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5.  The self-assembly of complex phases

5.1 Phase separation in polymers
Metallurgists make new materials by mixing metals together to make alloys -
can we mix up different polymers to make “polymer alloys” with desirable
properties?  In some cases we can, but it turns out that there are fundamental
reasons why it is much more difficult to make new materials from mixing
polymers than it is from small molecules.

5.1.1  Flory-Huggins theory of polymer mixtures

Recall that for small molecules we found that the free energy of mixing of a
two component mixture could be written, per molecule, as

Fmix
kT   = φa ln φa + φb ln φb + χ φa φb,

where φA and φB are the volume fractions of the two components, and χ is a
dimensionless interaction parameter, which expresses, in units of kT, the
energy change when one takes a molecule of pure A from an environment of
pure A and puts it in an environment of pure B.  From this free energy we
are able to derive the phase diagram, and in particular, we found that the
critical value of χ for phase separation had the value 2.

How must this expression be modified to deal with polymers?  We consider
two polymers, each with degree of polymerisation N.

Recall that the first two terms represent the entropy of mixing  - this arises
from the fact that a single site is either occupied by a molecule of A with
probability of φA, or by a molecule of B with probability of φB.
If we increase the number of monomer units the molecule from 1 to N, the
entropy of mixing per molecule  stays the same, but the energy of mixing
must be increased by a factor of N.

The free energy of mixing per polymer molecule can thus be written

F

kT
mix

permolecule

= φa ln φa + φb ln φb + χΝ φa φb,

where χ is the interaction parameter per segment,
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or alternatively we can write the free energy of mixing per segment  or per
monomer unit  as

F

kT
mix

per segment

= (φa/N) ln φa + (φb/N) ln φb + χ φa φb.

The latter form is more common, and is known as the Flory-Huggins free
energy.

What are the consequences of this?  Once again, the phase diagram can be
easily calculated as we did for small molecules.  In fact, we can see that all our
results for small molecules can be transposed to polymers simply by making
the substitution χ → χN.

In particular, we find that whereas the critical value of χ for phase separation
was given by

χcrit = 2 small molecules

for polymers we have

χcrit = 2/N.

Don’t forget that N can be anything up to 10,000 or more.

Even a very slightly unfavourable interaction causes polymers to phase
separate.

Why is this?  The reason is in the entropy of mixing.  Small molecule
mixtures can have an unfavourable energetic interaction, but still mix, because
their entropy of mixing overcomes the unfavourable energetic interaction.

But polymers are much bigger molecules, and their entropy of mixing is
correspondingly smaller.

Most polymers do not mix.

If we do try to mix polymers, we get phase separated mixtures, usually with
very poor mechanical properties.  This is why it is so difficult to recycle
plastics.
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5.1.2  Phase separation mechanisms

Polymers phase separate by the same mechanisms as small molecule
mixtures, that is by nucleation and growth  or by spinodal decomposition,
according to what part of the phase diagram one quenches them into.

The theory of spinodal decomposition for polymers is essentially the same as
that for small molecules, discussed in section 2.4.  The only variation comes
mathematically in the precise form of the gradient coefficient, and physically
in how this is interpreted.

Recall that the theory of spinodal decomposition starts from the observation
that there is a free energy cost of maintaining a sharp concentration gradient.
We wrote the free energy as

F = A f (
x

dx0

2

φ κ φ( ) +
∂
∂





∫ ,

where κ is the gradient energy coefficient.

For polymers, the gradient energy coefficient takes the form (at the critical
composition)

κ = Na2/9.

where we write the free energy per molecule,  (rather than per segment we
did for the Flory-Huggins free energy).

Note that Na2 is simply the mean squared end-to-end distance of the chain.

The interpretation of this is that it starts to cost free energy whenever the
concentration gradient becomes steep compared to the overall size of the
chain.  This is because to create such large concentration gradients, the chain
has to be in a lower entropy configuration than an unperturbed random walk.
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5.1.3  The interface between immiscible polymers

Given that most polymer pairs will not mix, the structure that one will
ultimately obtain will consist of domains of one polymer dispersed in a matrix
of the other polymer.
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What is the nature of the interface between the two different polymers?

We should not expect it to be atomically sharp, because the polymers are
random walks, and this would reduce their configurational entropy too much.
Instead, we expect to get some interpenetration of the polymer chains across
the interface.

Schematic diagram of a polymer-polymer interface, showing partial
interpenetration of chains on either side of the interface.
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We can use our knowledge of random walks to estimate both the width of the
interface and the interfacial energy.

w

Nloop

Suppose the interface is characterised by a width w.

On average, we will have loops of one chain of length Nloop penetrating into
the the foreign material on the other side of the interface.

The loop will be itself a random walk, so we can write

w ~ a √Nloop.

Associated with the loop will be an unfavourable energy coming from the
Nloop  contacts between A and B segments;

interaction energy ~ χNloop kT.

But at equilibrium this interaction energy will be about kT, so

1 ~ χNloop.

Substituting for Nloop in terms of w we find an estimate for the interfacial
width

w ~ a/√χ.

