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The Secondary Structure for Synthetic Polymers
Long-Range Interactions

Boltzman Probability Gaussian Probability

For a Thermally Equilibrated System For a Chain of End to End Distance R
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By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written
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For a Chain with Long-Range Interactions There is and Additional Term
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W,(R) is the Gaussian probablhty P(R,N)4xR*dR times the total number of chain conformations
p0551blc for chains of N steps, Z",

T3 R
2w [

of this number the fraction which follow self-avoidance is p(R) = (1 - V/R')"™"** where V.. is the
volume of one segment of the chain so (1- V.. /R?) is the probability of the chain avmdmg one
segment, and this is raised to the total number of possible combinations of two segment pairs,
N(N-1)/2!. This function for p(R) can be expressed as an exponential,

W,(R)dR = Z" 4:|:R'( 2;’ Nb )

p(R) = expf 5 NN -1)in{1- 76} | - exp(- 2K

where the second equality uses the fact that for small x, In(1-x) = -x, and that for large N,
(N-1)=>N. W(R)dR for the excluded volume chain can be estimated by W (R)p(R)dR and since
both are expressed as exponentials the powers sum leading to,

R NV
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W(R)dR = W,(R)p(R)dR = kR cxp[-

The derivative of W,(R) will equal 0 at R", = (2Nb*/3)"?. This is proportional to N'*b as
expected. Setting the derivative of W(R) to 0 yields,

3R® 3N’V
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Rearranging and substituting R, yields,

(2)-(&) - 22k

For large N the R ratio is large and the cubic term can be ignored with respect to the 5'th power
term. This yields,

7
R -RU[N V) = kN7

This critical result was first noted by Flory and Krigbaum and its development is termed Flory-
Krigbaum theory.



The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain
Random Walk
Theta-Condition
Brownian Chain
(The Normal Condition in the Melt/Solid)

Self-Avoiding Walk
Good Solvent
Expanded Coll
(The Normal Condition in Solution)

R' ~1kn™” (R*)= NI’
d, =Y, ~16T d, =2

These are statistical features.That is, a single simulation of a SAW and a
GC could look identical.



The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain

Self-Avoiding Walk Random Walk
Good Solvent Theta-Condition
Expanded Coil Brownian Chain
(The Normal Condition in Solution) (The Normal Condition in the Melt/Solid)
R' ~1kn™” (R*)= NI’
d, =Y, ~16T d, =2

Consider going from dilute conditions, ¢ < c*, to the melt by increasing
concentration.
The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate concentration changes
through a scaling transition. Primary, Secondary, Tertiary Structures.
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Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].



We have considered an athermal hard core potential

oo

5+ 3
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3R n’V. ]
ButV_actually has an inverse temperature component associated with enthalpic interactions
between monomers and solvent molecules

The interaction energy between a monomer and the polymer/solvent system is on average
<E(R)> for a given end-to-end distance R (defining a conformational state). This modifies the
probability of a chain having an end-to-end distance R by the Boltzmann probability,

—(E(R
PBoltzman (R) = exp(%)

<E(R)> is made up of pp, ps, ss interactions with an average change in energy on solvation of
a polymer A€ = (€,,+€,-2€)/2

For a monomer with z sites of interaction we can define a unitless energy parameter
X =z A €/kT that reflects the average enthalpy of interaction per kT for a monomer



For a monomer with z sites of interaction we can define a unitless energy parameter
X =z A €/kT that reflects the average enthalpy of interaction per kT for a monomer

The volume fraction of monomers in the polymer coil is nV /R?
And there are n monomers in the chain with a conformational state of end-to-end distance

R so,
(ER)) _n'Vx
kT R’

We can then write the energy of the chain as,

2y (1/ —
E(R)=kT 3R22+nVc(é g

2nl R’

