Measurement of the Hydrodynamic Radius, \mathbf{R}_{h}

$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{h}}$
1.5 Theta
1.6 Expanded
0.774 Sphere
0.92 Draining Sphere

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

$$
[\eta]=\frac{4 / 3 \pi R_{H}^{3}}{N} \quad R_{H}=\frac{k T}{6 \pi \eta D} \quad \frac{1}{R_{H}}=\frac{1}{2 N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\frac{1}{\left|r_{i}-r_{j}\right|}\right\rangle \quad \frac{\text { Kirkwood, J. Polym. Sci. I2 |(1953). }}{\text { hntep//theor.inh.r.ru/kuzemsky/kirkbio.htm! }}
$$

A Harmonic Mean
(based on an average of transport rates, $D=k T /\left(6 \pi \eta R_{h}\right)$)
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pdf
An Arithmetic Mean $\quad R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-\frac{1}{N} \sum_{m=1}^{N} R_{m}\right)^{2}\right\rangle=\frac{1}{N} \sum_{m=1}^{N}\left\langle\frac{1}{2 N} \sum_{m=1}^{N}\left(R_{m}-R_{m}\right)^{2}\right\rangle=\frac{1}{2 N^{2}} \sum_{m=1}^{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle$

Measurement of the Hydrodynamic Radius, \mathbf{R}_{h}

$\mathbf{R}_{\mathrm{g}} / \mathbf{R}_{\mathrm{H}}$ Ratio

Table III
ρ Factor and Molecular Polydispersity $P_{\mathrm{w}} / P_{\mathrm{n}}$ for Some Selected Models ${ }^{a}$

${ }^{a} \rho=\langle 1 / R\rangle_{z}\left\langle S^{2}\right\rangle_{z}{ }^{1 / 2}$; all other notation is as in Tables I and II.

Burchard, Schmidt, Stockmayer, Macro. I3 1265 (I980)
(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchard ma60077a045.pdf)

Native state has the smallest volume
$\Delta p=\frac{8 \mu L Q}{\pi R^{4}}=\frac{8 \pi \mu L Q}{A^{2}}$ Poiseuille's Law ($Q=$ V/time $)$

Intrinsic "viscosity" as a linear displacement law

$$
\begin{aligned}
& \tau_{x y}=\eta \dot{\gamma}_{x y} \\
& \tau_{x y}=\frac{d F_{x}}{d A_{y}}=\eta \dot{\gamma}_{x y}=\eta \frac{d\left(\frac{\Delta L_{x}}{L_{y}}\right)}{d t} \\
& \begin{array}{l}
\text { 旐 } \\
\bar{x}_{y}
\end{array} \\
& \eta=\eta_{s}(1+\phi[\eta]) \sim \eta_{s} \exp (\phi[\eta]) \\
& \text { At very } \\
& \text { small } \phi \\
& L_{y}^{*}=L_{y} \exp (-\phi[\eta]) \\
& \sim L_{y}(1-\phi[\eta])
\end{aligned}
$$

Intrinsic "viscosity" as a linear displacement law

$$
\begin{aligned}
& L_{y}^{*}=L_{y} \exp (-\phi[\eta]) \\
& \sim L_{y}(1-\phi[\eta]) \\
& \tau_{x y}=\eta_{s}(1+\phi[\eta]) \frac{d\left(\frac{\Delta L_{x}}{L_{y}}\right)}{d t} \\
& =\eta_{s} \frac{d\left(\frac{\Delta L_{x}}{L_{y}^{*}}\right)}{d t}
\end{aligned}
$$

Intrinsic, specific \& reduced "viscosity"

$\tau_{x y}=\eta \dot{\gamma}_{x y} \quad$ Shear Flow (may or may not exist in a capillary/Couette geometry)

$$
\eta_{\mathrm{s}}=\eta_{0}(1+\phi[\eta])
$$

$$
\eta_{r e l}=\eta / \eta_{s}
$$

$\eta_{s p}=\left(\eta-\eta_{S}\right) / \eta_{S}=\eta_{r e l}-1$
$\eta_{r e d}=\eta_{s p} / c=\left(\eta_{r e l}-1\right) / c$

Intrinsic, specific \& reduced "viscosity"

$\tau_{x y}=\eta \dot{\gamma}_{x y} \quad$ Shear Flow (may or may not exist in a capillary/Couette geometry)

$$
\begin{gathered}
\eta=\eta_{0}\left(1+\phi[\eta]+k_{1} \phi^{2}[\eta]^{2}+k_{2} \phi^{3}[\eta]^{3}+\cdots+k_{n-1} \phi^{n}[\eta]^{n}\right) \\
\mathrm{n}=\text { order of interaction }(2=\text { binary }, 3=\text { ternary etc. })
\end{gathered}
$$

Reminiscent of a virial expansion.

Reduced Viscosity $\quad \frac{1}{\phi}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{\phi}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{\phi} \xrightarrow{\text { Limit } \phi=0}[\eta]=\frac{V_{H}}{M} \quad$ Intrinsic Viscosity

We can approximate (1) as:

Relative Viscosity $\quad \eta_{r}=\frac{\eta}{\eta_{0}}=1+\phi[\eta] \exp \left(K_{M} \phi[\eta]\right) \quad$ Martin Equation

Intrinsic, specific $\mathcal{\&}$ reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. })
\end{gather*}
$$

Reduced Viscosity $\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c>0}[\eta]=\frac{V_{H}}{M}$
We can approximate (I) as:

Relative Viscosity $\quad \eta_{r}=\frac{\eta}{\eta_{0}}=1+c[\eta] \exp \left(K_{M} c[\eta]\right) \quad$ Martin Equation

Reduced Viscosity $\quad \frac{\eta_{s p}}{c}=[\eta]+k_{1}[\eta]^{2}$
Huggins Equation

$$
\frac{\ln \left(\eta_{r}\right)}{c}=[\eta]+k_{1}^{\prime}[\eta]^{2} c
$$

Kraemer Equation (exponential expansion)

Utracki and Jamieson "Polymer Physics From Suspensions to Nanocomposites and Beyond" 2010 Chapter I

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. })
\end{gather*}
$$

Reduced Viscosity

Reduced Viscosity

$$
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c>0}[\eta]=\frac{V_{H}}{M}
$$

Fig. 4.5. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for acetyl starch of different molar masses in aqueous solution at $T=25^{\circ} \mathrm{C}$. The degree of substitution (DS) with acetyl groups is nearly constant at $D S \approx 0.9$. Due to the compact structure of the polymer coil the concentrations of the dilution series are relatively high to reach the required relative viscosity range of $\eta_{r}=1.2-2.5$

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\qquad \frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c=0}[\eta]=\frac{V_{H}}{M}
\end{gather*}
$$

Reduced Viscosity

Concentration Effect, c*

Fig. 4.2. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for different molar masses of the polycation poly(acrylamide-co-($\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl- N -[2-methacryloethyl]-ammoniumchloride) (PTMAC) in $0.1 \mathrm{~mol} / \mathrm{I} \mathrm{NaNO}_{3}$ solution. Data from [87]. All data points are measured at concentrations below the critical concentration $c^{*}{ }_{[\eta]}$. The copolymer consists of $8 \mathrm{~mol} \%$ TMAC and $92 \mathrm{~mol} \%$ AAm

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{equation*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}
\end{equation*}
$$

$\mathrm{n}=$ order of interaction (2 = binary, $3=$ ternary etc. $)$

$$
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c>0}[\eta]=\frac{V_{H}}{M}
$$

Solvent Quality

Fig. 5.3. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for a poly(acrylamide) (PAAm) in the solvents $\mathrm{H}_{2} \mathrm{O}$, formamide and ethylene glycol at $T=25^{\circ} \mathrm{C}$. Data from [89,90]. The intrinsic viscosity (intersection with the Y -axis) rises with the solvent quality

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. })
\end{gather*}
$$

Reduced
Viscosity

$$
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c>0}[\eta]=\frac{V_{H}}{M}
$$

Molecular Weight Effect

Fig. 5.4. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for sodium poly(styrene sulfonate) (PSSNa) of different molar masses in aqueous solution. The second virial coefficient of the viscosimetry, $K_{H} \cdot[\eta]^{2}$, is equivalent to the slope of the curves and is given for each molar mass. The Huggins constant K_{H} is constant and independent of the molar mass. Data from [35, 91]
$\eta_{\text {red }}=\frac{\eta_{\text {sp }}}{c}=[\eta]+k_{H}[\eta]^{2} c$
Huggins Equation

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Viscosity

$$
\begin{gathered}
\eta_{s}=\eta_{0}(1+[\eta] \phi) \\
{[\eta] \approx \frac{V_{\text {Molecule }}}{M_{\text {Moledule }}}}
\end{gathered}
$$

For the Native State Mass $\sim \rho V_{\text {Molecule }}$ Einstein Equation (for Suspension of 3d Objects)

$$
\begin{array}{r}
\eta_{s}=\eta_{0}\left(1+2.5 \phi_{v}\right) \\
{[\eta]=\frac{2.5}{\rho} \mathrm{ml} / \mathrm{g}}
\end{array}
$$

$$
\begin{gathered}
\text { For "Gaussian" Chain Mass } \sim \text { Size }^{2} \sim \mathrm{~V}^{2 / 3} \\
\mathrm{~V} \sim \text { Mass }^{3 / 2} \\
\text { For "Expanded Coil" Mass } \sim \text { Size }^{5 / 3} \sim \mathrm{~V}^{5 / 9} \\
\mathrm{~V} \sim \text { Mass }^{9 / 5} \\
\text { For "Fractal" Mass } \sim \text { Size }^{\mathrm{df}} \sim \mathrm{~V}^{\mathrm{df} / 3} \\
\mathrm{~V} \sim \text { Mass }^{3 / \mathrm{df}} \\
{[\eta] \sim M_{\text {Molecule }}^{\frac{3}{d_{f}}-1}}
\end{gathered}
$$

Viscosity

$$
\begin{gathered}
\eta_{s}=\eta_{0}(1+[\eta] \phi) \\
{[\eta] \approx \frac{V_{\text {Molecule }}}{M_{\text {Moledule }}}}
\end{gathered}
$$

For the Native State Mass $\sim \rho V_{\text {Molecule }}$ Einstein Equation (for Suspension of 3d Objects)

$$
\eta_{s}=\eta_{0}(1+2.5 \phi)
$$

$$
\begin{gathered}
\text { For "Gaussian" Chain Mass } \sim \text { Size }^{2} \sim \mathrm{~V}^{2 / 3} \\
\mathrm{~V} \sim \text { Mass }^{3 / 2}
\end{gathered}
$$

"Size" is the
"Hydrodynamic Size" For "Expanded Coil" Mass \sim Size ${ }^{5 / 3} \sim V^{5 / 9}$

$$
V \sim \text { Mass }^{9 / 5}
$$

This is the "Zimm Model" Or
Non-draining model

$$
\begin{gathered}
\text { For "Fractal" Mass } \sim \text { Size }{ }^{\mathrm{df}} \sim \mathrm{~V}^{\mathrm{d} / 3} \\
\mathrm{~V} \sim \text { Mass }^{3 / d f}
\end{gathered}
$$

$$
[\eta] \sim M_{\text {Molecule }}^{\frac{3}{d_{d}}-1}
$$

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c \rightarrow 0}[\eta]=\frac{V_{H}}{M}
\end{gather*}
$$

Viscosity itself has a strong temperature dependence. But intrinsic viscosity depends on temperature as far as coil expansion changes with temperature ($\mathrm{R}_{\mathrm{H}}{ }^{3}$).

