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1 Introduction

Most of the materials that are studied in the field of ”hard” condensed matter
physics - metals, semiconductors and ceramics - are crystalline; the atoms or
molecules of which they are composed are arranged with near-perfect long
ranged order over distances that are many orders of magnitude greater than
the distance between molecules. Single crystals of metals or semiconductors
of macroscopic size are not uncommon, but even where these materials are
described as ”polycrystalline” the fraction of the molecules that do not par-
take in the long ranged order is very small (though, of course, this small
fraction of atoms associated with grain boundaries and defects such as dis-
locations may have an effect on bulk properties out of proportion to their
number).

The situation in soft condensed matter is rather different. Crystallinity -
involving full long-ranged positional order - is important in soft matter, but
in most soft matter systems the degree of molecular ordering falls somewhere
between the full positional order of a single crystal and the complete posi-
tional disorder of a liquid or a glass. In fact, there are two distinctly different
types of intermediate order in soft matter systems:

• liquid crystallinity. These are equilibrium phases in which molecules
are arranged with a degree of order intermediate between the complete
disorder of a liquid and the long-ranged, three dimensional order of a
crystal.

• partial crystallinity. This is a non-equilibrium state of matter in which
the system is prevented from reaching its equilibrium state of full long-
ranged order for kinetic or other reasons, and in which microscopic
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regions of crystalline order coexist with disordered regions, often in a
complex hierarchical structure.

Liquid crystalline phases are found in

• certain organic compounds with a highly anisotropic molecular shapes.
These are the materials used in liquid crystalline displays;

• polymers composed of units having a high degree of rigidity, either in
the backbone or attached to the backbone as side-chains;

• polymers or molecular aggregates which form rigid-rod like structures
in solution.

Partial crystallinity is typical of many flexible polymers, such as polyethylene
or poly(ethylene terephthalate).

2 Crystallinity in polymers

The most common state of molecular order in polymers is the crystalline
state, with full three dimensional positional order. However, in contrast to
the situation in elemental solids and small molecules, very few polymer sys-
tems can attain a state of complete crystallinity. Instead, almost all polymers
are semi-crystalline, consisting of a composite of very small crystals in a ma-
trix of much less ordered material, with a total of between 20being present
in the crystalline state. The amorphous material can either be glassy (as for
example in polyethylene terephthalate, familiar from bottles for carbon ated
soft drinks) or rubbery, that is to say liquid like, but effectively crosslinked
by the small crystals. This is the situation in polyethylene. The reasons for
this partial crystallinity are:

• Slow kinetics. Polymers are entangled, so it takes a long time for the
molecules to arrange themselves in perfect crystals. Even quite modest
cooling rates allow one to produce a glass.

• Quenched disorder. Polymers may have disorder built in to the polymer
chain. This can take the form of randomness in the sterochemistry or
tacticity (polystyrene for example is usually atactic and does not readily
crystallise at all), or a random sequence of monomers in a random
copolymer.
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Figure 1: A chain-folded lamella, the basic unit in semi-crystalline polymers.
The lamellar thickness l is much smaller than the contour length of a polymer
chain.

• Branching. If the polymer chains have many branches, this makes it
more difficult to pack the chains into regular crystals. This is why low
density polyethylene, which is branched, is less crystalline than high
density polyethylene, which is strictly linear.

2.1 Hierarchies of structure

Crystalline polymers have a hierarchical structure - that is there are different
structures on different length scales.

The basic unit of most polymer crystals is the chain-folded lamella. The
lamellar thickness l is independent of molecular weight, as we shall see it is
a function of the supercooling when the crystal was formed. A typical value
for l would be about 10 nm. Lamellae are separated by amorphous regions;
individual chains may be involved in more than one lamella as well as the
amorphous regions in between.

The chain folded lamellae are themselves organised in larger scale struc-
tures called spherulites. These structures, which may be many microns in
size, consist of a sheaves of individual lamellae which grow out from a central
nucleus, until finally the whole of space is filled by these structures.
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Figure 2: The assembly of a spherulite from chain folded lamellae radiating
and branching from a central nucleus.