This indicates that when X = Y2 the coil acts as if it were an ideal chain, excluded volume
disappears. This condition is called the theta-state and the temperature where X = ' is
called the theta-temperature. It is a critical point for the polymer coil in solution.
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Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].
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Flory Krigbaum prediction (left) and experimental measurement (right)
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Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1996
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction é. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point 7'.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [ .(VN-—®)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at T'.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution in the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢ 2. ]. These two branches of the coexistence curve
merge at a cntical point T.(N), ¢.(N). For N the cnitical point merges
with the © pomnt of a dilute polymer solution [T (N-—=)—-0,
& (N-—+%)-0] and the unmixing transition has a tncritical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at 7.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution in the space of the
temperature I and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢ 2. ]. These two branches of the coexistence curve
merge at a cntical point T.(N), ¢.(N). For N the cnitical point merges
with the © pomnt of a dilute polymer solution [T (N-—®)-0,
& (N-+2)-0] and the unmixing transition has a tncritical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at 7.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point 7'.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [ .(VN-—®)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at T'.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution in the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢ 2. ]. These two branches of the coexistence curve
merge at a cntical point T.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [T (N-—=)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at 7.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point 7'.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [ .(VN-—®)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At
T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at T'.(N) 1s nontrivial.
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point 7'.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [ .(VN-—®)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At

T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at T'.(N) 1s nontrivial.
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For a polymer in solution there is an inherent concentration to the chain
since the chain contains some solvent

The polymer concentration is Mass/Volume, within a chain

[ ] d
. Mass Mass Size”’
C — — —

Volume  Size’ Size®

(1-3/d;)

d;—3

~ Size

c*~n

When the solution concentration matches ¢* the chains “overlap”
Then an individual chain is can not be resolved and the chains entangle
This is called a concentrated solution, the regime near c* is called semi-dilute
and the regime below c* is called dilute




In concentrated solutions with chain overlap
chain entanglements lead to a higher solution viscosity
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Polymers can order or disorder on
mixing leading to a noncombinatorial
entropy term,A in the interaction
parameter.

B
=A+—
5 T
If the polymer orders on mixing then A
is positive and the energy is lowered.

If the polymer-solvent shows a specific
interaction then B can be negative.

This Positive A and Negative B favors
mixing at low temperature and
demixing at high temperature, LCST
behavior.
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Poly vinyl methyl ether/VWater
PVME/PS

0 Composition 1

Also see Poly(N-isopropylacrylamide)/VVater
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”
What Happens to the left of the theta temperature?

R2 R2

Rather than the normal definition used by Flory: ¢y =

R? R

Grosberg uses: 0(2

ZOOZ‘/F'

Radius ( A)
T

1000

0 1 1 1 1 | A1
20 30 40 50 60
Temperature (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].
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The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by,

zaw)(l—%z)kT+3R'liT=U(R)_TS(R) O
2R 220°

F(R)=

Equation (1) can be rewritten using the coil expansion coefficient, a,

R2 RZ
EF:? (2)
6
Z*BkT  3a*kT
= =U(a)-TS 3
(@)=~ +— =Ula)-T5(e) 3)

where B is the second virial coefficient,

B=V,(1-2y) @)

Finding the minimum in the free energy expression, equation (3), yields the most probable value

for a,

a{ﬁ) 5)
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The virial expansion of the enthalpic interactions is given by,

kTR'Bz* z"*BkT

U(a)=V, kT[n*B+n’C+..]=V, kTn’B ~ RE - 20

(6)

where n is the segmental density in the coil and V¢ is the volume of the coil. The second virial
coefficient describes binary interactions and the third virial coefficient describes ternary

interactions. In dilute conditions we can ignore the higher order interactions and use only the
second virial coefficient.

Generally B is negative and C is positive, i.e. favors coil collapse

So C is important below the theta temperature to model the coil to globule transition

For simplicity we ignore higher order terms because C is enough to give the gross features
Of this transition. Generally it is known that this transition can be either first order for
Biopolymers such as protein folding, or second order for synthetic polymers.

First order means that the first derivative of the free energy is not continuous, i.e.a jump in
Free energy at a discrete transition temperature, such as a melting point.
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢. The coexistence curve separates a
dilute solution of collapsed chains [at &, ] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point 7'.(N), ¢.(N). For N the critical point merges
with the © pomnt of a dilute polymer solution [ .(VN-—®)—-0,
& (N-+2)—-0] and the unmixing transition has a tncntical character. At

T'=0, the chain contgurations are ideal Gaussian coils, while their struc-
ture at T'.(N) 1s nontrivial.
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Consider the coil of length n as
composed of g* chain subunits each with
(n/g*) Kuhn units of length |,. g* can be
any value between one and n.

Small size g* units have a lower T_
compared to large size g* units.