Temperature Effect

Fig. 5.5. Zero-shear viscosity η_{0} as a function of the temperature T for poly (acrylamide) (PAAm) and poly(N -iso-propyl-acrylamide) (PipAAm) in aqueous solution ($c=0.1 \mathrm{wt} \%$). The viscosity for the solvent water as a function of the temperature is plotted as well. Data from [77]

Weaker and Opposite Dependency

Arrhenius Behavior

$$
\eta_{0}=A \exp \left(\frac{E}{k_{B} T}\right)
$$

Williams-Landel-Ferry (WLF) Equation

$$
\begin{gathered}
\log \left(a_{T}\right)=\frac{-C_{1}\left(T-T_{\mathrm{r}}\right)}{C_{2}+\left(T-T_{\mathrm{r}}\right)} \\
\mu(T)=\mu_{0} 10^{\left(\frac{-C_{1}\left(T-T_{r}\right)}{C_{2}+T-T_{r}}\right)}
\end{gathered}
$$

$$
\frac{\eta}{\eta_{0}}=\exp \left(\frac{H_{a}}{k T}\right)=>\exp \left(\frac{H_{a}}{k\left(T-T_{V}\right)}\right)=>\exp \left(\frac{E_{a}}{k\left(T-T_{V}\right)}\right)=>\exp \left(\frac{H_{a}-T S_{a}}{k\left(T-T_{V}\right)}\right)
$$

3 constants $T_{\mathrm{r}}, H_{\mathrm{a}}, S_{\mathrm{a}}$; WLF has 3 constants $T_{\mathrm{V}}, C_{1}, C_{2}$

$$
\text { If } \exp (x)=10 y \text { then } y=x /(\ln (10))=x / 2.30
$$

$$
T_{\mathrm{V}}=\left(C_{2}-T_{\mathrm{r}}\right) ; S_{\mathrm{a}}=2.30 C_{1} ; H_{\mathrm{a}}=2.30 C_{1} T_{\mathrm{r}}
$$

If you choose $T_{\mathrm{r}}=T_{\mathrm{g}}$ then $C_{1} \sim 17.44$ and $C_{2} \sim 51.6$
If you choose $T_{\mathrm{r}}=T_{\mathrm{g}}+43 \mathrm{~K}$ then $C_{1} \sim 8.86$ and $C_{2} \sim 101.6$
It might be best to measure H and S and find the Vogel temperature experimentally

Intrinsic "viscosity" for colloids (Simha, Case Western)

https://physicstoday.scitation.org/do/I0.I063/pt.4.2224/full/

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}}
\end{gathered}
$$

For a solid object with a surface, v is a constant in molecular weight, depending only on shape
For a symmetric object (sphere) $v=2.5$ (Einstein) $\quad[\eta]=\frac{2.5}{\rho} \mathrm{ml} / \mathrm{g}$
For ellipsoids v is larger than for a sphere,

$$
\begin{array}{cc}
v=\frac{J^{2}}{15(\ln (2 J)-3 / 2)} \quad & \text { prolate } \\
& \mathrm{a}, \mathrm{~b}, \mathrm{~b}:: \mathrm{a}>\mathrm{b}
\end{array}
$$

Intrinsic "viscosity" for colloids (Simha, Case Western)

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}}
\end{gathered}
$$

Hydrodynamic volume for "bound" solvent

$$
V_{H}=\frac{M}{N_{A}}\left(\bar{v}_{2}+\delta_{S} v_{1}^{0}\right)
$$

Partial Specific Volume	\bar{v}_{2}
Bound Solvent (g solvent/g polymer)	δ_{S}
Molar Volume of Solvent	v_{1}^{0}

Intrinsic "viscosity" for colloids (Simha, Case Western)

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}} \\
\text { Long cylinders (TMV, DNA, Nanotubes) } \\
{[\eta]=\frac{2}{45} \frac{\pi N_{A} L^{3}}{M\left(\ln J+C_{\eta}\right)} \quad \mathrm{J}=\mathrm{L} / \mathrm{d}} \\
C_{\eta} \quad \text { End Effect term } \sim 2 \ln 2-25 / I 2 \text { Yamakawa } 1975
\end{gathered}
$$

Shear Rate Dependence for Polymers

- xanthan gum
$M_{\mathrm{w}}=1.8 \cdot 10^{6} \mathrm{~g} / \mathrm{mol}, c=0,1 \%$
- poly(acrylamide)
$M_{\mathrm{w}}=7.9 \cdot 10^{6} \mathrm{~g} / \mathrm{mol}, c=0.1 \%$ $T=25^{\circ} \mathrm{C}$

Fig. 5.8. Dynamic viscosity η as a function of the shear rate $\dot{\gamma}$ for an aqueous xanthan gum and an aqueous poly(acrylamide) solution of a comparable degree of polymerization and the same concentration $c=0.1 \mathrm{wt} \%$ data from [92]. The viscosity depends on the shear rate above a critical shear rate र̈crit $_{\text {crit }}$

Fig. 5.10. Intrinșic viscosity [η] determined at high shear rates $\gamma \dot{\text { with }}$ a capillary viscosimeter and at lower shear rates with a Zimm-Crothers viscosimeter for different xanthan gums in $0.1 \mathrm{~mol} / \mathrm{l}$ sodium chloride (NaCl) solution at $25^{\circ} \mathrm{C}$. Data from [93]. For strongly shear thinning polymer solutions, only low shear viscosimeters reach the shear rate independent viscosity region

Capillary Viscometer

$$
\begin{aligned}
& \frac{\text { Volume }}{\text { time }}=\frac{\pi R^{4} \Delta p}{8 \eta l} \\
& \Delta p=\rho g h \\
& \dot{\gamma}_{\text {Max }}=\frac{4 \text { Volume }}{\pi R^{3} \text { time }}
\end{aligned}
$$

Fig. 3.2. Velocity profile in a capillary viscosimeter. The fluid velocity v has a parabolic profile with a maximum in the middle of the capillary; the shear rate $\dot{\gamma}$ and the shear stress τ have a maximum at the capillary wall and are zero in the middle of the capillary

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Branching and Intrinsic Viscosity

5.5 Branching

Branching in a polymer coil leads for polymers of the same molar mass to changes of the intrinsic viscosity. Although the chemical composition is the same, branched polymers have a higher density $\rho_{\text {equ }}$ in solution than linear polymers and therefore

Fig. 5.11. Intrinsic viscosity $[\eta]$ as a function of the molar mass M for linear poly(ethylene) (high density poly(ethylene), HDPE) and longchain branched poly(ethylene) (low density poly(ethylene), LDPE) in tetraline at $T=120^{\circ} \mathrm{C}$ (data from $[47,94]$) as well as for a dendrimer with 3,5-dioxybenzylidene units in tetrahydrofuran at $T=30^{\circ} \mathrm{C}$ (data from [47, 95])

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

How Complex Mass Fractal Structures Can be Decomposed

Tortuosity Connectivity

$$
\begin{gathered}
z \sim\left(\frac{R}{d}\right)^{d_{f}} \sim p^{c} \sim s^{d_{\min }} \\
d_{f}=d_{\min } c
\end{gathered}
$$

$$
p \sim\left(\frac{R}{d}\right)^{d_{\text {min }}}
$$

$$
s \sim\left(\frac{R}{d}\right)^{c}
$$

z	d_{f}	p	$d_{\text {min }}$	s	c	R / d
27	1.36	12	1.03	22	1.28	11.2

Branching and Intrinsic Viscosity

$$
\begin{gathered}
\mathbf{R}_{\mathbf{H}} \sim \mathbf{p}^{1 / d \mathrm{~min}} \\
\mathbf{Z} \sim \mathbf{p}^{c}
\end{gathered}
$$

$$
\mathbf{R}_{\mathbf{H}} \sim \mathbf{z}^{c d \min }=\mathbf{z}^{d \mathbf{f}}
$$

At low $z ; d_{\text {min }}=2, c=1 ; d_{\mathrm{f}}=d_{\text {min }} c=2$ (linear chain) At high $z ; d_{\text {min }}=>1, c=>2$ or $3 ; d_{\mathrm{f}}=d_{\text {min }} c=>2$ or 3
(highly branched chain or colloid)

$$
[\eta] \sim M_{\text {Molecule }}^{\frac{3}{d_{f}}-1}
$$

Branching and Intrinsic Viscosity

$$
\begin{aligned}
& R_{g, b, M}^{2} \leq R_{g, l, M}^{2} \\
& g=\frac{R_{g, b, M}^{2}}{R_{g, l, M}^{2}} \\
& g=\frac{3 f-2}{f^{2}} \\
& g_{\eta}=\frac{[\eta]_{b, M}}{[\eta]_{l, M}}=g^{0.58}=\left(\frac{3 f-2}{f^{2}}\right)^{0.58}
\end{aligned}
$$

FIGURE 1.7 Plots of viscometric branching parameter, g_{η}, versus branch functionality, p, for
Er chains on a simple cubic lattice (unfilled circles), together with experimental data for star mers in theta solvents: \bullet, polystyrene in cyclohexane; $\boldsymbol{\Delta}$, polyisoprene in dioxane. Solid
dashed lines represent calculated values via Eqs. (1.70) and (1.71), respectively. (Adapted Shida et al. [2004].)

Keep in mind stars are a special case!

Utracki and Jamieson "Polymer Physics From Suspensions to Nanocomposites and Beyond" 2010 Chapter I

Branching and Intrinsic Viscosity

$$
\left(\mathbf{R}_{\mathbf{H}, \mathbf{B}} / \mathbf{R}_{\mathbf{H}, \mathrm{L}}\right)^{2} \sim \mathbf{z}^{2(d f, \mathbf{B}-d f, \mathrm{~L})}
$$

This is still just looking at density! There is not topological information here which is critical to describe branching

At low $z ; d_{\text {min }}=2, c=1 ; d_{\mathrm{f}}=d_{\text {min }} c=2$ (linear chain) At high $z ; d_{\text {min }}=>1, c=>2$ or $3 ; d_{\mathrm{f}}=d_{\text {min }} c=>2$ or 3 (highly branched chain or colloid)

Polyelectrolytes and Intrinsic Viscosity

Low Concentration

$0 /\left(1-{ }^{2 a} u\right)=0 \|^{d s} u={ }^{p a \mu} u$

Very High Concentration

Fig. 5.16. Different behavior of a polyelec trolyte in aqueous solution and a salt solution. At high concentrations of the polyelectrolyte in aqueous solution is the concentration of counter ions inside the polymer coil higher than outside, leading to an expansion of the coil due to osmotic pressure. At low concentrations of the polyelectrolyte in aqueous solution, the polyelectrolyte is highly dissociated, leading to an expansion of the coil due to coulomb repulsion forces. Both expansion effects are compensated in the salt solution

Initially rod structures, increasing concentration Followed by charge screening Finally uncharged chains

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Polyelectrolytes and Intrinsic Viscosity

mCLRE 1.16 Determination of the chain overlap concentration c^{*}, the entanglement concenmion c_{e}, the electrostatic blob overlap concentration $c^{* *}$ from the concentration dependence IF pecific viscosity for a 17%-quaternized P 2 VP copolymer ($17 \mathrm{PMVP}-\mathrm{Cl}$) in solution in ethy$=$ glycol at $25^{\circ} \mathrm{C}$. Symbols are experimental data and solid lines represent the power laws mericted from scaling theory. (Adapted from Dou and Colby [2006].)

