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Zimm model predicts
D = kT/x = kT/(6p hs b N1/2) ~ N-1/df

t = N x = 6p hs b N3/2 = 6p hs b N3/df

h ~ N3/df -1 = N0.5 or 0.8

Zimm Model (Non-draining)

𝑟! = 2𝐷𝑡

𝜂 = 𝜂" 1 + 𝜂 𝜙 ~ 𝜂" 1 + *# #∗ ~ 𝑁 $" #$
%&
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts relaxation time follows N2

D = kT/x = kTN/t follows D ~ kT/N
Predicts that the viscosity will follow N which 
is true for low molecular weights in the melt 
and for fully draining polymers in solution

Rouse Model



Rouse Model

𝜁
𝑑𝑧'
𝑑𝑡

= 𝑘()* 𝑧'+& + 𝑧'%& − 2𝑧'

For L = ∞ You have a wave solution with no modes for d

𝑧'~𝑒
%%& 𝑒,'-

d is the phase shift between beadst is the relaxation time z/kspr

There are four unknowns and two equations; z, t, t , d
So, we can solve for a relationship between t and d

𝜏%& =
4𝑘()*
𝜁

𝑠𝑖𝑛!
δ
2

3

Debye used ma for heat capacity

Debye gets w = (k/m)1/2



τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Cyclic Boundary Conditions:

zl = zl+NR

NRδ = m2π

NR values of phase shift

δm = 2π
NR

m;    m = − NR

2
−1⎛

⎝⎜
⎞
⎠⎟ ,..., NR

2

For NR = 10
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Free End Boundary Conditions:

zl − z0 = zNR−1
− zNR−2

= 0

NR −1( )δ = mπ

NR values of phase shift

δm = π
NR −1( )m;    m = 0,1, 2,..., NR −1( )

dz
dl

l = 0( ) = dz
dl

l = NR −1( ) = 0

NR Rouse Modes of order “m”

For NR = 10
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The amplitude of the Rouse modes is given by:

Zm
2 = 2

3π 2
R0
2

m2

The amplitude is independent of temperature because the free energy of a mode is 
proportional to kT and the modes are distributed by Boltzmann statistics

p Zm( ) = exp −
F
kT

⎛
⎝⎜

⎞
⎠⎟

90% of the total mean-square end to end distance of the chain originates 
from the lowest order Rouse-modes so the chain can be often represented as 
an elastic dumbbell
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Rouse dynamics
(like a dumbell response)

dx
dt

= −

dU
dx

⎛
⎝⎜

⎞
⎠⎟

ζ
+ g(t) = −

ksprx
ζ

+ g(t)

x t( ) = dt 'exp − t − t '
τ

⎛
⎝⎜

⎞
⎠⎟

−∞

t

∫ g t( )

τ = ζ
kspr

Dumbbell

Rouse

τ R =
ζR

4bR sin2 δ
2

δ = π
NR −1

m ,   m=0,1,2,...,NR -1
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Some rules and approaches for complex constitutive parameters

Cox-Merz Rule time measurements are equivalent to frequency measurements. Complex 
viscosity and steady shear viscosity are equivalent measurements.

Kramers-Kronig Relation
Since there is a response function, µ(t), from which all mechanical responses can be 
calculated, then the loss and storage moduli are related to each other through the Cauchy 
integral, P().
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Consider the creep compliance, J(t) because it is easier to model.
(Stress relaxation is easier to measure, G(t).)
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Maxwell Model or Simple relaxor or Dumbell Model



Debye Single Relaxation time “Relaxor”

𝐽 𝑡 = 𝐽"𝑒𝑥𝑝 − *𝑡 𝜏

For an oscillatory strain

𝐽∗ 𝜔 = =
"

/

∆𝐽𝑒𝑥𝑝 − *𝑡 𝜏 𝑒𝑥𝑝 −𝑖𝜔𝑡 𝑑𝑡 = =
"

/

∆𝐽𝑒𝑥𝑝 −𝑡 *1 𝜏 + 𝑖𝜔 𝑑𝑡 =
∆𝐽

*1 𝜏 + 𝑖𝜔

𝐽∗ 𝜔 = ∆1
⁄' &+,3

= ∆1
⁄' &+,3

⁄' &%,3
⁄' &%,3

=
$∆)
&

$' &*+3
* − 𝑖 3∆1

$' &*+3
* =

4∆1
&+4*3* − 𝑖 34∆1

&+4*3* = 𝐽5 − 𝑖𝐽”
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𝐽” =
𝜔𝜏∆𝐽

1 + 𝜏!𝜔!

=
∆𝐽

10%'67 34 + 10'67 34

𝐽∗ 𝜔 =
𝜏∆𝐽

1 + 𝜏!𝜔! − 𝑖
𝜔𝜏∆𝐽

1 + 𝜏!𝜔! = 𝐽5 − 𝑖𝐽”

𝐽′ =
𝜏∆𝐽

1 + 𝜏!𝜔!