Blob model for coil collapse

\ FIGURE 8.6

A few initial stages

of the coil-globule
transition. This looks
self-similar! (Compare
with what we write
about self-similarity in
Chapter 10). Source:
Courtesy of S. Nechaev.

R2~g*

Assume Gaussian
Collection of
Blobs

Grosberg and Khokhlov’s figure 8.6 shows a model for chain collapse that explains the entropic
behavior in terms of blobs of g* chain units associated with a confined chain. We can consider

the collapsed chain as composed of z/g* collapsed blobs each with an energy kT.
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Z"*BkT 3c’kT
Fla)== o5+ =Ula)-15(a) 3)
2 %k
R ~g
z 2 kT
-TS ~ kT —— = kT — = —; 7
[ (a)](.'m:ﬁnrmrn! g * Rs - ( )

In the absence of confinement (coil collapse) the expression was,

[-TS(e)] ~ kTo? (8)

Expansion

and a sum of these terms (approximation),

—TS(a) = [_m(a):'(_’mﬁnemem + [_m(a)l.zpan.sfan - kT(a2 + a—z) ®)

kTBz"* kTC
" 20°1° +oz"l" (10).

F(a)~kT (o +a™)
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z"°BkT  3a’kT
Fla)==_+— =Ula)-T5(e) 3)

R2~g*

kT
rEord K 0

[_TS (a )]Cm:ﬁnemrnl 5, % R (94 :

In the absence of confinement (coil collapse) the expression was,

[-TS(e) ~kTo’ (8)

]l‘.'x,'mmum

and a sum of these terms (approximation),

_TS [_ J( onfinement + [_m(a)]fupan.sian - kT (az + a—z) (9)

a is >1 for expansion
<1 for contraction

kTBz"* kTC

20°1° T atl® (10).

F(o)~ kT (o + o)+
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Which works for both expansion and collapse. Finding the minimum in this free energy yields
the most probable value for a, (equivalent of equation (5)),

o —o=x+ya” (11)
where X is related to B and is given by,

x=KB:" [l (12)
and y is related to C and is given by,

y=K,C/I° (13).
If a is small you can neglect the terms on the left hand side of equation (11) and solve for R,

. (-CY7 L
R-—az""l~(?) 2 (14)

Ratio of C/B determines behavior, the collapsed coil is 3d

29



o —o=x+ya” (11)

Equation (11) can be understood by plotting the coil expansion factor, a, versus the reduced
temperature function x for fixed values of y as shown in Figure 8.3 from Grosberg and Khokhlov
reproduced below. In this figure, at large y the chain is flexible and the coil only slightly
collapses on cooling (smaller x). The theta temperature occurs at X = 0. For rigid chains with a
small value for y, the curve shows three values for a given x just below the 8-temperature.

134 Chapter 8 Coils and Globules
FIGURE 8.3 s
The dependence a(x)
given by equation (8.7) ‘ a2 —_____—__.___
for different values of CI P N -

1 /%"”
y; from top to bottom, - —
the curves correspond QL 0-8 //

i lues
to the following value s /
of y: 10, 1, 0.1, 1/60, \
0.01, 0.001, 0.0001. e ://%//
0.2 T __-_/_/ P
0 l
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FIGURE 8.4

The dependence F(a) in
the case where «a(x) is
multivalued. As x
changes (which can be
controlled by, say,
temperature change),
the shape of the F(a)
dependence changes
such that one minimum
gets deeper at the
expense of the other.
Deeper minimum
corresponds to the
more stable state. For
this figure, we choose
the value y = 0.001.



136 Chapter 8 Coils and Globules

FIGURE 8.5

The curves a(x) in
Figure 8.3 are
multivalued at some x;
in this figure, one
solution is selected for
each x such that the
values of a(x)
correspond to the
absolute minimum free
energy for every x. The
values of y are the
same as in Figure 8.3.

Generally it is known that this transition can be either first order for

Biopolymers such as protein folding, or second order for synthetic polymers.