Fig. 10 Comparison of specific viscosity in the good solvent ethylene glycol of a neutral polymer (poly(2-vinyl pyridine), red) and the same polymer that has been 55% quaternized (poly(2vinyl pyridine) chloride, blue; Dou and Colby 2006) plotted as functions of the number density of monomers with units of moles of monomer per liter. Slopes of unity for $\eta_{\mathrm{sp}}<1$ are expected by the Zimm model in dilute solution ($c<c^{*}$). Slopes of $1 / 2$ and 1.3 for $1<\eta_{\mathrm{sp}}<20$ are expected by the Rouse model for semidilute unentangled solutions of polyelectrolytes and neutral polymers, respectively. At higher concentrations, entangled solution viscosity data are shown that are consistent with the $3 \times$ larger slopes predicted for entangled solutions

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions

Ralph H. Colby
Rheol Acta (2010) 49:425-442

Hydrodynamic Radius from Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HiemenzRajagopalanD
$\underline{\text { LS.pdf }}$
http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.p
df

Correlation Functions (Tadmor and Gogos pp. 381)

Fig. 7.32 The two textures (left field and right field) have the same first-order statistics (the same number of black dots), but they differ in second-order statistics. In the left field the dots fall at random, whereas in the right field there are at least 10 dot diameters between dots. [Reprinted by permission from B. Julesz, "Experiments in the Visual Perception of Texture" Sci. Am., 232, 34 (1975).]

Let random variable I represents the gray levels of image region. The first-order histogram $P(I)$ is defined as:

$$
\begin{equation*}
P(I)=\frac{\text { number of pixels with gray level } I}{\text { total number of pixels in the region }} \tag{8}
\end{equation*}
$$

Based on the definition of $P(I)$, the Mean m_{1} and Central Moments μ_{k} of I are given by

$$
\begin{gathered}
m_{1}=E\left[I^{1}\right]=\sum_{I=0}^{N_{g}-1} I^{1} P(I) \\
\mu_{k}=E\left[(I-E[I])^{k}\right]=\sum_{I=0}^{N_{g}-1}\left(I-m_{1}\right)^{k} P(I), \\
k=2,3,4 \\
\text { where } N_{g} \text { is the number of possible gray levels. }
\end{gathered}
$$

$P_{\theta, d}\left(I_{1}, I_{2}\right)$. It describes how frequently two pixels with gray-levels I_{1}, I_{2} appear in the window separated by a distance d in direction θ. The information can be extracted from the co-occurrence matrix that measures second-order image statistics [17,24], where the pixels are considered in pairs. The co-occurrence matrix is a function of two parameters: relative distance measured in pixel numbers (d) and their relative orientation θ. The orientation θ is quantized in four directions that represent horizontal, diagonal, vertical and anti-diagonal by $0^{\circ}, 45^{\circ}$ 90° and 135° respectively.

Fig. 7.33 The two textures (left field and right field) made of black, dark gray, light gray, and white squares have the same first-order statistics, but different second-order statistics, which appear as a difference in granularity. [Reprinted by permission from B. Julesz, "Experiments in the Visual Perception of Texture" Sci. Am., 232, 34 (1975).]

First and Second Order Statistics Features for Classification of Magnetic Resonance Brain Images

Fig. 7.34 Photographs of extruded LDPE films with carbon black concentrate extruded at various conditions. The barrel temperature $\left({ }^{\circ} \mathrm{C}\right.$) and screw speed (rpm) are as follows: (a) $160^{\circ}, 40$; (b) 160°, 60 ; (c) $160^{\circ}, 80$; (d) $180^{\circ}, 40$; (e) $180^{\circ}, 60$; (f) $180^{\circ}, 80$. [Reprinted by permission from N. Nadav and Z. Tadmor "Quantitative Characterization of Extruded Film Texture," Chem. Eng. Sci., 28, 2115 (1973).]

Correlation Functions (Tadmor and Gogos pp. 381)
Gross Uniformity: Gaussian distribution of samples, First order
Scale of Segregation: Second order

The Scale of Segregation

The coefficient of correlation, $R(r)$, measures the degree of correlation between the concentrations at two points separated by distance r. It is obtained by randomly "throwing" a dipole of length r, and is defined as follows:

$$
\begin{equation*}
0 \text { to } 1 \quad R(r)=\frac{\sum_{i=1}^{N}\left(x_{i}^{\prime}-\bar{x}\right)\left(x_{i}^{\prime \prime}-\bar{x}\right)}{N S^{2}} \tag{7.4-7}
\end{equation*}
$$

$$
S^{2}=\frac{\sum_{i=1}^{2 N}\left(x_{i}-\bar{x}\right)^{2}}{2 N-1}
$$

Diffusion/Gradient Non-reversible

Fig. 7.36 Schematic representation of scale and intensity of segregation.
Shear strain
Reversible

Correlation Functions (Tadmor and Gogos pp. 381)

Fig. 7.37 Typical correlograms. (a) Along a line perpendicular to an equally spaced striped texture. (b) Over an area of a checkered board texture. (c) Along a line of an extruded film, as shown in Fig. 7.34, perpendicular to the extrusion direction.

Correlation Functions

DLS deals with a time correlation function at a given " q " $=2 \pi / d$

Above: A plot of a series of 100 random numbers concealing a sine function. Below: The sine function revealed in a correlogram produced by autocorrelation.

Figure 1. Heterodyne DLS apparatus. BS = beamsplitter; $\mathrm{M}=$ Mirror; $\mathrm{D}=$ detector. For a homodyne apparatus, just remove the two beamsplitters and mirror.

Figure 4. Intensity fluctuations are "random" on a time scale δ but "correlated" on a time scale ε.

Fick's Laws

$$
\begin{aligned}
J & =-D \frac{d \varphi}{d x} \\
\frac{\partial \varphi}{\partial t} & =D \frac{\partial^{2} \varphi}{\partial x^{2}} \quad \varphi(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right)
\end{aligned}
$$

Brownian Motion

$\mathrm{MSD} \equiv\left\langle\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)^{2}\right\rangle=2 n D t$

Paul Russo Lab

$$
G^{(2)}(\mathrm{t})=\langle I(0) I(\mathrm{t})\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} I\left(t^{\prime}\right) \cdot I\left(t^{\prime}+t\right) d t^{\prime} \quad<1>
$$

Not normalized second order correlation function (capital G, normalized is small g)

After some time, the signal in the correlator is well approximated ${ }^{2}$ by:

$$
<2 \gg 子 \begin{array}{ll}
g^{(1)}(\mathrm{t})=\mathrm{e}^{-\Gamma \mathrm{t}} & <3> \\
\Gamma=\tau^{-1}=q^{2} D_{\mathrm{m}} & <4>\quad \mathrm{MSD}=2 n D t \\
q=4 \pi \cdot n \cdot \sin (\theta / 2) / \lambda_{\mathrm{o}} & <5>
\end{array}
$$

Paul Russo Lab

$$
g^{(2)}(t)=\frac{G^{(2)}(t)}{G^{(2)}(t=\infty)}=\frac{G^{(2)}(t)}{B}
$$

$$
\sqrt{\frac{g^{(2)}(t)-1}{g^{(2)}(0)-1}} \equiv \sqrt{\frac{g^{(2)}(t)-1}{f}} \equiv g^{(1)}(t)
$$

Figure 6. Various forms of autocorrelation function available

$$
\begin{array}{ll}
g^{(1)}(\mathrm{t})=\mathrm{e}^{-\Gamma \mathrm{t}} \\
\Gamma=\tau^{-1}=q^{2} D_{\mathrm{m}} & <3> \\
R_{\mathrm{h}}=\frac{k T}{6 \pi \eta_{o} D_{o}} & <7>
\end{array}
$$

What does R_{h} mean?
Sometimes newcomers to DLS do not know what R_{h} really means, so let's be very clear about that.

1. If your object is a solid sphere of radius R, then $R_{\mathrm{h}}=R$.
2. If your object is spherical "bubble" (e.g., liposome) with outer radius R, then $R_{\mathrm{h}}=R$ (exception: some liposomes may "wiggle" and that could alter R_{h}).
3. If your object is a sphere on the outside, but has inclusions of any shape inside, then $R_{\mathrm{h}}=R$.
4. If your object has some other shape - such as cylinder, cube, polymer chain or star-then R_{h} is the radius of some hypothetical sphere that diffuses as fast as your object does.
5. If your object is a semidilute solution, gel, etc., all bets are off.

Paul Russo Lab

Consider motion of molecules or nanoparticles in solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the starting point at $t=0$ is a Gaussian Function that defines the diffusion Coefficient, D

$$
\begin{aligned}
& \rho(x, t)=\frac{1}{(4 \pi D t)^{1 / 2}} e^{-x^{2} / 2(2 D t)} \\
& \left\langle x^{2}\right\rangle=\sigma^{2}=2 D t
\end{aligned}
$$

The Stokes-Einstein relationship states that D is related to R_{H},

$$
D=\frac{k T}{6 \pi \eta R_{H}}
$$

A laser beam hitting the solution will display a fluctuating scattered intensity at "q" that varies with q since the particles or molecules move in and out of the beam

I(q, t)
This fluctuation is related to the diffusion of the particles

Video of Speckle Pattern (http://www.youtube.com/watch?v=ow6F5HJhZo0)

For static scattering $\mathrm{p}(\mathrm{r})$ is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function

$$
\mathrm{g}_{1}(\mathrm{q}, \tau)
$$

For dynamics we consider a single value of q or r and watch how the intensity changes with time

$$
\mathrm{I}(\mathrm{q}, \mathrm{t})
$$

We consider correlation between intensities separated by t We need to subtract the constant intensity due to scattering at different size scales and consider only the fluctuations at a given size scale, r or $2 \pi / r=q$

$$
\begin{aligned}
\mathrm{I}(\mathbf{R}, \mathrm{t})=\mathrm{Q}_{\mathrm{c}} \mathbf{E}_{\mathrm{s}} *\left(\mathbf{R}, \mathrm{t}^{\mathrm{t}}\right)^{\mathrm{T}} \cdot \mathbf{E}_{\mathrm{s}}\left(\mathbf{R}, \mathrm{t}^{\prime}\right) \quad \begin{array}{l}
\mathrm{Q}_{\mathrm{e}}=\text { quantum efficiency } \\
\mathrm{R}=2 \pi / \mathrm{q} \\
\mathrm{E}_{\mathrm{s}}=\text { amplitude of scattered wave }
\end{array} \\
<\mathrm{I}(\mathbf{R})>=\mathrm{Q}_{\mathrm{c}}\left\langle\mathbf{E}_{\mathrm{s}} *\left(\mathbf{R}, \mathrm{t}^{\prime}\right)^{\mathrm{T}} \cdot \mathbf{E}_{\mathrm{s}}\left(\mathbf{R}, \mathrm{t}^{\prime}\right)\right\rangle
\end{aligned}
$$

$$
\langle\mathrm{I}(0) \mathrm{I}(\mathrm{t})\rangle=\left\langle\mathrm{I}(0)^{2}\right\rangle+\mathrm{Q}_{\mathrm{c}}{ }^{2}\langle | \mathbf{E}^{*}(0)^{\mathrm{T}} \cdot \mathbf{E}(\mathrm{t})| | \mathbf{E}^{*}(\mathrm{t})^{\mathrm{T}} \cdot \mathbf{E}(0)| \rangle
$$