2.2 Chain folded crystals

Why is the chain folded lamellar crystal the basic unit of semi-crystalline
polymers? These are not equilibrium structures; the fold surface is consid-
erably disordered, and there is a substantial interfacial energy σf associated
with it. This means that the melting point of a lamellar crystal of thickness
l, Tm(l) is depressed from the ideal thermodynamic value, Tm(∞). This can
be seen by considering the change in free energy δg when one polymer stem,
of length l, joins the crystal. If the cross-sectional area of the stem is a2,
then we can write this change in energy as

∆g = −∆Hm∆T

Tm(∞)
lla2 + 2a2σf , (1)

where ∆Hm is the latent heat of melting per unit volume, and the un-
dercooling ∆T = Tm(∞) − T . So the melting point of this crystal of finite
thickness is given by the condition ∆g = 0, which yields the expression

Tm(l) = Tm(∞)
(
1 − 2σf

∆HmL

)
. (2)

Thus at equilibrium we would anticipate crystals in which the participat-
ing chains were fully extended. In fact, it turns out that the finite thickness
of chain-folded polymer lamellar crystals arises from kinetic considerations,
not equilibrium thermodynamics. In short, polymers form lamellae of a well-
defined thickness because crystals with this thickness grow the fastest.
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Figure 3: Free energy changes when a stem of polymer joins the growing
crystal from the melt.

Where does this mechanism of length-scale selection come from? The
important insight is that in order for a section of a polymer chain to join
the crystal as a linear stem of length l, it has first to unfold ; this requires
a temporary loss of entropy, whose probability decreases exponentially with
the length of the stem required. Thus we can see that:

• crystals that are too thick grow slowly because the probability of a long
enough length of polymer straightening itself out from its random coil
configuration is too small, while

• crystals that are too thin involve too much unfavourable energy from
their fold surfaces, leading to smaller thermodynamic driving forces for
the growth of the crystal.

We can make this argument more quantitative with a simple model cal-
culation. The energetics involved when one stem is added to the crystal are
sketched in figure 3. In order to join the crystal, a length of chain, which
in the melt has a random coil configuration, must first straighten itself out.
This leads to a reduction in entropy ∆S. Only when a random fluctuation
has produced such a straight length of chain can the stem join the growing
crystal face, finishing up with a free energy ∆g lower than its energy in the
melt.

Now we can estimate both the rate at which chain segments join the
growing crystal from the melt, and the rate at which segments leave the
crystal to rejoin the melt. We have
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melt → crystal rate = τ−1 exp
(
−∆S

kB

)

crystal → melt rate = τ−1 exp

(
−(T∆S − ∆g)

kBT

)
, (3)

where τ−1 is a microscopic frequency (recall also that in equation 1 we
defined ∆g to be negative when the crystal was stable). The difference
between these two rates gives us the net crystallisation rate u, defined as the
number of stems attached to a given site per unit time:

u = τ−1 exp
(
−∆S

kB

) [
1 − exp

(
∆g

kBT

)]
. (4)

To simplify things we will assume that ∆g/kBT is small enough to expand
the exponential; writing for the velocity of crystal growth v = ua, (where a
is the cross-sectional diameter of the polymer chain), we find

v = aτ−1 exp
(
−∆S

kb

)
∆g

kBT
. (5)

We now need to see how this growth velocity depends on the thickness
of the crystal l. Equation 1 gives us the variation of ∆g on l. The entropy
loss ∆S on straightening out a length l of the chain is proportional to the
number of segments in the length to be straightened; we write ∆S = µl/a
where µ is a dimensionless constant. This gives us

v(l) = (constant)

(
2a2σf −

∆Hm∆T

Tm(∞)
lfa

2

)
exp

(
−µl

a

)
. (6)

The shape of this function is plotted in figure 4. Crystals of thickness
lc are at equilibrium with the melt at a given temperature and do not grow
at all; on th other hand there is a certain thickness l∗ for which the growth
rate is a maximum, and it is crystals of this thickness which we expect to
dominate the final morphology. We can find l∗ by differentiating equation 6;
this yields

l∗ =
a

µ
+

2σfTm(∞)

∆Hm(Tm(∞) − T )
. (7)
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Figure 4: The crystal growth rate as a function of crystal thickness. At a
given temperature, crystals of thickness lc are in equilibrium with the melt
and do not grow at all. Crystals of thickness l∗ have the maximum growth
rate and dominate the morphology.

We see that the deeper the quench the thinner the resulting crystals will be.
This is what is observed experimentally, and indeed the functional form of
equation 7 gives a good fit to the data, as shown in figure 5.