First order means that the first derivative of the free energy is not continuous,i.e.a jump in
Free energy at a discrete transition temperature, such as a melting point.
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Poly(N.N-diethylacrylamide)
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Figure 4. Temperature dependence of average radius of gyration ((Ry))
and hydrodynamic radius ((Ry)) of poly(N,N-diethylacrylamide) (PDEAM)

chains in water in one heating-and-cooling cycle.
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Figure 5. Temperature dependence of ratio of average radius of gyration
to average hydrodynamic radius ((R)/(R:)) of poly(N,N-diethylacry-
lamide) (PDEAM) chains in water in one heating-and-cooling cycle.
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The Coil-to-Globule-to-Coil Transition of Linear Polymer Chains in
Dilute Aqueous Solutions: Effect of Intrachain Hydrogen Bonding

Kejin Zhou,' Yijie Lu,* Junfang Li,* Lei Shen,* Guangzhao Zhang,** Zuowei Xie,"* and

Chi Wu**

ABSTRACT:  Our previous studies of the captioned transition have shown that thermally sensitive poly(N-
isopropylacrylamide) (PNIPAM) in water can form stable individual single-chain globules, but not for polystyrene
(PS) in cyclohexane. In the current study, using poly(N.N-diethylacrylamide) (PDEAM) (M, = 1.7 x 107 g/mol
and M /M, = 1.06) with no hydrogen donator site, we intend to find whether the intrachain hydrogen bonding
plays a role in stabilizing individual collapsed PNIPAM single-chain globules. We found that PDEAM can also
form stable single-chain globules in water even though the transition is less sharp. The resultant individual PDEAM
single-chain globules are less compact, reflecting in a lower chain density and a higher ratio of the radius of
gyration (o hydrodynamic radius, presumably due to the lack of intrachain hydrogen bonding. Our result also

shows that, unlike PNIPAM, there is no hysteresis in the transition, indirectly supportiag our previous assumption

that the hysteresis observed for PNIPAM is due to the formation of some intrachain additional hydrogen bonds
formed in the collapsed state.
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FIG. 2. Temperature dependence of the average radius of
gyration (R,) and the average hydrodynamic radius (R;),
respectively, in the coil-to-globule (heating) and the globule-
to-coil (cooling) processes, where each point was obtained at
least 2 h after the solution reached the thermal equilibrium to
ensure that the polymer chains were thermodynamically stable.
The inset shows the temperature dependence of (R,)/(R;) in
the heating and the cooling processes.

X
. . 5
8 :
| t
crumpled coil
molten globule globule
low temperature high
FIG. 3. ic of four thermod:; ically stable states of

a homopolymer chain in the coil-to-globule and the globule-to-
coil transitions.

VOLUME 80, NUMBER 18 PHYSICAL REVIEW LETTERS 4 May 1998

Globule-to-Coil Transition of a Single Homopolymer Chain in Solution

Chi Wu'?* and Xiaohui Wang'



Size of a Chain, “R”
(You can not directly measure the End-to-End Distance)
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What are the measures of Size,“R”, for a polymer coil?

Radius of Gyration, R,

N
DR,
nwl

2|

2
B =y AR -RY} R

N

Y{(-R))

mwl

18/ 1 & 2\ 1 &
) EER" R) =23 2

l mwl n

ii((&-&)ze\rﬁIn mibz-Zzz(n -mb’ =20 Z+2AZ-1)+3(Z2-2).(2-1)2 + Z]

nwlmel n=mm=1

Z=N-1

Z Z Z(Z+1)(z+2) N
(Z+l p =(Z+1)2p—2p2= 6) = i
p=1 p=1

n n ptl np pnp—l
2 U =—+ =+ for p<3 (other terms needed for higher p's)
p+l 2 12

u=1

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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What are the measures of Size,“R”, for a polymer coil?

Radius of Gyration, R,

2 2
Nb _ RR;&!Se!ed
5 6 6

R, is 1/ 6 of the RMS end-to-end distance.

245R, =R

eted

Rg is a direct measure of the end-to-end distance for a
Gaussian Chain

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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Static Light Scattering for R,

_Rg? 3
2 -
I(q)=1,Nn,exp| * 3 Guinier’s Law
J
100 ¢
Guinier Plot linearizes this function 10 |
2 g [
I(q R s IF
2 2 ~ 3
In Q =—?gq G:I€Nl’le 2z :
G é 0.1
E 3
The exponential can be expanded at low-q 0.01
and linearized to make a Zimm Plot :
S T B S e B S B 3
0.001 0.01 0.1
2 q (Ang)

G
S 1_|__gq2
I(q) 3
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Binary Interference Yields Scattering Pattern.