If the intensity correlation function is normalized by $\left\langle\mathrm{I}(0)^{2}\right\rangle$ the autocorrelation function results,
$\mathrm{C}(\mathrm{t})=\langle\mathrm{I}(0) \mathrm{I}(\mathrm{t})\rangle /\left\langle\mathrm{I}(0)^{2}\right\rangle=1+\mathrm{Kg}^{(2)}(\mathrm{t})$
where $\mathrm{g}^{(2)}(\mathrm{t})$ is the square of the normalized autocorrelation function for electric field, $\mathrm{g}^{(2)}(\mathrm{t})=$ $\left|g^{(1)}(t)\right|^{2}$.
$\mathrm{G}_{1}(\mathbf{K}, \mathrm{t})=\left\langle(\Delta \mathrm{C}(\mathbf{K}, 0))^{2}>\exp \left(-\mathrm{D}_{\mathrm{m}} \mathrm{K}^{2} \mathrm{t}\right)\right.$

$$
\mathrm{g}^{(1)}(\mathrm{t})=\mathrm{g}^{(1)}(\mathbf{K}, \mathrm{t})=\exp \left(-\mathrm{D}_{\mathrm{m}} \mathbf{K}^{2} \mathrm{t}\right)
$$

q or K squared since size scales with the square root of time

$$
\left\langle x^{2}\right\rangle=\sigma^{2}=2 D t
$$

Dynamic Light Scattering

The radius of an equivalent sphere following Stokes' Law

Dynamic Light Scattering

my DLS web page

http://mww.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

https://en.wikipedia.org/wiki/Dynamic light scattering

Wiki Einstein Stokes

Diffusing Wave Spectroscopy (DWS)

Traditional Rheology: Place a fluid in a shear field, measure torque/force and displacement

Microrheology: Observe the motion of a tracer.
Two types, passive or active microrheology. DWS is passive.

Sensor Studied product

Diffusing Wave Spectroscopy (DWS)

Diffusing Wave Spectroscopy (DWS)

Viscous Motion

$$
\begin{aligned}
& <\Delta r^{2}>=4 D t \\
& <\Delta r^{2}>=\text { Const }
\end{aligned}
$$

Elastic Motion

$$
G(\omega)=G^{\prime}(\omega)+i G^{\prime \prime}(\omega)
$$

$$
\tilde{G}(s)=\frac{k_{\mathrm{B}} T}{\pi a s\left\langle\Delta \tilde{r}^{2}(s)\right\rangle}
$$

$\tilde{G}(s)$: Laplace transform of G
k_{B} : Boltzmann constant

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t \quad \text { (Eq.1) }
$$

T : temperature in kelvins
s : the Laplace frequency
a: the radius of the tracer
$\left\langle\Delta \tilde{r}^{2}(s)\right\rangle$: the Laplace transform of the mean squared displacement

Diffusing Wave Spectroscopy (DWS)

$$
\begin{gathered}
\qquad G(\omega)=G^{\prime}(\omega)+i G^{\prime \prime}(\omega) \\
\tilde{G}(s)=\frac{k_{\mathrm{B}} T}{\pi a s\left\langle\Delta \tilde{r}^{2}(s)\right\rangle} \\
g_{2}(\tau)-1=\left[\int d s P(s) \exp \left(-(s / l *) k_{0}^{2}\left\langle\Delta r^{2}(\tau)\right\rangle\right)\right]^{2} \\
\text { For back scatter: } \quad g_{2}(\tau)-1=\exp \left(-2 \gamma \sqrt{\left\langle\Delta r^{2}(\tau)\right\rangle k_{0}^{2}}\right)
\end{gathered}
$$

Diffusing Wave Spectroscopy (DWS)

$$
G(\omega)=G^{\prime}(\omega)+i G^{\prime \prime}(\omega)
$$

$-\quad k n_{n} T$

Link rheology to micelle structure

Ron Larson/Mike Weaver

Structure inferred from rheology, using Standard Cates Model and newer developments (Larson group,
others...)

Quasi-Elastic Neutron (and X-ray) Scattering

In the early days of DLS there were two approaches:
Laser light flickers creating a speckle pattern that can be analyzed in the time domain
The flickering is related to the diffusion coefficient through an exponential decay of the time correlation function

A more direct method is to take advantage of the Doppler effect. Train whistle appears to change pitch as the train passes since the speed of the train is close to $1 / \omega$ for the sound
If we know the frequency of the sound, we can determine the speed of the train Measuring the spectrum from a laser, and the broadening of this spectrum after interaction with particles the diffusion coefficient can be determined from an exponential decay in the frequency, peak broadening. This is called quasi-elastic light scattering and measures the same thing as DLS by a different method.

For Neutrons and X-rays the time involved is too fast for correlators, pico- to nanoseconds. But line broadening can be observed (though there are no X-ray or neutron lasers i.e., monochromatic and columnated).

Neutron and X-ray "Lasers"

For X-rays a synchrotron with an undulator insertion device can produce close to monochromatic and fairly coherent radiation. NSLS II Brookhaven National Laboratory near Stony Brook, Long Island NY (near NYC)

Neutron and X-ray "Lasers"

For neutrons, a spallation source with a time-of-flight detection system or a reactor with a velocity selector can result in a reasonably coherent and monochromatic (spectral in time) beam. SNS at Oak Ridge National Laboratory, Tennessee (near Knoxville) and NCNR at NIST Gaithersburg MD (near Washington DC).

Quasi Elastic Neutron Scattering QENS

Enerqv Transfer

- Quasi elastic neutron scattering is a limiting case of inelastic neutron scattering
- Doppler type of broadening of the elastic line due to a small energy transfer between the neutrons and the atoms in the sample

What is QENS used for

Probes slow dynamics

- Translational diffusion
- Molecular reorientations
- Relaxation processes

Applicable to wide range of scientific topics

- Materials science: fuel cells, batteries, hydrogen storage,
- Soft Matter. polymer nanocomposites and blends, organic photovoltaics, polymer electrolytes
- Biology: hydration water, dynamics of proteins
- Chemistry: water interfaces, ionic liquids, clays, porous media, complex fluids, surface interactions

Results are comparable to Molecular

Dynamics simulations

QENS spectra

The SNS Inelastic Instrument Suite

Science Example 1: Molecular Reorientation

Octamethyl POSS @ BASIS

$$
S(Q, \omega)=f\left[p_{0} \delta(\omega)+\sum_{H}^{n} p_{i} \frac{1}{\pi} \frac{\Delta_{i}(Q)}{\omega^{2}+\Delta_{i}^{2}}\right] \otimes R(Q, \omega)+B
$$

Science Example 1: Molecular Reorientation

- Polyoligosilsesquioxane Ligand Dynamics
- How do ligand dynamics contribute to the functionalities of POSS?

Science Example 3: Water Dynamics in Anion Exchange Membranes Studied by QENS

Ionic conductivity and water transport are key properties for applications

Depends on water content
Water transport in AEM multiscale problem

Investigation of transport in multiple
time- and length scales for structure -

function insight

Science Example 3: Water Dynamics in Anion Exchange Membranes Studied by QENS

TOFTOF: time-of-flight spectrometer

Science Example 3: Water Dynamics in Anion Exchange Membranes Studied by QENS $\quad \Gamma-\frac{1}{\tau_{4}}\left(1-e^{-P^{2} 0_{x_{2}}}\right)$

SPHERES: high-resolution backscattering spectrometer

Science Example 3: Water Dynamics in Anion Exchange Membranes Studied by QENS

$$
R_{\mathrm{g}} / R_{\mathrm{H}} \text { Ratio }
$$

R_{g} reflects spatial distribution of structure
R_{H} reflects dynamic response, drag coefficient in terms of an equivalent sphere
While both depend on "size" they have different dependencies on the details of structure
If the structure remains the same and only the amount or mass changes the ratio between these parameters remains constant. So the ratio describes, in someway, the structural connectivity, that is, how the structure is put together.

This can also be considered in the context of the "universal constant"

$$
[\eta]=\Phi \frac{R_{g}^{3}}{M}
$$

Lederer A et al. Angewandte Chemi 524659 (2013).
(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/DresdenRgbyRh4659_ftp.pdf)

$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{H}}$ Ratio

Scheme 1. Variation of the branching degree from linear to hyperbranched structures for polyesters with different functional groups.

Figure 1. Dependence of the branching parameter ρ on the degree of branching for SY- and OH -terminated samples. The lines correspond to tentative fits to the measurement points.

$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{H}}$ Ratio

Table III
ρ Factor and Molecular Polydispersity $P_{\mathrm{w}} / P_{\mathrm{n}}$ for Some Selected Models ${ }^{a}$

model	ρ	$P_{\text {w }} / P_{\mathrm{n}}$
linear chains		
monodisperse 1.5	$8 / 3 \pi^{1 / 2}$	1
polydisperse ($m=1$)	$3^{1 / 2}$	2
polydisperse (m coupled chains)	$\frac{(m+2)^{1 / 2}}{m+1} 2 \Sigma\left(1+\frac{k-1}{m}\right) c(k)$	$1+(1 / m)$
star molecules		
regular stars	$\left(\frac{3 f-2}{f \pi}\right)^{1 / 2} \frac{8}{3} \frac{(2-f)+2^{1 / 2}(f-1)}{f}$	1
polydisperse stars	$\left(\frac{6 f}{f+1}\right)^{1 / 2} \frac{f+3}{2(f+1)}$	$1+(1 / f)$
polycondensates $\quad(f+1)$		
A $_{\text {f type }} 1.73$	$3^{1 / 2}$	$P_{\mathrm{w}}\left(1-\frac{f}{2(f-1)}\right)$
ABC type	$\left(\frac{3}{4} \frac{1+2 B}{1+B}\right)^{1 / 2}\left(\frac{2+B}{1+B}\right)$	$2(1+B)$
randomly cross-linked chains (polydisperse ($m=1$) primary chains) monodisperse spheres	$\begin{aligned} & 3^{1 / 2} \\ & (3 / 5)^{1 / 2} \end{aligned}$	${ }_{1}^{2\left(P_{\mathrm{w}} / P_{\mathrm{w}} p\right)}$
${ }^{a} \rho=\langle 1 / R\rangle_{z}\left\langle S^{2}\right\rangle_{z}{ }^{1 / 2}$; all other notation is as in Tables I and II.		

