T31.00004 : Relating the aerosol particle structure to the particle transport properties using ultra small angle X-ray scattering

KABIR RISHI*[^], Gregory Beaucage[^], Bon Ki Ku^{*}, Pramod Kulkarni^{*} *Centers for Disease Control and Prevention, NIOSH ^University of Cincinnati, Ohio

Problem statement

- Particulate aerosols pose health risks
- Often aerosol particles have a fractal like morphology
- How is the fractal structure related to particle transport (aerodynamic size) ?

Image taken from - https://www.thesweeper.com/osha-approved-sweepers accessed 1st March 2022

Vorkplace

Occupational

^aImage from Ku, B.K. and Maynard, A.D., 2006. Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. *Journal of Aerosol Science*, *37*(4), pp.452-470.

^bMulderig, A., Beaucage, G., Vogtt, K., Jiang, H. and Kuppa, V., 2017. Quantification of branching in fumed silica. *Journal of Aerosol Science*, *109*, pp.28-37.

andon and Rosner. *Ind. Eng. Chem. Res.* 1995, 34, 3265–3277

Wiltzius. *Phys. Rev. Lett.* 1987, 58, 710–713 Ku and Kulkarni. *Aerosol Sci. Technol.* 2018, 52, 597-608

Ku et al. Nanotechnology 2006, 17, 3613-3621

Materials & Methods

Aerosol Science, 37(4), pp.452-470.

Aerodynamic size based on MOUDI

MSP, TSI Models 100 and 110 – MOUDI® Impactors <u>https://tsi.com/getmedia/771ace7e-bda8-4f34-87ed-</u> 6c872ea98deb/MSP MOUDI Impactors MSP PI-100 US-web?ext=.pdf

Ultra-small angle X-ray Scattering

Appl. Cryst. 1995, 28 (6), 717–728.

Descriptors for aggregate simulations

Aggregate size, R Primary particle size, d_n Degree of aggregation, z Short-circuit path length, p Connective path length, s Fractal dimension, d₄ Tortuosity, d_{min} Connectivity, c Branch fraction, $\phi_{\rm br}$ Branch number, n_{br}

CINCIN

Mulderig, A., Beaucage, G., Vogtt, K., Jiang, H. and Kuppa, V., 2017. Quantification of branching in fumed silica. *Journal of Aerosol Science*, *109*, pp.28-37. Beaucage, G. Determination of branch fraction and minimum dimension of mass-fractal aggregates. *Physical Review E – Statistical, Nonlinear, and Soft Matter Physics* 2004, 70, 031401-1–031401-10.

Rai, D., Beaucage, G., Jonah, E. O., Britton, D. T., Sukumaran, S., & Härting, M. Quantitative investigations of aggregate systems. *J. Chem. Phys.* 2012, 137, 044311–1–044311-6.

Ramachandran, R., Beaucage, G., Kulkarni, A. S., McFaddin, D., Merrick-Mack, J., & Galiatsatos, V. Branch content of metallocene polyethylene. *Macromolecules* 2009, 42, 4746–4750.

Aggregate topological parameters

Unified Fit:
$$I(q) = \sum_{i=1}^{n} \left\{ G_i e^{-\frac{q^2 R_{g,i}^2}{3}} + e^{-\frac{q^2 R_{g,i+1}^2}{3}} B_i q^{*-P_i} \right\}; \quad q^* = \frac{q}{\operatorname{erf}\left(\frac{1.06q R_{g,i}}{\sqrt{3}}\right)^3} \qquad q = \frac{4\pi}{\lambda} \sin\left(\frac{\theta}{2}\right)$$

Parameters from Unified Fit used to determine topological parameters:

$$d_{f} = P_{2}; \quad z = \frac{G_{1}}{G_{2}} + 1; \quad d_{\min} = \frac{B_{2}R_{g,2}^{d_{f}}}{C_{p}\Gamma(d_{f}/2)G_{2}}; \quad C_{p} = \text{polydispersity factor}$$

$$R = \frac{R_{e}}{d_{p}} = z^{1/d_{f}} = p^{1/d_{\min}} = s^{1/c} \quad \varphi_{br} = \frac{z - p}{p} \qquad n_{br} = \frac{z^{\left[\left(\frac{9}{4d_{f}} - \frac{5}{4c}\right) + \left(1 - \frac{1}{c}\right)\right]} - 1}{2}$$

University o

Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering J. Appl. Cryst. 1995, 28 (6), 717–728.

Beaucage, G. Determination of branch fraction and minimum dimension of mass-fractal aggregates. *Physical Review E – Statistical, Nonlinear, and Soft Matter Physics* 2004, 70, 031401-1–031401-10.

Herrmann, H. J., & Stanley, H. E. The fractal dimension of the minimum path in two- and three-dimensional percolation. *Journal of Physics A: Mathematical and General* 1988, 21, L829–L833.

Meakin, P., Majid, I., Havlin, S., & Stanley, H. E. Topological properties of diffusion limited aggregation and cluster-cluster aggregation. *Journal of Physics A: Mathematical and General* 1984, 17, L975–L981.

Witten, T. A., & Sander, L. M. Diffusion-limited aggregation. Physical Review B 1983, 27, 5686-5697.

Sorensen, C. M. Light scattering by fractal aggregates: A review. Aerosol Sci. Tech. 2001, 35, 648-687.