We can also use this approach to predict the temperature dependence of
the crystal growth rate. To do this we simply substitute our expression for
the fastest growing crystal thickness l∗ from equation 7 into our expression
for the crystal growth velocity, equation 5. An important point that we have
up to now glossed over is the question of what determines the microscopic
frequency τ−1. This gives a measure of the rate of conformational rearrange-
ments of a polymer coil in a melt. These conformational rearrangements
involve the complicated internal dynamics of a polymer chain; luckily, how-
ever, even in the absence of a detailed analysis of these modes we know from
the principle of time-temperature superposition that all such modes have the
same temperature dependence, which we can write in the Vogel-Fulcher form;
thus we can write

τ−1 = τ−1
0 exp

( −B

T − T0

)
, (8)

where B is a positive coefficient and T0 is the Vogel-Fulcher temperature, a
material constant which is typically around 50◦ below the experimental glass
transition temperature.
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Figure 5: Crystal thickness as a function of undercooling for polyethylene,
showing good agreement with the functional form of equation 7. Data from
P.J. Barham et al., J. Mater Sci, 20 1625 (1985).

Putting this all together, we find for the temperature dependence of the
crystal growth velocity

v =
aτ−1

e kBT

a3

µ

∆Hm∆T

Tm(∞)
exp

( −B

T − T0

)
exp

(
−2µσfTm(∞)

a∆Hm∆T

)
. (9)

The temperature dependence of this expression is dominated by the two
exponentials, which combine to give a very strong peak in the growth rate
as a function of temperature. At high temperatures, it is the size of the
thermodynamic driving force that controls the growth rate, via the second
exponential function in equation 2.2. At lower temperatures, it is the rapidly
decreasing mobility as the glass transition approaches that suppresses the
growth of crystals. In practise, it is not at all uncommon to observe changes
in crystal growth rates of three or four orders of magnitude, so great is the
temperature dependence predicted by equation .

To conclude this section, it is worth making some general observations.
We have seen that when polymers crystallise, kinetic considerations mean
that the final morphology is a long way from equilibrium, and indeed the
equilibrium morphology, in the sense of the morphology with overall low-
est free energy, is practically unattainable. If a semi-crystalline polymer is
kept at a temperature at which the chains are still mobile, there is some
evolution of the morphology which is reflected in a very slow increase in
the crystalline fraction. The crystalline lamellae do thicken; new lamellae
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are nucleated and grow in the interstices between existing lamellae. But to
achieve the equilibrium state, of fully chain extended crystals, would require
such a wholesale rearrangement of chains, which would involve such a huge
energy barrier that it is practically unattainable. Here we see the limits of
equilibrium thermodynamics.

3 Liquid crystallinity

3.1 Introduction to liquid crystal phases

A crystal has long ranged, three dimensional, positional order, while a liquid
has neither positional order nor orientational order. Liquid crystalline phases
posess order intermediate between these two extremes. The most disordered
type of liquid crystalline phase is the nematic phase, which has no positional
order, but in which the molecules are, on average, oriented about a particular
direction, called the director. The transition between the isotropic phase and
the nematic phase is sketched in figure 6. The absence of positional order in a
nematic phase means that if one plotted the centres of mass of the molecules
the arrangement would be indistinguishable from an isotropic liquid; the only
ordering is in the orientation of the molecules, and even this ordering is, as
sketched, not perfect. This point will emerge more clearly when we consider
statistical mechanical theories of the transition from an isotropic to a nematic
liquid, in the next section.

A variant of the nematic phase occurs in systems where the system is
composed of molecules which are chiral ; that is in which the molecule differs
from its own mirror image. In these systems there may be a slight tendency
for neighbouring molecules to align at a slight angle to one another. This
weak tendency leads to director to form a helix in space, with a well-defined
pitch which is usually much longer than the size of a single molecule. these
phases are called chiral nematics, or perhaps more commonly cholosterics.
In many cases the pitch of the helix is of the same order as the wavelength
of light, and so these materials can display striking optical effects.

There are still more phases that are intermediate in order between ne-
matics and crystals. In a smectic phase, the molecules arrange themselves in
sheets. Within each layer, the molecules are aligned, but have no positional
order. Thus in going from a nematic to a smectic, we go from a situation of
no positional order, to long-range positional order in one dimension only. two
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Figure 6: A sketch of the transition between the isotropic liquid phase, in
which there is neither positional nor orientational order, to a nematic phase,
in which there is orientational order, but still no positional order.

Phase positional order orientational order

Liquid None None
Nematic None Yes
Smectic One-dimensional Yes

Columnar Two-dimensional Yes
Crystalline Three-dimensional Yes

Table 1. Degrees of order in liquid crystalline phases.

common sub-classes of smectic ordering are the smectic A phase, in which
the director is parallel to the layer normal, and the smectic C phase, in which
the director and the layer normal make an angle. Thus a smectic C phase is
made up of layers of tilted molecules.