Burchard, Schmidt, Stockmayer, Macro. I3 1265 (1980)
(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchard ma60077a045.pdf)

R_{g} / R_{H} Ratio

$$
\begin{aligned}
& g=0.77 \pm 14 \% \\
& h=0.94 \pm 5 \% \\
& \rho=1.4 \pm 6 \% \\
& C=0.158 \pm 10 \%
\end{aligned}
$$

$3 \pm 0.8 \quad 5.5 \pm 1.4$
$3 \pm 0.8 \quad 4.3 \pm 0.9$
$3 \pm 0.9 \quad 8.0 \pm 2.5$
$3 \pm 1.5 \quad 10.0 \pm 5$

$\frac{B}{$| ABC poly- |
| :---: |
| condensate |}

2.25 ± 0.6
1.65 ± 0.35
3.5 ± 1.1
4.5 ± 2.3

Burchard, Schmidt, Stockmayer, Macro. 13 I265 (1980)
(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchard ma60077a045.pdf)

Figure 2. Temperature dependence of the average radius of gyration ($\left.\left\langle R_{\mathrm{g}}\right\rangle\right)$ of the PNIPAM chains in the coil-to-globule (heating) and the globule-to-coil (cooling) transitions, respectively.

Figure 3. Temperature dependence of the average hydrodynamic radius ($\left.\left\langle R_{\mathrm{h}}\right\rangle\right)$ of the PNIPAM chains in the coil-to-globule (heating) and the globule-to-coil (cooling) transitions, respectively.

Figure 4. Temperature dependence of the ratio of radius of gyration to hydrodynamic radius ($\left\langle R_{\mathrm{g}}\right\rangle /\left\langle R_{\mathrm{h}}\right\rangle$) of the PNIPAM chains in the coil-to-globule (heating) and the globule-to-coil (cooling) transitions, respectively.
$1.5=$ Random Coil
$\sim 0.56=$ Globule

Globule to Coil $=>$ Smooth Transition Coil to Globule $=>$ Intermediate State Less than $(3 / 5)^{1 / 2}=0.77$ (sphere)

Wang X., Qiu X., Wu C. Macro. 3I 2972 (I998). (http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhPNIPA AMma971873p.pdf)

$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{H}}$ Ratio

Figure 7. Schematic of four thermodynamically stable states and their corresponding chain density distributions ($W(r)$) along the radius in the coil-to-globule and the globule-to-coil transitions.

Figure 4. Temperature dependence of the ratio of radius of gyration to hydrodynamic radius $\left(\left\langle R_{\mathrm{g}}\right\rangle /\left\langle R_{\mathrm{h}}\right\rangle\right)$ of the PNIPAM chains in the coil-to-globule (heating) and the globule-to-coil (cooling) transitions, respectively.

> I.5 = Random Coil $\sim 0.56=$ Globule Globule to Coil => Smooth Transition Coil to Globule => Intermediate State Less than $(3 / 5)^{1 / 2}=0.77$ (sphere)

[^0]
$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{H}}$ Ratio

Poly(N, N-diethylacrylamide)
(PDEAM)

Poly(N -isopropylacrylamide)
(PNIPAM)

The objectives of the current study are to find whether the intrachain hydrogen boding plays a role in stabilizing individual collapsed single-chain globules, in the formation of the molten globular state during the coil-to-globule transition, and in the hysteresis of the globule-to-coil transition.

1.5 to 0.92 (> 0.77 for sphere)

It is important to note that for PDEAM $\left\langle R_{\mathrm{g}}\right\rangle\left\langle\left\langle R_{\mathrm{h}}\right\rangle\right.$ finally reaches ~ 1.0, higher than 0.774 predicted for a uniform nondraining sphere. This means that individual PDEAM singlechain globules are not hard sphere, but still partially draining, less compact than those PNIPAM single-chain globules because its $\left\langle R_{\mathrm{g}}\right\rangle\left\langle\left\langle R_{\mathrm{h}}\right\rangle\right.$ reaches ~ 0.78 at high temperatures. ${ }^{21}$ We can attribute such a difference to the lacking of intrachain hydrogen bonding in PDEAM. It has been known that the hydrogen

Figure 4. Temperature dependence of average radius of gyration $\left(\left\langle R_{\mathrm{g}}\right\rangle\right)$ and hydrodynamic radius ($\left.\left\langle R_{\mathrm{h}}\right\rangle\right)$ of poly(N, N-diethylacrylamide) (PDEAM) chains in water in one heating-and-cooling cycle.

Figure 5. Temperature dependence of ratio of average radius of gyration to average hydrodynamic radius $\left(\left\langle R_{\mathrm{g}}\right\rangle /\left\langle R_{\mathrm{h}}\right\rangle\right)$ of poly $(N, N$-diethylacrylamide) (PDEAM) chains in water in one heating-and-cooling cycle.

> Zhou K., Lu Y., Li J., Shen L., Zhang F., Xie Z.,Wu
> C. Macro. 4I 8927 (2008).

(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhCoilto Globulema8019128.pdf)

$\mathrm{R}_{\mathrm{g}} / \mathrm{R}_{\mathrm{H}}$ Ratio

This ratio has also been related to the
shape of a colloidal particle

Static Scattering for Fractal Scaling

At intermediate sizes the chain is "self-similar"

$$
\begin{gathered}
\text { Mass } \sim \text { Size } e^{d_{f}} \\
z \sim\left(\frac{R_{2}}{R_{1}}\right)^{d_{f}}
\end{gathered}
$$

At intermediate sizes the chain is "self-similar"

$$
\mathrm{I}(\mathrm{q}) \sim \mathrm{N} \mathrm{n}_{\mathrm{e}}^{2}
$$

$\mathrm{N}=$ Number of Intermediate Spheres in the
Aggregate
$\mathrm{n}_{\mathrm{e}}=$ Mass of inter.
sphere

$$
N n_{e}^{2} \sim\left(\frac{r_{\mathrm{int}}}{R_{1}}\right)^{d_{f}}\left(\frac{R_{2}}{R_{1}}\right)^{d_{f}} \Rightarrow \mathrm{I}(\mathrm{q}) \sim\left(\frac{R_{2}}{R_{1}^{2}}\right)^{d_{f}} q^{-d_{f}}
$$

The Debye Scattering Function for a Polymer Coil

$$
\begin{gathered}
I(Q)=\frac{2}{Q^{2}}(Q-1+\exp (-Q)) \\
Q=q^{2} R_{g}^{2} \\
\exp (-Q)=1-Q+\frac{Q^{2}}{2!}-\frac{Q^{3}}{3!}+\frac{Q^{4}}{4!}-\ldots, q_{0} \\
I(q)=1-\frac{Q}{3}+\ldots \approx \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right) \\
\text { Guinier's Law! }
\end{gathered}
$$

The Debye Scattering Function for a Polymer Coil

$$
\begin{aligned}
& I(Q)=\frac{2}{Q^{2}}(Q-1+\exp (-Q)) \\
& Q=q^{2} R_{g}^{2} \\
& \text { For } \mathrm{qR} \mathrm{R} \gg \mathrm{l} \\
& I(Q)=\frac{2}{Q}=\frac{2}{q^{2} R_{g}^{2}} \sim q^{-d_{f}} \\
& \quad \mathrm{df}=2
\end{aligned}
$$

Ornstein-Zernike Equation

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}} \quad I(q=>\infty)=\frac{G}{q^{2} \xi^{2}}
$$

Has the correct functionality at high q
Debye Scattering Function =>

$$
I(q)=\frac{2}{q^{2} R_{g}^{2}}\left(q^{2} R_{g}^{2}-1+\exp \left(-q^{2} R_{g}^{2}\right)\right) \quad I(q=>\infty)=\frac{2 G}{q^{2} R_{g}^{2}}
$$

So,

$$
R_{g}^{2}=2 \zeta^{2}
$$

Ornstein-Zernike Equation

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}} \quad I(q=>0)=G \exp \left(-q^{2} \xi^{2}\right)
$$

Has the correct functionality at low q
Debye =>

$$
I(q)=\frac{2}{q^{2} R_{g}^{2}}\left(q^{2} R_{g}^{2}-1+\exp \left(-q^{2} R_{g}^{2}\right)\right) \quad I(q=>0)=G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right)
$$

$$
\begin{array}{cc}
R_{g}^{2}=3 \zeta^{2} & \text { The relatoinship between } \mathrm{R}_{\mathrm{g}} \text { and correlation } \\
\text { length differs for the two regimes. }
\end{array}
$$ length differs for the two regimes.

How does a polymer chain respond to external perturbation?

The Gaussian Chain

Boltzman Probability

For a Thermally Equilibrated System

$$
P_{B}(R)=\exp \left(-\frac{E(R)}{k T}\right)
$$

Gaussian Probability
For a Chain of End to End Distance R

$$
P(R)=\left(\frac{3}{2 \pi \sigma^{2}}\right)^{3 / 2} \exp \left(-\frac{3(R)^{2}}{2(\sigma)^{2}}\right)
$$

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

$$
E=k T \frac{3 R^{2}}{2 n l_{K}^{2}}
$$

Force

$$
F=\frac{d E}{d R}=\frac{3 k T}{n l_{K}^{2}} R=k_{s p r} R
$$

Force

Assumptions:
-Gaussian Chain
-Thermally Equilibrated
-Small Perturbation of Structure (so it is still Gaussian after the deformation)

Tensile Blob

-At small scales, small lever arm, structure remains Gaussian -At large scales, large lever arm, structure becomes linear Perturbation of Structure leads to a structural transition at a size scale ξ

$$
E=k T \frac{3 R^{2}}{2 n l_{K}^{2}} \quad F=\frac{d E}{d R}=\frac{3 k T}{n l_{K}^{2}} R
$$

For weak perturbations of the chain $R \approx n^{1 / 2} l_{K} \equiv \xi_{\text {Tensile }}$

$$
\xi_{\text {Tensile }}=\frac{3 k T}{F}
$$

Application of an external stress to the ends of a chain create a transition size where the coil goes from Gaussian to Linear called the Tensile Blob.

$$
\begin{aligned}
& F=k_{\text {spr }} R=\frac{3 k T}{R^{* 2}} R \\
& \xi_{\text {Tensile }} \sim \frac{R^{* 2}}{R}=\frac{3 k T}{F}
\end{aligned}
$$

For sizes larger than the blob size the structure is linear, one conformational state so the conformational entropy is 0 . For sizes smaller the blob has the minimum spring constant so the weakest link governs the mechanical properties and the chains are random below this size.

Semi-Dilute Solution Chain Statistics

In dilute solution the coil contains a concentration $c^{*} \sim I /[\eta]$

$$
\mathrm{c}^{*}=\mathrm{kn} / \mathrm{R}^{3}=\mathrm{kn}^{-4 / 5} \text { for good solvent conditions }
$$

For semi-dilute solution the coil contains a concentration $c>c^{*}$
At large sizes the coil acts as if it were in a concentrated solution ($c \ggg c^{*}$), $d_{f}=2$. At small sizes the coil acts as if it were in a dilute solution, $d_{f}=5 / 3$. There is a size scale, ξ, where this "scaling transition" occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil and a tertiary structure of Gaussian Chains.