I(q) ~ N ng?

n, Reflects the density of a
Point generating waves

N is total number of points
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The Scattering Event

g I(q) is related to amount Nn?

q is related to size/distances

q =47nsin%]

a=2~

q

2) Rather than consider specific structures, we can consider
general scattering laws by which all scatters are governed
under the premises that 1) “Particles” have a size and

2) “Particles” have a surface.
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Binary Interference Yields Scattering Pattern.

-Consider that an in-phase
wave scattered at angle 6 was
in phase with the incident
wave at the source of
scattering.

-This can occur for points
separated by r such that

Ir| = 26/|q|
i —4—nsing
T
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Binary Interference Yields Scattering Pattern.

\\\\ -For high 6, ris small
N

N\

é/////
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Binary Interference Yields Scattering Pattern.

| -For small 6, ris large
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.
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The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’ s Law.

—37° 'R,
= I — G _ g
p(r) eXp( 4R§ ] = (q) exp[ : ]

G = Nn’

€
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Static Light Scattering for Radius of Gyration

Consider binary interference at a distance “r” for a particle with arbitrary orientation
Rotate and translate a particle so that two points separated by r lie in the particle for all rotations
and average the structures at these different orientations

Guinier’ s Law Yeusiun(r) = exp(_3”7 2) Binary Autocorrelation
Gaussian 20 Function
u 2
; —
2 (x—H)
o’ == =2R’
N-1
R2q2 Lead Term is
Fig. 4. Averaging ofg particle abogt the origin ofyhe vector r in ax)a}ogy 2 -
to random translations and rotations of the particle about the origin of = 8 2
£, 3 shac ol nd 2 sl rnoton s conend I(q)=1.Nn; exp 3 1(0)= Nn,

in random directions leads to a Gaussian distribution of scattering
density p(r).

I(1/r)~ N(r)n(r)2

Scattered Intensity is the Fourier Transform of
The Binary Autocorrelation Function

S
yo(l’)zl——l’+... exp(4R2]z1_4R2+

ryr =0 then d(}/Ga”SSia” (r)ydr = () A particle with no surface

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Guinier’ s Law Pertains to a Particle with no Surface.
—3r? q'R’
r)=ex = I(q)=Gexp|l — §
PIr)=exR g2 ] (9) P{ -

G = Nn’

Any “Particle” can be Approximated as a Gaussian
probability distribution in this context.
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Guinier’ s Law can be thought of as the
First Premise of Scattering:
All “Particles” have a size reflected by the radius of gyration.
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Table 3.1. Radii of Gyration of Some Homogeneous Bodies

Sphere of radius R

Spherical shell with radii R,>R,

Ellipse with semiaxes @ and &

Ellipsoid with semiaxes a,b,and ¢

Prism-with edges 4, B, and C

3
R} =R
R2=§_L_R;
* SR'—R;

_a2+b2

Ri=22

a’+ b2 + ¢?

R ey

A’+ B+ C?

2
ATy

/

Elliptical cylinder with Semiaxes a and b
and height A

e ——

a’l+b* p2
3. 8=
Ss o rgoit

Hollow circular cylinder with radii R, >R,
and height A
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Two possibilities for an arrow with both ends in a particle
(A) Different Particles => Guinier’s Law
(B) Same Particle => Surface Scattering
(Only near the surface is there constructive interference with no
intermediate destructive vector at /2 the distance r)

There is a transition between (A) and (B) near r = R,
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Debye Scattering Function for Gaussian Polymer Coil

Consider a chain of length N whose average end to end distance is N'* b, where b is the effective
step length for the chain which has no long-range interactions. For the n'th chain step, g (r) is the
average density of segments at a radial position r from step n. R is here the position vector for the
scgmcnts of the chain. It is important to keep clear that r, is a radial position relative to segment

n" while R is the segmental position relative to a coordinate system based at the first segment
whcrc n = 1. ncan have values from 1 to N. Then,

¥ (5(r,~(R, ~R,)))

— m=l
&n (rn) e N

where the del operator has a value of 1 when the position vector difference (R's) is equal to r.
g (r) will have values between 0 for r's larger than the chain to 1 forr = 0.