Typically this is of order 1 - 3 nm.  The distance betwen entanglements is 5 -
10 nm, so although there is interpenetration at polymer/polymer interfaces it
is not sufficient for the polymers to become entangled.  This is why most
mixtures of polymers are weak, and it is difficult to glue plastics together.
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We can also estimate the interfacial energy γ by counting the number of
unfavourable contacts per unit area, each of which has an energy χkT:

γ ~
kT

a2
√ χ .

It turns out that although the argument leading to these two results is very
crude, much more sophisticated theories essentially confirm them.

5.2 Microphase separation in block copolymers

As we saw in section 3, block copolymers consist of two lengths of
chemically different polymers joined together covalently.  If the interaction
between the two blocks is unfavourable, the two chemical species would like
to phase separate, but the covalent bond between them frustrates their
tendency to phase separate macroscopically.  The result is that phase
separation is restricted to a microscopic scale, with complex morphologies
determined by a delicate balance of energy contributions.  An example is
shown below.
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The surface of a commercial triblock copolymer of styrene and butadiene
(Kraton D-1102), as revealed by atomic force microscopy (van Dijk and van
den Berg).

5.2.1  Microphase separation versus macro-phase separation
The basic physics of microphase separation is best illustrated by considering a
diblock copolymer each of whose blocks is of identical molecular weight.
Here the balance between the tendency of the two halves of the copolymer to
segregate and their constraint leads to a lamellar  morphology - a regular
alternation of layers of each of the two chemical species.
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d

The thickness of the lamellae, d, is extremely regular and well-defined.  What
determines its value?  Once again, it is given by a balance of free energies.
The larger d is, the less area of interface there is per unit volume, and thus the
lower the interfacial energy.  On the other hand, in order to fit into thick
lamellae, the chains have to stretch out to longer than their random walk sizes
and this reduces their entropy.

d

d small - chains are close to random walk configuration, but there is a large
amount of interfacial energy.
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d

d large - less interface, but the chains are now strongly stretched.

We can estimate the equilibrium lamellar spacing by writing down the total
free energy as a sum of the stretching contributions and the interface
contribution and finding d to minimise this.

The free energy due to chain stretching per chain can be written as
d

Na
kT

2

2
; per unit volume we have a total of 1/Na3 chains.

Per unit volume the amount of interface we have is 1/d, so the total interfacial
energy is γ/d.

The total free energy F(d) per unit volume then is

F d
d Na

d

Na
kT( ) +~

γ 1
3

2

2
.

Minimising this with respect to the lamellar spacing d we find

d
a

kT
N~

γ 5 1 3

2 3





.

If we use the expression we derived above in section 5.1.3 for the interfacial
tension between immiscible polymers,

γ ~
kT

a2
√ χ ,
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we find

d a N~ χ 1 6 2 3.

This expression is valid in the limit χN>>1.

5.2.2   The phase diagram for block copolymers

If the two blocks of a diblock are not of equal length, then the lamellar
morphology is less favourable, because the shorter blocks end up less
stretched than the long ones.  This leads to a tendency for the interface to
become curved.

A lamellar morphology for a diblock with one block shorter than the other.
The long blocks are more stretched than the short blocks, with the effect that
there is a tendency for the interfaces to become curved:

Thus as we change the ratio between the block lengths in block copolymers
we will change the equilibrium morphologies.
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For strongly immiscible blocks, the morphology changes from lamellar to
hexagonally packed cylinders with increasing asymmetry, then it changes to
spheres, packed firstly in a body-centred cubic array, then in a close packed
array (the difference in energies between hexagonal close packed and face
centred cubic is probably indetectable practically).  In addition, more
complicated structures have been observed.

Block copolymer morphologies.  L, C and S (Lamellae, cylinders and
spheres, respectively are the so-called classical morphologies which have
been known for about 20 years.  PL, G, and D (perforated lamellae, gyroid
and double diamond) were first observed more recently.



PHY 369 /02 - Soft Condensed Matter - R.A.L. Jones                                        section 5
p13

The phase diagram can be predicted, using theories that are too sophisticated
to discuss here.  The simplest case is for diblocks with in which block has an
identical length.

The phase diagram for a symmetrical diblock polymer, as calculated by self-
consistent field theory (Matsen and Bates).

Note that on the axis of the diagram is the product of the Flory-Huggins
interaction parameter χ and the degree of polymerisation N.  Note that the
value of χN needed to obtain microphase separation is more than 10, in
contrast to the value of 2 needed for a polymer mixture to phase separate.

This phase diagram predicts a window of stability for the gyroid phase, but
the other complex phases, perforated lamellae and the bicontinous double
diamond, although they have been experimentally observed, have  not been
accounted for theoretically.  It is possible that they are not equilibrium phases
at all, but are phases that are kinetically trapped because the kinetics of
transforming into the equilibrium structure are too slow to be observable.
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5.3  Complex phases in amphihile solutions

An amphiphile is a molecule which has one end that has a favourable
interaction with water (i.e. is hydrophilic)   and one end that has a favourable
interaction with oils or hydrocarbons (i.e. it is hydrophobic).  This
ambivalence between oil and water usually results in a tendency for such
molecules to segregate to surfaces and interfaces.