Finally, it is possible to have a phase which has positional order in two
dimensions as well as orientational order. This kind of phase is found in
molecules that are disk-like, rather than rod-like; in a columnar phase such
molecules stack into long columns. Within each column there is no long-
ranged order in the position of the molecules, but the columns arrange them-
selves into a regular two-dimensional hexagonal lattice (figure 8).

These different levels of positional and orientational order are summarised
in table1.
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Figure 7: A sketch of the transition between the nematic phase, in which
there is orientational order but no positional order, to a smectic A phase,
in which there orientational order and long-ranged positional order in one
dimension.

3.2 The nematic/isotropic transition

The simplest and least ordered liquid crystal phase is the nematic phase, in
which there is no positional order, but in which there is long range order of
the direction of the molecules. In going from an isotropic state, in which both
position and orientation are random, to a nematic state, in which position
is random but there is a preferred orientation, there must be a reduction in
the orientational entropy of the system. So in order for the nematic state
to have a lower free energy than the isotropic state, there must be another
term in the free energy which favours orientation. Then, as the temperature
changes, the relative importance of the two terms changes, leading to a phase
transition.

How can we describe the state of orientational order of a molecule in a
quantitative way? For a rod like molecule we can introduce a single preferred
direction, the director, and we introduce an orientation function f(θ); f(θ)dΩ
is the fraction of molecules in a solid angle dΩ which are oriented at an angle
of θ to the director. For a completely randomly oriented molecule, there
is an equal chance that the molecule points anywhere in a solid angle of
4π, and f(θ) is constant. For a more ordered system the function becomes
more peaked around the angles 0 and π, as shown in figure 9. In all known
nematics, the directions 0 and +π are identical, so f(θ) = f(π − θ).

the distribution function contains all the information about the state of
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Figure 8: A sketch of a columnar phase, in which disk-shaped molecules are
arranged with orientational order and long-ranged positional order in two
dimensions. Within each column there is no long-ranged positional order.

Figure 9: The distribution function f(θ) for a nematic phase with various
degrees of order. The order parameter S takes the value 0.82, 0.71 and 0.44
for the solid, dashed and dotted lines respectively.
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order in the material, but it would be convenient to represent this state
of order no aas a function but as a simple number — an order parameter
— which took the value 0 for complete disorder, and 1 for complete order.
One might think of taking the average of cos(θ), but this is zero because
f(θ) = f(π− θ). Instead we must take another average; 1/2 < 3 cos2 θ− 1 >
has the right properties. Thus we define the order parameter S by

S = 1/2 < 3 cos2 θ − 1 >=
∫ 1

2

(
3 cos2(θ) − 1

)
f(θ) dΩ. (10)

Why should a liquid adopt a nematic phase? In going from an isotropic
state to a state of orientational order, there must be a loss of the entropy
associated with the freedom of a molecule to be oriented in any arbitrary
direction. If the nematic phase is to be at equilibrium, the positive contribu-
tion to the free energy arising from this loss of orientational entropy must be
outweighed by some other factor that causes the free energy to be lowered
when the molecules are aligned. This is likely to occur in melts of rod like
objects for two reasons:

• favourable attractive interactions arising from van der Waals forces
between the molecules will be maximised when they are aligned;

• it is easier to pack rod-like molecules when they are aligned.

The first factor is perhaps most important for melts of relatively small
molecules which form nematic phases; the second factor is the major factor
underlying the transitions that occur as a function of concentration for very
long rigid molecules and supramolecular assemblies. In both cases, simple
statistical mechanical theories can be formulated on the basis of these ideas.
These theories, which yield predictions about the nature of the transition
between the isotropic and nematic states, are both mean-field theories, and
as such are similar in spirit to theories introduced elsewhere in this book to
describe other phase transitions.

The starting point for both theories is to write down an expression for
the entropy lost when molecules become oriented. We can write the contri-
bution to the entropy of a molecule due its orientational freedom using the
Boltzmann formula as

Sorient = −kB

∫
f(θ) ln f(θ) dΩ. (11)
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In the isotropic state, f(θ) = 1/4π, so the change in entropy per molecule
on going from the isotropic state to an ordered state is given by

∆S = −kB

∫
f(θ) ln [4πf(θ)] dΩ. (12)

In the first theory we consider, which is known as the Maier-Saupe theory,
we make the phenomenological assumption that the energetic interaction
between molecules is simply a quadratic function of the order parameter, so
we write the total free energy change per molecule on going from the isotropic
to the nematic state as

∆F = −uS2/2 + kBT
∫

f(θ) ln [4πf(θ)] dΩ, (13)

where u is a parameter that expresses the strength of the favourable
interaction between two neighbouring molecules. Of course, S is defined in
terms of the distribution function f(θ). What we now need to do is find the
function f(θ) which minimises the free energy.