Since g (r) only considers a single segment, "n", it must be averaged over all segments in order to
obtain a statistical description of the spatial distribution of chain segments for the entire coil. This
averaging results in the pair correlation function, g(r) for the coil,

()= Y X(8(r (R, ~R,))

n=1 m=1

i 2N2 n=l1

The pair correlation function, g(r), is directly related to the intensity scattered by light,
neutrons or x-rays from a polymer coil. The scattered intensity is measured as a function of

scattering angle, 0, and is usually plotted against the reduced parameter, g = |q| = 4n/A sin(0/2),
which is called the scattering vector. "q" is the inverse space vector and is related to the Bragg

spacing, d, by d = 2n/q.

57



Scattered Intensity = K g(q) where K is a constant for a given system which includes the contrast
and instrumental parameters. g(q) is the Fourier Transform of g(r),

N N

<exp(zq- R - R ))>

jdrg r)exp(iger)=

n=1 m=1

For a Gaussian polymer coil the solution to this double summation is the Debye Equation for
Polymer Coils which was first solved in 1946 by P. Debye.

2

g(q)(fmr.\n'm: = [Q- 1+ cxp(—Q)]
%

where Q = ¢'Nb*/6 = q'R ?

The Debye function for polymer coils describes a decay of scattered intensity following a power-
law of -2 at high-q and a constant value for intensity at low-q (below R,).

58



Low-q and High-q Limits of Debye Function

(@ imin = 5[0 1+ expl-0)]

where Q=g Nb*/6 =q'R°

At high q the last term => 0
Q-1=>Q
g(q) =>2/Q ~ q*
Which is a mass-fractal scaling law with d; = 2

At low q, exp(-Q) => |-Q+Q%2-Q3/6+...
Bracketed term => Q2/2-Q3/6+...

g(q) => 1-Q/3+... ~ exp(-Q/3) = exp(-q°R */3)
Which is Guinier’s Law
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Ornstein-Zernike Function, Limits and Related Functions

The Zimm equation involves a truncated form of the Guinier Expression intended
For use at extremely low-qR

¢ (L. . . 9R;
B I B ©

If this expression is generalized for a fixed composition and all q,R, is no longer
the size parameter and the equation is empirical (no theoretical basis) but has a form
similar to the Debye Function for polymer coils:

G
I(ag) =
(q) 1+q252
This function is called the Ornstein-Zernike function and ¢ is called a correlation length.

The inverse Fourier transform of this function can be solved and is given by
(Benoit-Higgins Polymers and Neutron Scattering p. 233 1994):

p(r)= geXp(—é)

This function is empirical and displays the odd (impossible) feature that the correlation
function for a “random” system is not symmetric about 0, that is + and — values for r
are not equivalent even though the system is random. (Compare with the normal
behavior of the Guinier correlation function.) 32
p(r):Kexp[ )

- 2
4Rg
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Ornstein-Zernike Function, Limits and Related Functions

Ornstein-Zernike (Empirical)

G
I(g) =
@) =177
High-q limit
G
I q)= 2 _ p2
() G 2& R,
Low-q limit
I(q)~Gexp(-¢’¢’) 36 =R]

6l

Debye (Exact)

&(0)oncn = é [0-1+ exp(-0)]

where Q =q'Nb*/6 =q'R°




Ornstein-Zernike Function, Limits and Related Functions

Empirical Correlation Function Transformed Empirical Scattering Function
p(r)= EGXP - Ornstein-Zernike Function 1(6]) = %
r S 1+qg°&
p(r)= KGXP(—L) Debye-Bueche Function I(q) = &
S 1+q*&*
K r\. (2nr Teub S F . ](q) — G
P(r)—7exp _E sm — eubner-strey Function 1+q202+q4c3

C, is negative to create a peak

p()= 5 eXp(—Lj Sinha Function I(g)= Gsin| (d, —1)arctan(qg)
at(1+ae )"

Correlation function in all of these cases is not symmetric about 0 which is
physically impossible for a random system. The resulting scattering functions can
be shown to be non-physical, that is they do not follow fundamental rules of
scattering. Fitting parameters have no physical meaning.
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Measurement of the Hydrodynamic Radius, R,

3000—— ——
R,

2500} / .

2000 -

1500~

Radius (A)

000

0 1 | | 1 |
20 30 50

40
Temperature (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

_ABmR, g _ KT 1 1 &&/ 1
N " 6mnD RH_2N2.ZZ |

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HydrodyamicRadius.pdf
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Viscosity

V= D/time

: Dlsplacement, D
Veloclty.