14

Maxwell Model 



Cole-Cole Plot as an indication of a simple Debye relaxor

15

𝐽∗ 𝜔 = 𝐽8 +
𝜏∆𝐽

1 + 𝜏!𝜔! − 𝑖
𝜔𝜏∆𝐽

1 + 𝜏!𝜔! = 𝐽8 + 𝐽5 − 𝑖𝐽”

Ju is the unrelaxed compliance

𝐽5 − 𝐽8 +
∆𝐽
2

!

+ 𝐽”
!
= 𝐽5 − 𝐽8 +

∆𝐽
2

!

+ 𝐽”
!
=

2𝐽5 − 2𝐽8 − ∆𝐽
2

!

+ 𝐽”
!

=
2∆𝐽 − ∆𝐽 1 + 𝜔!𝜏!

2 1 + 𝜔!𝜏!

!

+
∆𝐽!𝜔!𝜏!

1 + 𝜔!𝜏! ! =
∆𝐽! 1 + 𝜔!𝜏! !

4 1 + 𝜔!𝜏! ! =
∆𝐽!

4
(x-a)2 + (y-b)2 = r2
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Shear compliance, J*(w), easy to calculate. Shear modulus, G*(w), easy to measure.

𝐽∗ 𝜔 = 𝐽8 +
∆𝐽

1 − 𝑖𝜔𝜏 𝐺∗ 𝜔 =
1

𝐽∗ 𝜔
=

1 − 𝑖𝜔𝜏
𝐽8 1 − 𝑖𝜔𝜏 + ∆𝐽

=
1
𝐽8
−

∆𝐽
𝐽8𝐽*

1
1 − 𝑖𝜔�̂�

= 𝐺8 +
∆𝐺

1 − 𝑖𝜔�̂�

𝐽* = 𝐽8 + ∆𝐽; �̂� =
𝜏𝐽8
𝐽*
; 𝐺* =

1
𝐽*
; 𝐺8 =

1
𝐽8
; ∆G = 𝐺8 − 𝐺*

𝐽∗ 𝜔 = =
"

/

∆𝐽𝑒𝑥𝑝 − *𝑡 𝜏 𝑒𝑥𝑝 −𝑖𝜔𝑡 𝑑𝑡 = =
"

/

∆𝐽𝑒𝑥𝑝 −𝑡 *1 𝜏 + 𝑖𝜔 𝑑𝑡 =
∆𝐽

*1 𝜏 + 𝑖𝜔
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In the terminal flow regime

𝛾 𝑡 = 𝐽 𝑡 𝜏" 𝜏 𝑡 = 𝐺 𝑡 𝛾"

𝜏 = 𝜂"
𝑑𝛾
𝑑𝑡

= 𝜏"𝜂"
𝑑𝐽 𝑡
𝑑𝑡

𝑑𝐽 𝑡
𝑑𝑡

=
1
𝜂"

𝑠𝑙𝑜𝑝𝑒 𝑖𝑠
1
𝜂"

𝑎𝑡 𝑙𝑜𝑛𝑔 𝑡𝑖𝑚𝑒𝑠

In the terminal flow regime for the dynamic compliance

𝐴𝑡 𝑙𝑜𝑤 𝜔~1/𝑡 𝐽∗ 𝜔 = 𝐽:" + 𝑖
1
𝜂"𝜔

At long times, the Maxwell 
element is just viscous
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In the terminal flow regime/low frequency regime

In the terminal flow regime for the dynamic compliance

𝑨𝒕 𝒍𝒐𝒘 𝝎~1/𝑡 𝐽∗ 𝜔 = 𝐽:" + 𝑖
1
𝜂"𝜔

𝐺∗ 𝜔 → 0 =
1

𝐽∗ 𝜔 → 0
=

𝜂"𝜔
𝜂"𝜔𝐽:" + 𝑖

=
𝜂"𝜔 !𝐽:" − 𝑖𝜂"𝜔
𝜂"𝜔𝐽:" ! + 1

𝐺 5 𝜔 → 0 = 𝜂"𝜔 !𝐽:" 𝐺 ” 𝜔 → 0 = 𝜂"𝜔
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𝐺V 𝜔 → 0
= 𝜂W𝜔 X𝐽YW

Rouse

Newtonian
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Rouse

Modulus has units of energy per volume, MPa
Each mode of vibration, p, in the Rouse Model has 

𝜏) = 𝜏"
𝑁
𝑝

!

Larger p modes have smaller tp so larger p modes are relaxed when t = tp
When t = tp there are p unrelaxed modes composed of segments with kT energy
Each of these segments have N/p monomers of volume b3
For a volume fraction of monomers of f, the number of unrelaxed segments per volume is f/(b3N/p)
So, the storage modulus is G(tp) ~ kT (f/(b3N/p)
We know that tp = t0 (N/p)2 so p ~ (t0/tp)1/2N and 
G(tp) ~ kT (f/(b3N/p) = (kT/b3)f(tp/t0)-1/2 and for time t = tp G(t) ~ (kT/b3)f(t/t0)-1/2

G’(w) ~ (kT/b3)f(wt0)1/2 ~ (kT/b3)f(wh0)1/2

For t0 < t < tR

G(t) ~ (kT/b3)f(t/t0)-1/2 exp(-t/tR) For t0 < t
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𝐺′ 𝜔 = 𝐺:; + 𝜔=
"

/

𝐺 𝑡 − 𝐺:; 𝑠𝑖𝑛 𝜔t 𝑑𝑡

𝐺” 𝜔 = 𝜔=
"

/

𝐺 𝑡 − 𝐺:; 𝑐𝑜𝑠 𝜔t 𝑑𝑡

G(t) ~ (kT/b3)f(t/t0)-1/2 exp(-t/tR) For t0 < t

𝐺′ 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏= !

1 + 𝜔𝜏= ! 1 + 1 + 𝜔𝜏= !

For w < 1/t0

𝐺” 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏=
1 + 1 + 𝜔𝜏= !

1 + 𝜔𝜏= !

Rouse
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𝐺′ 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏= !

1 + 𝜔𝜏= ! 1 + 1 + 𝜔𝜏= !

𝐺” 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏=
1 + 1 + 𝜔𝜏= !

1 + 𝜔𝜏= !

For wtR << 1,  low frequency Normal Viscoelastic Fluid

𝐺′ 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏= ! 𝐺” 𝜔 =
𝜙𝑘𝑇
𝑏<

𝜔𝜏=

kT per monomer

For 1/tR << w << 1/t0,  Rouse Range, Fluid acts like a gel (Winter-Chambon)
(Solution in the limit tRw >> 1)

𝐺 5 𝜔 = 𝐺 ” 𝜔 ~ 𝜔 &/!

Rouse
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For 1/t0 << w,  High Frequency limit
No relaxation modes, 

G’(w ) = kT f/b3
High-frequency saturation of G’

G” (w ) ~ w

This is Solid Behavior



24

Winter HH, Chambon F, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel 
Point J. Rheo. 30 367-382 (1986).

The Power-Law is not Restricted in Frequency Range

G’(T, 𝜔) = G” (T, 𝜔) = (p/2)1/2 S(T) 𝜔n,     0 < 𝜔 < ∞

S(T) = (2/p)1/2 C aT 1/2bT

Experimentally n = ½ (same as Rouse at moderate w)
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Winter HH, Chambon F, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel 
Point J. Rheo. 30 367-382 (1986).

Kramers and Kronig relationship must be followed for this equation

Solve for n (only positive values are physical)
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2
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Newtonian
Flow

Entanglement
Reptation

Rouse
Behavior
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Reptation -One-dimensional diffusion along the tube
-Relaxation time, treptation, is the time for the 
chain to diffuse a distance L ~ N by Rouse 
diffusion, D0 ~ 1/N

𝑑𝑃
𝑑𝑡

= 𝐷"
𝑑!𝑃
𝑑𝑠!

𝐹𝑖𝑐𝑘5𝑠 25𝑛𝑑 𝐿𝑎𝑤 𝑖𝑛 1 − 𝑑

𝑃 𝑠, 𝑡 =
1

4𝜋𝐷"𝑡 $& !
𝑒 $%(*

?@+A

𝑠! = =
%/

/

𝑠! 𝑃 𝑠, 𝑡 ds = 2𝐷"𝑡

𝜏*:) =
𝐿!

2𝐷"
~
𝑁!

𝑁%& ~𝑁
< Compare: tRouse ~ N2

𝐷*:) =
𝑅!

6𝜏*:)
~
𝑁
𝑁< ~𝑁

%! Compare: DRouse ~ 𝑁%&
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Reptation -Consider a Maxwell model for the fluid

𝜏*:) =
𝜂*:)
𝐺"

Where G0 is the plateau modulus, G0 ~ 3kT/Me

𝜂*:)~𝐺"𝜏*:)~ 3kT/Me 𝑁<

Experimental shows N3.4 due to tube renewal
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Stress Relaxation Modulus for Reptation

te = t0Ne2 Follows Rouse Relaxation

G(t) ~ G0(t/t0)-1/2 For t0 < t < te



33



34

Normal Stress and Recoverable Shear Compliance
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If there are multiple relaxations like x(t) = x0 exp-(t/t)
Each with an amplitude DJl and a relaxation time tl.

In integral form. Here we use ln t as the argument since 
each relaxation is of exponential form.

The modulus function has a similar form but 
dramatically different values for t. 

Relaxation Spectrum (Ströbl (2007) p. 242-245)
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Relaxation Spectrum (Ströbl (2007) p. 242-245)

d lnt = dt/t

Then the functional dependence of interest is:
tHG(t) vs. t
That is why we see plots like:

Qiao H, Zheng B, Zhong G, Li Z, Cardinaels R, Moldenaers P, 
Lamnawar K, Maazouz A, Liu C, Zhang H Understanding the 
Rheology of Polymer-Polymer Interfaces Covered with Janus 
Nanoparticles: Polymer Blends versus Particle Sandwiched 
Multilayers Macromolecules 56 647- 663 (2023) 
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