We do this in two stages. First, for a given value of the order parameter
S, we find the most probable distribution function f(θ) by maximising the
entropy associated with f(θ) subject to the constraint of a fixed value of S.
From this most probable distribution function we can calculate the entropy.
In this way we can find the orientational entropy as a function of the order
parameter.

Thus we need to find the function f(θ) that gives a stationary value of
the integral

∫
f(θ) ln f(θ) sin θ dθ subject to the constraint that the integral∫ 1

2
(3 cos2(θ) − 1) f(θ) sin θ dθ = S is a constant. The Euler-Lagrange equa-

tion resulting from this problem in the calculus of variations is

ln f +
3λ

2
cos2 θ + 1 − λ

2
= 0, (14)

which has the solution

f(θ) = exp(3 λ cos(θ)2), (15)

where λ is the Lagrange multiplier that sets the value of the order pa-
rameter S. Now, for a given value of λ, and thus a given value of S, we
can evaluate the entropy using equation 12. The resulting curve showing the
change in orientational entropy per molecule ∆Sorient on going to an oriented
state with order parameter S is shown in figure 10.
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Figure 10: The change in orientational entropy per molecule on going from
an isotropic state to an ordered state as a function of the order parameter S.

We can now plot the free energy as predicted by equation 13 as a function
of order parameter for various values of u/kBT . This is shown in figure 11.
For relatively small values of the u/kBT , the minimum free energy is found
for a value of the order parameter of zero - here the free energy is dominated
by the orientational entropy term, and the equilibrium state is isotropic. But
as the coupling parameter is increased a minimum of the free energy is found
for a non-zero value of S - the equilibrium phase is nematic. The critical
value of u/kBT for the transition is around 4.55.

By calculating the value of the order parameter S as a function of u/kBT
we can investigate the character of the transition. This is shown in figure
12; at a value of u/kBT = 4.55 there is a discontinuous change of the order
parameter from S = 0 to S = 0.44. This is the nematic/isotropic phase tran-
sition; because it is a discontinous change it is a first order phase transition,
but as the change in degree of order at the transition is not very great it the
transition can be said to be only weakly first order.

In order to compare the predictions of the Maier-Saupe theory with ex-
periment we would need to have some theory about the way in which the
coupling parameter u varied with temperature. The simplest assumption is
that u is independent of temperature; this would be the case if the coupling
arose entirely from van der Waals forces. This turns out to be quite a reason-
able first approximation for small molecule liquid crystals; figure compares
experimentally measured ordered parameters for the molecule p-azoxyanisole
(PAA) with the prediction of Maier-Saupe theory assuming that u takes the
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Figure 11: The free energy as a function of the order parameter S for various
values of the coupling parameter u/kBT , as given by the Maier-Saupe theory
(equation 13).

Figure 12: The order parameter S as a function of the coupling parameter
u/kBT , as given by the Maier-Saupe theory. There is a weak first order phase
transition at u/kBT = 4.55.
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temperature independent value that reproduces the experimentally observed
transition temperature (i.e. this is a one-parameter fit). There is quite good
qualitative agreement; while the theory captures the relatively small degree
of order at the transition and gives a good account of the development of
order with decreasing temperature, there are clearly systematic deviations
from the predictions of theory, particularly close to the transition.

There are a number of reasons why there are discrepancies between the
experimental data and the predictions of Maier-Saupe theory. Two such
possible factors are:

• intrinsic temperature dependence of u. This could arise, for example,
because the excluded volume interaction is significant.

• neglect of fluctuations. The Maier Saupe theory is a mean-field theory,
and like all such theories it neglects the effects of fluctuations in the
order parameter. These are likely to become important close to the
transition point.
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Figure 13: The order parameter S as a function of temperature for p-
azoxyanisole (PAA), as measured by refractive indices (circles - from S.
Chandrasekhar and N.V. Madhusudana, Applied Spectroscopy Reviews, 6
189 (1972)) and diamagnetic anisotropy (squares - from H. Gasparoux, B.
Regaya and J. Prost, C.R. Acad. Sci. 272B 1168 (1971)). The solid line
is the prediction of Maier-Saupe theory assuming u is independent of tem-
perature and takes a value which reproduces the experimental transition
temperature.
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