What is the value of ξ ?
ξ is related to the coil size R since it has a limiting value of R for $c<c^{*}$ and has a scaling relationship with the reduced concentration c / c^{*}

$$
\xi \sim \mathrm{R}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{\mathrm{P}} \sim \mathrm{n}^{(3+4 \mathrm{P} / \mathrm{s}}
$$

There are no dependencies on n above c^{*} so $(3+4 P) / 5=0$ and $P=-3 / 4$

$$
\xi \sim \mathrm{R}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-3 / 4}
$$

Coil Size in terms of the concentration

$$
\begin{gathered}
\xi=b\left(\frac{N}{n_{\xi}}\right)^{3 / 5} \sim\left(\frac{c}{c^{*}}\right)^{-3 / 4} \\
n_{\xi} \sim\left(\frac{c}{c^{*}}\right)^{(3 / 4)(5 / 3)}=\left(\frac{c}{c^{*}}\right)^{(5 / 4)} \\
R=\xi n_{\xi}^{1 / 2} \sim\left(\frac{c}{c^{*}}\right)^{-3 / 4}\left(\frac{c}{c^{*}}\right)^{(5 / 3)}=\left(\frac{c}{c^{*}}\right)^{-1 / 8} \\
\mathrm{R}=\xi \mathrm{n}_{\xi}^{1 / 2}=\mathrm{R}_{\mathrm{F} 0}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-3 / 4}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{5 / 8}=\mathrm{R}_{\mathrm{F} 0}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-1 / 8}
\end{gathered}
$$

This is called the "Concentration Blob"

Three regimes of chain scaling in concentration.

In dilute solution the chain displays good solvent scaling in most cases, $\mathrm{d}_{\mathrm{f}}=5 / 3$. When the concentration is increased above the overlap concentration, c*, a concentration blob, ξ_{c}, is introduced between Rg_{g} and l_{p}. For sizes larger than the blob size, screening of interactions leads to Gaussian scaling, $\mathrm{d}_{\mathrm{f}}=2$. For sizes smaller than the screening length of blob size, the chains are not screened and good solvent scaling is observed. The blob size follows $\xi \sim R\left(\frac{c}{c^{*}}\right)^{-3 / 4}$ until a concentration where $\xi=\mathrm{l}_{\mathrm{p}}$. At that concentrations above c**, $c^{* * *} \sim c^{*}\left(\frac{R}{l_{p}}\right)^{4 / 3}$, the chain is in a concentrated condition and all interactions are screened so that the chain has a Gaussian configuration, $\mathrm{d}_{\mathrm{f}}=2$.

Thermal Blob

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right) \quad E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
$$

Thermal Blob

$$
\begin{gathered}
\Delta \varepsilon=\left(\varepsilon_{P P}+\varepsilon_{S S}\right) / 2-\varepsilon_{P S} \\
\chi=\frac{z \Delta \varepsilon}{k T} \\
V_{c, \text { enhhalpic }}=V_{c}(1-2 \chi) \\
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right) \quad E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
\end{gathered}
$$

Thermal Blob

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
$$

Energy Depends on n , a chain with a mer unit of length 1 and $\mathrm{n}=10000$ could be re cast (renormalized) as a chain of unit length 100 and $n=100$ The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This is the opposite of the concentration blob.
Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.
As the temperature drops further the Gaussian blob becomes larger until the entire chain is
Gaussian at the theta temperature.

Thermal Blob

$$
R=N_{T}^{3 / 5} \xi_{T}=\left(N / n_{T}\right)^{3 / 5} \xi_{T}=\left(N /\left(\xi_{T} / l\right)^{2}\right)^{3 / 5} \xi_{T}=N^{3 / 5} \xi_{T}^{-1 / 5} l^{6 / 5}
$$

Flory-Krigbaum Theory yields: $R=V_{c}^{1 / 5}(1-2 \chi)^{1 / 5} N^{3 / 5} l^{2 / 5}$

By equating these:

$$
\xi_{T}=\frac{l}{(1-2 \chi)}
$$

le journal de physique

$$
\begin{gathered}
\text { Classification } \\
\text { Physics Abstracts } \\
5.20-64.00-61.40
\end{gathered}
$$

CROSS-OVER IN POLYMER SOLUTIONS

B. FARNOUX, F. BOUÉ, J. P. COTTON, M. DAOUD, G. JANNINK, M. NIERLICH and
P. G. DE GENNES (*) DPh-G/PSRM, CEN Saclay, Boite Postale' n ${ }^{\circ}$ 2, 91190 Gif sur Yvette, France (Reçu le 18 avril 1977, révisé le 21 juillet 1977, accepté le 8 septembre 1977)

Fig. 7. - Inverse of the scattered intensity versus the square of the scattering vector. Points are experimental data recorded at different reduced temperatures τ as indicated on the right. The solid curves are the results of calculation using the formula (3.16).

Vertical arrows show the theoretical cross-over point.

Digitized from Farnoux

Growth of Nanoparticles

Fig. 1: Silicica particles as collected by conventional thermophoretic sampling (TS) along the axis of a [1 2] $[1,2]$. Using aluminum foil in-stead of TEM grids and performing multiple sampling from the same location in the flame, the Al-probe was covered with a silica monolayer [1] (as indicated in Fig. 2).

Spray Flame Appearance

Fig. 3: Spray flames (1.26 M HMDSO in EtOH) producing 100, 200 and $300 \mathrm{~g} / \mathrm{h}$ of silica using 12.5 $/ / \mathrm{min}$ air (a-c) or O_{2} as dispersion gas without (d-f) and with ($\mathrm{g}-\mathrm{i}$) additional $25 \mathrm{l} / \mathrm{min}$ of O_{2} sheath flow at 1 bar pressure drop across the nozzle tip.

Fractal Aggregates and Agglomerates

Fig. 5. Transmission Electron Micrographs (TEM) of SiO_{2} synthesized in SDF and DDF at different oxygen flow rates. Particles made in flames at low oxygen flow rates stay longer at high temperatures leading to the formation of rather big spherical, non-agglomerated particles with diameters of about 100 nm . At high oxygen flow rates the particles are agglomerates of small primary particles. Particles synthesized in DDF have
narrower size distributions indicated by TEM compared to those mede in SDF.

Flame Structure

Double Diffusion Flame (SDF) Fig. 3: Effect of oxygen flow rate on flame structure of a SDF and DDF. Increasing the oxygen flow rate decreases the flame height of the HMDSO decreases the flame height of the HMDSO-
methane-oxygen diffusion flame as turbulence accelerates the mixing of fuel and oxidant.

Polymer Chains are Mass-Fractals

RRMS $=n^{1 / 2}$ I	Mass \sim Size 2
3-d object	Mass \sim Size 3
2-d object	Mass \sim Size 2
I-d object	Mass \sim Size
df-object	Mass \sim Size $^{\text {df }}$

This leads to odd properties:
density

$$
\rho=\frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }^{2}}{\text { Size }^{3}}=\frac{\text { Size }^{d_{f}}}{\text { Size }^{3}} \sim \text { Size }^{d_{f}-3}
$$

For a 3-d object density doesn' t depend on size, For a 2-d object density drops with Size

Larger polymers are less dense

How Complex Mass Fractal Structures
 Can be Decomposed

Tortuosity Connectivity

$z \sim\left(\frac{R}{d}\right)^{d_{s}} \sim p^{c} \sim s^{d_{\text {min }}}$
$p \sim\left(\frac{R}{d}\right)^{d_{\text {min }}}$

$$
s \sim\left(\frac{R}{d}\right)^{c}
$$

$$
d_{f}=d_{\min } c
$$

z	d_{f}	p	$\mathrm{d}_{\min }$	s	c	R / d
27	1.36	12	1.03	22	1.28	11.2

Disk

$d_{f}=2$
$d_{\text {min }}=1$
$c=2$
Extended β-sheet (misfolded protein)

Random Coil

Unfolded Gaussian chain

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

Primary Size for Fractal Aggregates

-Particle counting from TEM
 -Gas adsorption V/S => dp
 -Static Scattering R_{g}, dp_{p}
 -Dynamic Light Scattering

Figure 2. TEM picture of titania $\left(\mathrm{TiO}_{2}\right)$ fractal aggregates with $D \simeq 1.8$ produced by pyrolysis of Titanium Isopropoxide.

Cryo Scanning Electron Microscopy
A scanning electron micrograph of a frozen sample was taken. The sizes of the particles visible on the picture were measured individually with a ruler and used to cakulate a number-mean, $D(1,0)$, a volume-mean, $D(4,3)$ and a number-distribution.

Number Mean - $\mathrm{D}(1,0)=45.2 \mathrm{~nm}$
Volume Nean - D(4,3) $=68.0 \mathrm{~mm}$
Note : dve to the limited number (g_{2}) of particies measured this resuft is aniy indicative.

Primary Size for Fractal Aggregates

> -Particle counting from TEM
> -Gas adsorption V/S => dp
> -Static Scattering Rg, dp
> -Dynamic Light Scattering

Dynamic Light Scattering

To evaluate repeatabitity and robustness, the measure was made 8 times using 3 different dilutions. The following graph presents one of these measures, expressed as intensity-distribution, volume-distribution and number (length)-distribution.

The following table shows the averaged results for the 8 measurements. Precikion is calculated is the Felative Standard Deviation of the measurements.

Mean Calculation	Partikle Size	Precision
Intensity Weighting	127.9 nm	2%
Volume Weighting	71.6 mm	16%
Number Weighting	36.2 mm	25%

For static scattering $P(r)$ is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function

$$
g l(q, \tau)
$$

For dynamics we consider a single value of q or r and watch how the intensity changes with time I(q, t$)$

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales and consider only the fluctuations at a given size scale, r or $2 \pi / \mathbf{R}^{\bullet}=\mathbf{q}$

Dynamic Light Scattering

Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

Wiki Einstein Stokes

Gas Adsorption

$$
\begin{gathered}
\theta=\frac{\text { adsorbed sites }}{\text { total sites }(\mathrm{N})} \\
\mathrm{A}+\mathrm{S}<=>\mathrm{AS}
\end{gathered}
$$

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .

Adsorption
Desorption
Equilibrium
$\frac{d \theta}{d t}=k_{d} N \theta$

$$
\theta=\frac{K p}{1+K p} \quad K=k_{a} / k_{d} \quad \frac{\partial \ln K}{\partial T}=\frac{\Delta H_{a b s}}{R T^{2}}
$$

Gas Adsorption

Multilayer adsorption

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .
BET Isotherm
Various Values of c

$$
\frac{n}{n_{\text {mono }}}=\frac{c z}{(1-z)[1-z(1-c)]}=(\theta)
$$

$$
c \approx \frac{e^{-\Delta H_{\text {acs }} / R T}}{e^{\Delta H_{\mathrm{vap}} / R T}}
$$

S. Storck et aL./Applied Catalysis A: General 174 (1998) 137-146

Fig. 1. Adsorption isotherm types defined by Brunauer [6].

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .

Fig. 3. Pore-size distribution according to the BJH method

From gas adsorption obtain surface area by number of gas atoms times an area for the adsorbed gas atoms in a monolayer

Have a volume from the mass and density.
So you have S/V orV/S
Assume sphere $S=4 \pi \mathbf{R}^{2}, V=4 / 3 \pi \mathbf{R}^{3}$
So $d_{p}=6 \mathrm{~V} / \mathrm{S}$
Sauter Mean Diameter $d_{p}=\left\langle R^{3}\right\rangle \mid\left\langle R^{2}\right\rangle$

Log-Normal Distribution

$$
\begin{gathered}
f(R)=\frac{1}{R \sigma(2 \pi)^{1 / 2}} \exp \left\{-\frac{[\log (R / m)]^{2}}{2 \sigma^{2}}\right\}, \\
\left\langle R^{r}\right\rangle=m^{r} \exp \left(r^{2} \sigma^{2} / 2\right)=\exp \left(r \mu+r^{2} \sigma^{2} / 2\right) \\
\langle R\rangle=m \exp \left(\sigma^{2} / 2\right) \\
\text { Mean } \\
\sigma_{g}=\exp (\sigma) \quad \mathrm{x}_{g}=\exp (m)
\end{gathered}
$$

Geometric standard deviation and geometric mean (median)
Gaussian is centered at the Mean and is symmetric. For values that are positive (size) we need an asymmetric distribution function that has only values for greater than I. In random processes we have a minimum size with high probability and diminishing probability for larger values.

Log-Normal Distribution

$$
\begin{gathered}
f(R)=\frac{1}{R \sigma(2 \pi)^{1 / 2}} \exp \left\{-\frac{[\log (R / m)]^{2}}{2 \sigma^{2}}\right\} \\
\left\langle R^{r}\right\rangle=m^{r} \exp \left(r^{2} \sigma^{2} / 2\right)=\exp \left(r \mu+r^{2} \sigma^{2} / 2\right) \\
\langle R\rangle=m \exp \left(\sigma^{2} / 2\right) \\
M \operatorname{ean} \\
\sigma_{g}=\exp (\sigma) \quad \mathbf{x}_{g}=\exp (m)
\end{gathered}
$$

Geometric standard deviation and geometric mean (median)

Static Scattering Determination of Log Normal Parameters

$$
\begin{equation*}
\ln \sigma_{g}=\sigma=\left\{\frac{\ln \left[B\left(R_{\mathrm{g}}^{2}\right)^{2} /(1.62 G)\right]}{12}\right\}^{1 / 2}=\left(\frac{\ln \mathrm{PDI}}{12}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
m=\left\{5 R_{\xi}^{2} /\left[3 \exp \left(14 \sigma^{2}\right)\right]\right\}^{1 / 2}, \tag{18}
\end{equation*}
$$

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
 -Gas adsorption V/S => dp
 -Static Scattering Rg, dp
 -Dynamic Light Scattering

Figure 2
USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines), primary particle Guinier and Porod functions at high q, the intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (a) Fumed titania sample with multi-grain particles and low-q excess scattering due to soft agglomerates. $d_{v / s}=16.7 \mathrm{~nm}$ (corrected to 18.0 nm$), \mathrm{PDI}=3.01\left(\sigma_{\mathrm{g}}=1.35\right), R_{\mathrm{g}}=11.2 \mathrm{~nm}, d_{1}=1.99, z_{21}=175, z_{R_{\mathrm{t}}}=226, R_{\mathrm{g} 2}=$ 171 nm . From gas adsorption, $d_{\mathrm{p}}=16.2 \mathrm{~nm}$. (b) Fumed zirconia sample (Mueller et al., 2004) with single-grain particles, as shown in the inset. The primary particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. $d_{V / S}=20.3 \mathrm{~nm}, \mathrm{PDI}=10.8$ $\left(\sigma_{\mathrm{s}}=1.56\right), R_{\mathrm{R}}=26.5 \mathrm{~nm}, d_{\mathrm{t}}=2.90$. From gas adsorption, $d_{\mathrm{p}}=19.7 \mathrm{~nm}$.

Primary Size for Fractal Aggregates

-Particle counting from TEM -Gas adsorption V/S => dp
 (a)

-Static Scattering Rg, $\mathbf{d p}_{\mathbf{p}}$
Smaller Size = Higher S/V (Closed Pores or similar issues)

Figure 3
(a) S/V from SAXS for titania particles produced by vapor-phase (a) SSV from SAXS for titania particles produced by vapor-phase
pyrolysis of titania tetraisopropoxide by Kammler er al. $(2002,2003)$. The pyrolysis of titania tetraisopropoxide by Kammler et al. (2002,2003). The
$\mathrm{SAXS} S / V$ can be made to agree with the BET value by subtraction of SAXS SIV can be made to agree with the BET value by subtraction of
$27 \mathrm{~m}^{2} \mathrm{~cm}^{-3}$. (b) $d_{V>1}$ from USAXS [and corrected from (a)] versus d_{p} $27 \mathrm{~m}^{2} \mathrm{~cm}^{-3}$. (b) $d_{V s}$ from USAXS [and corrected from (a)] versus d_{p}
from BET analysis of gas adsorption data for a series of titania samples from BET analysis of gas adsorption data for a series of titania samples
produced by Kammler (triangles and filled circles), and samples made in a quenched-spray flame from Wegner \& Pratsinis (2003) (crosses, singlegrain particles). The calculated d_{32} from TEM micrographs for the Kammler samples is also shown (filled squares). (c) $d_{\text {vs }}$ from USAXS versus d_{p} from BET for fumed zirconia samples of Mueller et al. (2004).

(a)

Figure 4
(a) Comparison of the median particle size from exp m, with m defined by equation (18), and the median particle size calculated from an analysis of TEM data on TiO_{2}. (b) Mean particle size, (R) from USAXS, equation (2) with $r=1$, and from TEM (Kammler et al, 2003) for the same samples as Figs. 3(a)
(

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

Figure 5
$3.1 \mathrm{~g} \mathrm{~h}^{-1}$ titania. (a) Repeat USAXS runs on a non-aggregated titania powder (Fig. 1). (b) Particle size distributions from TEM (circles; Kammler et al., 2003), equations (1), (2), (17) and (18) using PDI and R_{8}, and using the maximum-entropy program of Jemian (Jemian et al, 1991). Distribution curves are shifted vertically for clarity. $d_{V / S}=34.9 \mathrm{~nm}, \mathrm{PDI}=$ $14.4\left(\sigma_{\mathrm{g}}=1.60\right), R_{\mathrm{g}}=44.2 \mathrm{~nm}$.

Fractal Aggregate Primary Particles

Fractal Aggregates and Agglomerates Aggregate growth

Some Issues to Consider for Aggregation/Agglomeration

Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)
Concentration of Monomers
persistence length of velocity compared to mean separation distance
Branching and structural complexity
What happens when monomers or clusters get to a growth site:
Diffusion Limited Aggregation
Reaction Limited Aggregation
Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster) or a Combination of Both (mass versus time plots)

Cluster-Cluster Aggregation
Monomer-Cluster Aggregation Monomer-Monomer Aggregation

DLCA Diffusion Limited Cluster-Cluster Aggregation
RLCA Reaction Limited Cluster Aggregation
Post Growth: Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening
http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/AggregateGrowth.pdf

Fractal Aggregates and Agglomerates

Aggregate growth

Consider what might effect the dimension of a growing aggregate.
Transport Diffusion/Ballistic
Growth Early/Late (0-d point => Linear I-d => Convoluted
2-d => Branched 2+d)
Speed of Transport Cluster, Monomer
Shielding of Interior
Rearrangement
Sintering
Primary Particle Shape

DLA df = 2.5 Monomer-Cluster (Meakin 1980 Low
Concentration)

DLCA df = 1.8 (Higher Concentration Meakin 1985)
Ballistic Monomer-Cluster (low concentration) df = 3
Ballistic Cluster-Cluster (high concentration) df = I.95

Fractal Aggregates and Agglomerates

Aggregate growth

Colloids with Strongly attractive forces

Fractal Aggregates and Agglomerates

Aggregate growth

Sticking Law

Particle-Cluster Growth

Cluster-Cluster Growth

Fractal Aggregates and Agglomerates

Aggregate growth

Transport

Reaction-Limited
(Independent of transport)

Fractal Aggregates and Agglomerates

Aggregate growth

Aggregation Models

Sutherland Model pairs of particles are assembled into

In RLCA a "sticking probability is introduced in the random growth process of clusters. This increases the dimension.
randomly oriented dimers. Dimers are coupled at random to construct tetramers, then octoamers etc. This is a stepgrowth process except that all reactions occur synchronously (monodisperse system).

Eden Model particles are added at random with equal probability to any unoccupied site adjacent to one or more occupied sites (Surface Fractals are Produced)

Vold-Sutherland Model particles with random linear trajectories are added to a growing cluster of particles at the position where they first contact the cluster

Witten-Sander Model particles with random Brownian
trajectories are added to a growing cluster of particles at the position where they first contact the cluster

2
PAUL MEAKIN

Fig. 8. Dependence of $\ln (N(l))$ on $\ln (l)$ for eight clusters grown using the WS model of diffusionlimited cluster formation on a three-dimensional cubic lattice.

In DLCA the
"sticking probability
is I. Clusters follow random walk.

From DW Schaefer Class Notes

Fractal Aggregates and Agglomerates

Aggregate growth

Analysis of Fractals

$\log (N)=\log (R)$

Fractal Aggregates and Agglomerates

Aggregate growth

Self Similarity

Fractal Objects

rom DW Schaefer Class Note

Fractal Aggregates and Agglomerates

Hierarchy of Polymer Chain Dynamics

Dilute Solution Chain

Dynamics of the chain

5.1 Response Functions

$$
x(t)=\int_{-\infty}^{t} d t^{\prime} \exp \left(-k_{s p r}\left(t-t^{\prime}\right) / \xi\right) g\left(t^{\prime}\right)
$$

Fig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly viscous body (b), a Hookean solid (c), a simple relaxatory system (d)

The exponential term is the "response function" response to a pulse perturbation

Dilute Solution Chain

Dynamics of the chain

Damped Harmonic
Oscillator
$x(t)=\int_{-\infty}^{t} d t^{\prime} \exp \left(-k_{s p r}\left(t-t^{\prime}\right) / \xi\right) g\left(t^{\prime}\right)$

269

Fig. 6.4. Time dependence of the amplitude $Z_{r u}$ of a Rouse mode (schematic)

For Brownian motion of a harmonic bead in a solvent this response function can be used to calculate the time correlation function <x(t$) \times(0)>$ for DLS for instance

$$
\begin{gathered}
\langle x(t) x(0)\rangle=\int_{-\infty}^{t} d t_{1} \int_{-\infty}^{0} d t_{2} \exp \left[-k_{s p r}\left(t-t_{1}-t_{2}\right) / \xi\right]\left\langle g\left(t_{1}\right) g\left(t_{2}\right)\right\rangle \\
\left\langle g\left(t_{1}\right) g\left(t_{2}\right)\right\rangle=\frac{2 k T}{\xi} \partial\left(t_{1}-t_{2}\right) \\
\langle x(t) x(0)\rangle=\frac{k T}{k_{s p r}} \exp (-t / \tau)
\end{gathered}
$$

τ is a relaxation time.

$$
\tau=\frac{\xi}{k_{s p r}}
$$

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

$$
\begin{aligned}
& E=\frac{k_{s p r}}{2} \sum_{i=1}^{N}\left(R_{i}-R_{i-1}\right)^{2} \\
& \frac{d R_{i}}{d t}=\frac{-\left(d E / d R_{i}\right)}{\xi}+g_{i}(t) \\
& \xi=6 \pi \eta_{\text {solvent }} a
\end{aligned}
$$