[n] ~ VMolecule

M

Moledule

Native state has the smallest volume
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Intrinsic, specific & reduced “viscosity”

Ty = ﬂ?xy Shear Flow (may or may not exist in a capillary/Couette geometry)

=", (1 T ¢[77] T k1¢2 [n]Z T k2¢3 [77]3 +otk, 0" [77]”) (D

n = order of interaction (2 = binary, 3 = ternary etc.)

1 T’ - nO j 1 nsp Limit ¢=>0 VH
2 =—(n -1)= s[n]=-

We can approximate (1) as:

n
n, :n—:1+¢[n]exp(KM¢[n]) Martin Equation
0

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |
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Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] + ke [n] ++ k" [n]') ()

n = order of interaction (2 = binary, 3 = ternary etc.)

1(n-n 1 imi

— 0 :_(nr_l):nsp Limit c=>0 >[77]:V_H

C 770 C C M

o w0 Concentration Effect
£ 1] inH,0

Fig. 4.5. Reduced viscosity g as a func-
tion of the concentration ¢ for acetyl
12 - . starch of different molar masses in aque-

Al L l
0.06 ous solution at T=25 °C.The degree of
substitution (DS) with acetyl groups is

T 1
0.00 0.02 0.04
A
c/(@mI)  nhearly constant at DS=0.9.Due to the

---@-- M =709.000 g/mol, DS =0,91 ;

.- M = 517.000 g/mol, DS =0,86 compact st.ructure of thfe p'olymer' coil the

A M = 263.000 g/mol, DS =0,82 conc.entratl_ons of the dilution series are

e M"= 152.000 g/mol, DS =0,94 rglatlyely h|gh to reach the required rela-
b tive viscosity range of n,=1.2-2.5

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=n, (1+c[17]+k1c2 [n] +k,[n] +---+

ki [1]') (1)

n = order of interaction (2 = binary, 3 = ternary etc.)

c c

Mo

l(r’_noJ:l(n _l)znsp Limit c=>0 5
C r

[n]=2

Concentration Effect, c*

"o 4000 \
£ yo i K M, /(gmol’)
=~ 1 = 28 =, v 11810°
2% 3000 - A 5.7-10:
= ® 3310
=~ & 2210°
* 1.310°
2000
1000 4
O L) l L I T
0.000 0.002 0.004 0.006

-1

c/(gml)

Kulicke & Clasen “Viscosimetry of Polymers

68

Fig. 4.2. Reduced viscosity 1.4 as a
function of the concentration c for differ-
ent molar masses of the polycation
poly(acrylamide-co-(N,N,N-trimethyl-N-
[2-methacryloethyl]l-ammoniumchloride)
(PTMAC) in 0.1 mol/I NaNO; solution.
Data from [87]. All data points are mea-
sured at concentrations below the critical
concentration ;). The copolymer con-
sists of 8 mol% TMAC and 92 mol% AAm

and Polyelectrolytes (2004)



Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] + ke [n] ++ k" [n]') ()

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n-n, 1 Ny  Limite=0 _ Wy
|- _1: N — _ 11
)Ly )= [n) ="

"o 1600 Solvent Quality
I= PAAm 5.2.10° g mol”
g 1400- = in water
B ® in formamide
= 1200+ A in glycol
10004
800
600- Fig. 5.3. Reduced viscosity 1,4 as a func-
tion of the concentration ¢ for a poly(acryl-
4004 amide) (PAAm) in the solvents H,0, form-
A—A—a —k . amide and ethylene glycol at T=25 °C.
20(()).00 007 0.02 0.03 Data from [89, 90]. The intrinsic viscosity

1 (intersection with the Y-axis) rises with the
c/(gml) solvent quality

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=m,(1+c[n]+ke’[n] +ke’[n] +-+ k" [1]') (1)
n = order of interaction (2 = binary, 3 = ternary etc.)