Simulated Aggregates – Silver NPs

Silver Nanoparticles MOUDI Impaction Stage : 8 z = 536

Silver Nanoparticles MOUDI Impaction Stage : 9 z = 191

962

10

Silver Nanoparticles MOUDI Impaction Stage : 10 z = 221

			dmin	С	df	z	р	R
	Ag NP	Unified Fit	1.8 (0.1)	1.2 (0.1)	2.1 (0.1)	540 (200)	200 (70)	19 (4)
	Stage 8	Simulated aggregate	1.837	1.3222	2.4289	536	115.9026	13.2929606
	Ag NP	Unified Fit	1.5 (0.1)	1,4 (0.1)	2.1 (0.1)	190 (30)	38 (4)	12 (2)
	Stage 8	Simulated aggregate	1.3867	1.4764	2.0473	191	35.07639	13.0066856
and the second second	Ag NP	Unified Fit	1.5 (0.2)	1.5 (0.3)	2.2 (0.2)	220 (90)	36 (10)	12 (4)
	Stage 8	Simulated aggregate	1.3892	1.5099	2.0975	221	35.70424	13.11317563
	place L	05 A						
Safely a	nd Health				<i>.</i>			

-10

-10 -5

5 0 -5 -10

Mulderig, A., Beaucage, G., Vogtt, K., Jiang, H. and Kuppa, V., 2017. Quantification of branching in fumed silica. *Journal of Aerosol Science*, *109*, pp.28-37.

0 5 10

Simulated Aggregates – Fumed silica

Fumed silica nanoparticles

MOUDI Impaction Stage : 9

Fumed silica nanoparticles MOUDI Impaction Stage : 8 z = 2605

z = 860

Fumed silica nanoparticles MOUDI Impaction Stage : 10 z = 171

silica Unified Fit 1.2 (0.1) 2.1 (0.1) 2.5 (0.1) 2600 (430) 43 (4) 23 (2) Stage 8 Simulated aggregate 1.3734 1.7969 2.4679 2605 79.60052 24.21557965 Silica Unified Fit 1.9 (0.1) 1.5 (0.4) 2.9 (0.5) 860 (800) 80 (50) 9 (5) Stage 8 Simulated aggregate 1.5376 1.5973 2.456 860 68.73344 15.66131986 Silica Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) Silica Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151				dmin	С	df	Z	р	R	
Stage 8 Simulated aggregate 1.3734 1.7969 2.4679 2605 79.60052 24.21557965 Silica Unified Fit 1.9 (0.1) 1.5 (0.4) 2.9 (0.5) 860 (800) 80 (50) 9 (5) Stage 8 Simulated aggregate 1.5376 1.5973 2.456 860 68.73344 15.66131986 Silica Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151		silica	Unified Fit	1.2 (0.1)	2.1 (0.1)	2.5 (0.1)	2600 (430)	43 (4)	23 (2)	
Silica Stage 8 Unified Fit Simulated aggregate 1.9 (0.1) 1.5376 1.5 (0.4) 1.5973 2.9 (0.5) 2.456 860 (800) 860 80 (50) 68.73344 9 (5) 15.66131986 silica Stage 8 Unified Fit Simulated aggregate 1.7 (0.1) 1.6529 1.8 (0.7) 1.5093 3.1 (0.6) 2.4947 171 (100) 18 (6) 18 (6) 7.854093151		Stage 8	Simulated aggregate	1.3734	1.7969	2.4679	2605	79.60052	24.21557965	
Silica Stage 8 Unified Fit 1.9 (0.1) 1.5 (0.4) 2.9 (0.5) 860 (800) 80 (50) 9 (5) Simulated aggregate 1.5376 1.5973 2.456 860 68.73344 15.66131986 silica Stage 8 Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) silica Stage 8 Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151										
Stage 8 Simulated aggregate 1.5376 1.5973 2.456 860 68.73344 15.66131986 silica Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) Stage 8 Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151		Silica	Unified Fit	1.9 (0.1)	1.5 (0.4)	2.9 (0.5)	860 (800)	80 (50)	9 (5)	
silica Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) Stage 8 Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151		Stage 8	Simulated aggregate	1.5376	1.5973	2.456	860	68.73344	15.66131986	
silica Unified Fit 1.7 (0.1) 1.8 (0.7) 3.1 (0.6) 171 (100) 18 (6) 5 (3) Stage 8 Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151										
Operation Stage 8 Simulated aggregate 1.6529 1.5093 2.4947 171 30.16506 7.854093151	SSUICES	silica	Unified Fit	1.7 (0.1)	1.8 (0.7)	3.1 (0.6)	171 (100)	18 (6)	5 (3)	
		Stage 8	Simulated aggregate	1.6529	1.5093	2.4947	171	30.16506	7.854093151	V
	Workpic		DSH							C

Mulderig, A., Beaucage, G., Vogtt, K., Jiang, H. and Kuppa, V., 2017. Quantification of branching in fumed silica. *Journal of Aerosol Science*, *109*, pp.28-37.

Aerodynamic size vs R_H

Lattuada, M., Wu, H. and Morbidelli, M., 2003. Hydrodynamic radius of fractal clusters. Journal of colloid and interface science, 268(1), pp.96-105.

Jannink, G. and Des Cloizeaux, J 1990. Polymers in solution. Journal of Physics: R Condensed Matter, 2(1), p.1.

XS+Simulations) (nm)

Aerodynamic size (nm)

Future Work

- Extend this work to chain-like particles such as carbon nanotubes
- Analyze particles with low z such as N110, N330 carbon black

Acknowledgements

NIOSH / CBMB / CAN 0G1Y

Jan Ilavsky & team Beamline 9ID-C APS DOE DE-AC02-06CH11357

URC Graduate Student Stipend & Research Cost award

CINCI