Usually the hydrophobic part of the molecule is a hydrocarbon chain with
about 12-20 carbon atoms.  The hydrophilic part may be charged or
uncharged.  Examples of surfactant are given below:

Example hydrophobic
group

hydrophilic
group

category where found

Sodium stearate C18H37 -COO-  Na+ Anionic Soap
Sodium dodecyl
sulphonate

C12H25 -O-SO3
- Na+ Anionic Detergents

Hexadecyl
trimethylammonium
bromide (CTAB)

C16H33 -N+ (CH3)3 Br - Cationic Mild
disinfectants

C12E5 C12H25 -(- O -CH2CH2)5 Non-ionic Cosmetics

Lecithin Two chains,
each
C12H25

phosphatadyl
choline

Zwitterionic,
Phospholipid

Animal
membranes,
food
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Amphiphilic molecules.  On the left is sodium dodecyl sulphonate, a typical
synthetic detergent whose structure is very similar to soap.  On the right is
diphosphatidyl choline, a phospholipid which is a major component of cell
membranes as well as being the main ingredient of the food emulsifier
lecithin.

5.3.1  Self assembly of amphihile solutions and the effect of curvature

When dissolved in water, amphiphiles self-assemble  in such a way that their
hydrophobic tails are kept together away from the water.  The most common
unit into which self-assembly takes place is the spherical micelle, though other
shapes are also possible.
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Self-assembled structures in surfactant solutions.  From Israelachvili.



PHY 369 /02 - Soft Condensed Matter - R.A.L. Jones                                        section 5
p17

What determines the shape of the self-assembled structure in a surfactant
solution?  The single most important factor is the packing shape  of the
surfactant, and the resulting natural curvature of the interface between water
and the self-assembled structure.

Packing shapes of various surfactants, and the structures they form.  From
Israelachvili.
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5.3.2  Complex phases and microemulsions

The simple structures formed by self-assembled amphiphiles are spheres,
cylinders and lamellae, or sheets.  These basic units can themselves be
arranged in supramolecular structures which can have a high degree of order.

In a simple mixture of an amphiphile and water, an example of the sort of
phase diagram one obtains is shown below:

Schematic phase diagram for mixtures of an amphiphile and water, showing
the structure of the micellar and liquid crystalline phases.

Note that the ordered phases HI, HII, and Lα are mesophases  with liquid
crystalline order.

Another dimension of complexity is added when one adds as a third
component to the mixture an oil.  Essentially, at low concentrations the oil
molecules swell the amphiphile micelles.  At higher concentrations of oils their
are some new kinds of phases, and other phases which are sometimes present
in the simple water/amphiphile mixtures become more prominent.
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Schematic phase diagram of an oil/water/amphiphile mixture.

A feature of these more complex phase diagrams is the appearance of more
complex phases, such as the irregular bicontinuous (or sponge ) phase, and
the cubic phases.  The latter actually have full three dimensional order, and as
such are essentially supramolecular solids, with a non-zero shear modulus.

One can see how these new phases arise by considering lamellae.  Two
adjacent sheets in the lamellae can form a pore, shown below.  This costs
energy as it involves a sharp distortion in the shape of the sheets, but
introduction of these pores creates entropy .

A pore connecting two lamellar sheets.
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In some circumstances the entropic contribution to the free energy outweighs
the energy penalty of having the pores, and one has an equilibrium phase of
randomly perforated lamellae.

A perforated lamellar phase.

Note that this perforated lamellar phase divides space up into two separately
interconnected regions.

A structure which is topologically equivalent to the perforated lamellar
structure, but which is fully disordered, is called a sponge phase,  or
sometimes, more colourfully, a plumber’s nightmare.
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The sponge phase, or plumber’s nightmare.  The characteristic length scale
of the tubes, d3, is of the same order as the interlamellar spacing in a
lamellar phase.

Much more regular analogues of the sponge phase are also possible, in which
the interconnected tubes are arranged on a regular lattice.  One such structure
is the cubic P phase.  The structure of this are shown below.
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The cubic P phase.

How can we characterise such complex structures?  Once again, a key
quantity is curvature.  A bilayer membrane, from which such structures are
composed, must have the same pressure on either side to be at equilibrium.
Recall that the pressure difference near a curved interface is given by the
equation

∆P =  γ ( 1/r1 + 1/r2)

where r1 and r2 are the radii of curvature in two perpendicular directions.  (
1/r1 + 1/r2) is referred to as the mean curvature.  The cubic P phase is made
up of saddle shaped units which have a zero mean curvature, ensuring that
there is no difference in pressure on either side of the bilayer.
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Saddle deformation.  The principal curvature radii at point P, R1 and R2,
are equal in magnitude but opposite in sign.  The mean curvature is
therefore zero.  

The cubic P phase is just one of a number of possible periodic structures in
which a membrane is arranged in a way in which the mean curvature is zero.


