ L2/Dtube , where
L is the length of the tube.  But the length of the tube is simply
proportional to the length of the chain, which is proportional to N.  Thus
we predict that τ ~ N3.  The predicted exponent is slightly smaller than the
observed value of 3.3.