Beads 0 and N are special

For Beads I to N-I

$$
\frac{d R_{i}}{d t}=\frac{-k_{s p r}}{\xi}\left(R_{i+1}+R_{i-1}-2 R_{i}\right)+g_{i}(t)
$$

For Bead 0 use $R_{-1}=R_{0}$ and for bead $N_{N+1}=R_{N}$
This is called a closure relationship

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

shat chams lirenescifat|

fong ctaiss (entinglad)

REPTATON MODEL

Parameters $k=3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}^{2}, 0^{2}, \zeta$

Adtionnol garampor a

$$
\frac{d R_{i}}{d t}=\frac{-k_{s p r}}{\xi}\left(R_{i+1}+R_{i-1}-2 R_{i}\right)+g_{i}(t)
$$

The Rouse unit size is arbitrary so we can make it very small and:

$$
\begin{array}{rr}
\frac{d R}{d t}=\frac{-k_{s p r}}{\xi} \frac{d^{2} R}{d i^{2}}+g_{i}(t) \quad \text { With } \mathrm{dR} / \mathrm{dt}=0 \text { at } \mathrm{i}=0 \text { and } \mathrm{N} \\
\frac{d^{2} R}{d i^{2}} & \text { it describes modes of vibration like on a guitar string }
\end{array}
$$

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

$\frac{d^{2} R}{d i^{2}} \quad$ Describes modes of vibration like on a guitar string
For the " p ' th" mode (0 ' th mode is the whole chain (string))

$$
k_{s p r, p}=\frac{2 p^{2} \pi^{2} k_{s p r}}{N}=\frac{6 \pi^{2} k T}{N b^{2}} p^{2} \quad \xi_{p}=2 N \xi \quad \xi_{0}=N \xi
$$

$$
\tau_{p}=\frac{\xi_{p}}{k_{s p r, p}}=\frac{2 N^{2} b^{2} \xi}{3 \pi^{2} p^{2} k T}
$$

Predicts that the viscosity will follow N which is true for low molecular weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N^{2} (actually follows $\mathrm{N}^{3} / \mathrm{df}$)
Diffusion constant follows I/N (zeroth order mode is translation of the molecule) (actually follows $\mathrm{N}^{-1 / d f}$)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)

> Dilute Solution Chain Dynamics of the chain Rouse Motion

Fig. 5.21. Molecular weight dependence of the relaxation time of the dielectric normal mode in cis-PIP. Data from Boese and Kremer [58]

Predicts that the viscosity will follow N which is true for low molecular weights in the melt and for fully draining polymers in solution

FGGLRE 3.6-4. Plots of couslaut $+\log \pi_{c}$ vs Lxinstarnt $+\log \mathrm{M}$ for nine different polymers The two onnstanss are different for each of the polymers, and the one appearing in the abscissa is popartiomal to concentration, which is constant for a given und:lutsd polymer. For each polymer the (oace of the left and right straight line regions are 1.0 and 3.4, respectively. [G. C. Berry and T. G Fax, Adz. Podym. Sci., 5, 261-357 (963).]

Rouse model predicts
Relaxation time follows N^{2} (actually follows $\mathrm{N}^{3} / \mathrm{df}$)

Hierarchy of Entangled Melts

Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of "physically motivated, material-specific paramters"

Tube Diameter dT
Kuhn Length Ik
Packing Length P

Fig. 6.10. Modelling the lateral constraints on the chain motion imposed by the entanglements by a 'tabe'. The average over the rapid wriggling motion within the tube defines the 'primitive path' (continuoses dark line)
6.3 Entanglement Effects

279

Quasi-elastic neutron scattering data demonstrating the existence of the tube

Unconstrained motion $=>S(q)$ goes to 0 at very long times
Each curve is for a different $\mathrm{q}=\mathrm{I} /$ size
At small size there are less constraints (within the tube)
At large sizes there is substantial constraint (the tube)
By extrapolation to high times a size for the tube can be obtained dT

Fig. 6.8. Results of a quasiclastic neutron scattering experiment on a melt of poly(ethylene-co-propylene) at $199^{\circ} \mathrm{C}(10 \%$ protonated chains dissolved in a deuterated matrix; $M=8.6 \cdot 10^{4}$): Intermediate scabtering laws measured at the indicated scattering vectors (top); data representation using the dimensionkes variable $s=q^{2}\left(12 \mathrm{kTa} a_{R}^{2} t / \zeta_{\mathrm{R}}\right)^{1 / 2}$ (bottom). Prom Richter ef al. $[67]$

Fig. 6.9. Size d of the confinement range, as derived from the leng term limits of the curves shown in Fig. 6.8 [67]

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior
We say that the tube follows a "primitive path"
This path can "relax" in time = Tube relaxation or Tube Renewal
Without tube renewal the Reptation model predicts that viscosity follows N^{3} (observed is $\mathrm{N}^{3.4}$)

Fig. 6.11. Reptation model: Decomposition of the tube resulting from a reptative motion of the primitive chain. The parts which are left empty disappear

Without tube renewal the Reptation model predicts that viscosity follows N^{3} (observed is $\mathrm{N}^{3.4}$)

Fig. 6.12. Determination of diffusion coefficients of deuterated PE's in a PE matrix by infrased absorption measurements in a micrescope. Concentration profiles $\phi(x)$ obtained in the seperated state at the begin of a diffusion run and at a later stage of diffusive mixing (the doshed lines were calculated for monodisperse components; the deviations are due to polydispersity) (Left). Diffusion coefficients at $T=176^{\circ} \mathrm{C}$, derived from measurements on a serics of d-PE's of different molecular weight (right). The continwous dinc corresponds to a power law $D \sim M^{2}$. Work of Klein [68]

Reptation predicts that the diffusion coefficient will follow N^{2} (Experimentally it follows N^{2}) Reptation has some experimental verification Where it is not verified we understand that tube renewal is the main issue.
(Rouse Model predicts D ~ I/N)

Reptation of DNA in a concentrated solution

6.4 Hydrodynamic Interaction in Solutions

Fig. 6.13. Series of images of a fluoreacently stained DNA chain embedded in a concentrated solution of unstained chains: Initial conformation (lefl); partial stretching by a rapid move of the bead at one end (sccond from the leff); chain recoil by a reptative motion in the tube (subscouent pictures to the right). Reprinted with permission from T.Perkins, D.E.Smith and S.Chu. Science, 264-819, 1994. Copyright (1994) American Association for the Advancement of Science

Simulation of the tube

Fig. 3. Result of the primitive-path analysis of a melt of 200 chains of $N+1=350$ beads. We show the primitive path of one chain (red) together with all of those it is entangled with (blue). The primitive paths of all other chains in the system are shown as thin lines.

Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the corresponding network of primitive paths.

Plateau Modulus

Not Dependent on N, Depends on T and concentration

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with different molecular weights in the range $M=8.9 \cdot 10^{3}$ to $M=5.81 \cdot 10^{5}$. The dashed line in the upper right corner indicates the slope corresponding to the power law Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et al.[54]

Kuhn Length- conformations of chains $\left\langle\mathrm{R}^{2}\right\rangle=\mathrm{I}_{\mathrm{k} L}$

Packing Length- length were polymers interpenetrate $\left.p=I /\left(\rho_{\text {chain }}<R^{2}\right\rangle\right)$ where ρ chain is the number density of monomers

Fig. 2. Dimensionless plateau moduli $\mathrm{Gl}{ }_{\mathrm{K}}^{3} / k_{\mathrm{B}} T$ as a function of the dimensionless ratio I_{K} / p of Kuhn length I_{K} and packing length p. The figure contains (i) experimentally measured plateau moduli for polymer melts (25) (+; colors mark different groups of polymers as indicated) and semidilute solutions (26-28) $(\times$); (ii) plateau moduli inferred from the normal tensions measured in computer simulation of bead-spring melts $(35,36)(\square)$ and a semi-
 atomistic polycarbonate melt $(37)(\diamond)$ under an elongational strain; and (iii) predictions of the tube model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (\square), bead-spring semidilute solutions (\bullet), and the semi-atomistic polycarbonate melt (\bullet). The line indicates the best fit to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are smaller than the symbol size.

$$
\text { this implies that } d T \sim P
$$

Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by virtual links. (b) Dual slip-links. (c) Real space representation of the corresponding network of primitive paths.

McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf

Block Copolymers

Block Copolymers

SBR Rubber

Figure 9. Schematics of block, star, and graft amphiphilic block copolymers.

Figure I. Illustration of model I (left) and II (right) of the AB-diblock copolymer micelle in a selective solvent (lower panel) and the volume fraction profiles of the polymer blocks (upper panel) applied for the large core case $\left(\mathrm{N}_{\mathrm{A}} \gg \mathrm{N}_{\mathrm{B}}\right)$ and the small core case $\left(\mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{B}}\right)$, respectively.

Hierarchy in BCP's and Micellar Systems

Pluronics (PEO/PPO block copolymers)

We consider primary structure as the block nature of the polymer chain.
This is similar to hydrophobic and hydrophilic interactions in proteins.
These cause a secondary self-organization into rods/spheres/sheets.
A tertiary organizaiton of these secondary structures occurs.
There are some similarities to proteins but BCP's are extremely simple systems by comparison.

What is the size of a Block Copolymer Domain?

Masao Doi, Introduction to Polymer Physics

-For and symmetric A-B block copolymer
-Consider a lamellar structure with $\Phi=1 / 2$
-Layer thickness D in a cube of edge length L, surface energy σ
so larger D means less surface and a lower Free Energy F.

$$
F_{\text {surface }} \cong 2 \sigma \frac{L}{D} L^{2}
$$

-The polymer chain is stretched as D increases. The free energy of a stretched chain as a function of the extension length D is given by

- $F_{\text {strecth }} \cong k T \frac{D^{2}}{N b^{2}} \frac{L^{3}}{N v_{c}}$ where N is the degree of polymerization for A or B ,
b is the step length per N unit, vc is the excluded volume for a unit step So the stretching free energy, F, increases with D^{2}.
-To minimize the free energies we have $\quad D \cong\left(\frac{\sigma N^{2} b^{2} v_{c}}{k T}\right)^{1 / 3} \sim N^{2 / 3}$

Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a great index difference that we have no means to determine if they are from the same chain other than following the chain over great distances to determine the connectivity. That is, Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.
The chain is composed of a series of steps with no orientational relationship to each other.

$$
\begin{gathered}
\text { So }<\mathrm{R}>=0 \\
<\mathrm{R}^{2}>\text { has a value: } \\
\left\langle R^{2}\right\rangle=\sum_{i} \sum_{j} r_{i} \bullet r_{j}=\sum_{i} r_{i} \cdot r_{i}+\sum_{i} \sum_{j \neq i} r_{i} \bullet r_{j}
\end{gathered}
$$

We assume no long range interactions so that the second term can be 0 .

$$
\left\langle R^{2}\right\rangle=N r^{2}
$$

[^0]: Wang X., Qiu X. ,Wu C. Macro. 3I 2972 (I998).
 (http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhPNIPA
 AMma971873p.pdf)