l u = l(nr _1) — nsp Limit c=>0 \[77] _ VH

c\ 1, c c ’ M

Molecular Weight Effect

500
E’ M, ! (g mol”)
£ 4004 . ¢ 1.7910°
= - K= v 0.9310° . o
L\@ 19663 mi? g . 0'27 10° Fig. 5.4. Reduced viscosity 1,4 as a func-
300 4 , : 0'13'106 tion of the concentration ¢ for sodium
Kyll= B poly(styrene sulfonate) (PSSNa) of different — a
- 5023 ml? g2 = 0.04-10 : . —
/ g molar masses in aqueous solution.The
200 - K (= K [nf= second virial coefficient of the viscosimetry,
1818 mf g 226 7 me g Ki[nl% is equivalent to the slope of the
/ ' . curves and is given for each molar mass.
100 | adddddb— KL= ) The Huggins constant K,, is constant and
1 o oo oo —— 022IMg independent of the molar mass. Data from
0 R | [35,91]
0.00 0.02 0.04 0.06
c/(gml

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Viscosi
T =n,(1+[nle)

- VMolecule
[n] = e

Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Objects)

n,="mn (1 + 2°5¢)

For “Gaussian” Chain Mass ~ Size? ~V?3
V ~ Mass3/2

For “Expanded Coil” Mass ~ Size*3 ~V>7
V ~ Mass?>

For “Fractal” Mass ~ Sizedf ~Vdf/3
V ~ Mass3/df

2

[n] ~M ;Ij;lecule
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Viscosi
T =n,(1+[nle)

— VMolecule
[] = et

Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Objects)

n,="mn (1 * 2°5¢)

For “Gaussian” Chain Mass ~ Size? ~V2/3
V ~ Mass32
“Size” is the
“Hydrodynamic Size” For “Expanded Coil” Mass ~ Size>3 ~V>/°
V ~ Mass?>

For “Fractal” Mass ~ Sizedf ~Vdf/3
V ~ Mass3/df

3
dy

[n] ~M Molecule
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1,/ (mPas

Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] + ke [n] ++ k" [n]') ()

n = order of interaction (2 = binary, 3 = ternary etc.)

1 n—noJ | n - V
il I S (VI Py _1 — sp Limit c=>0 N :_H
c( 1, c(nr ) c [} M

— 20 Temperature Effect
PipAAm in H,0
1.5 -
PAAm in H,O
1.0 - Fig. 5.5. Zero-shear viscosity 1p as a
function of the temperature T for poly
(acrylamide) (PAAm) and poly(N-iso- TIO = A eXp _—
propyl-acrylamide) (PipAAm) in aqueous
0.5 solution (c=0.1 wt%).The viscosity for
HO the solvent water as a function of the
2 temperature is plotted as well. Data
0.0 —T T " from [77]
0 20 40 60 80

T1(°C)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] + ke [n] ++ k" [n]') ()

n = order of interaction (2 = binary, 3 = ternary etc.)

1 n - nO 1 nsp Limit c=>0 VH
)Ly )= n)="

We can approximate (l) as:

n
n = P 1+c[n]exp(K,c[n]) Martin Equation
0
77:, =[n]+&[n] ¢ Huggins Equation
In(7,) =[n]+&[n] c Kraemer Equation
c 1 (exponential expansion)

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |

74



Intrinsic “viscosity” for colloids (Simha, Case Western)

1n="1,(1+vo) n=n,(1+[n]c)

vN ,V,
M

[n]=

For a solid object with a surface v is a constant in molecular weight, depending only on shape

2.5
For a symmetric object (sphere) v = 2.5 (Einstein) [7] =? ml/g

For ellipsoids v is larger than for a sphere,

J? prolate
v = 3
15(In(27)-3/2) a,b,b :a>b
= a/b
v 16J oblate
B - ,a,b :ra<b |
15tan I(J) e ? Tri-axial ellipsoid with distinct semi- &

axesa bandc
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Intrinsic “viscosity” for colloids (Simha, Case Western)

1n="1,(1+vo) n=n,(1+[n]c)

vN ,V,
M

[n]=

Hydrodynamic volume for “bound” solvent

M ,_
V, = —(v2 + 551/10)
NA
Partial Specific Volume v,

Bound Solvent (g solvent/g polymer) O
Molar Volume of Solvent v,
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Intrinsic “viscosity” for colloids (Simha, Case Western)

1n="1,(1+vo) n=n,(1+[n]c)

vN ,V,
M

[n]=

Long cylinders (TMV, DNA, Nanotubes)

2 aN, [ J=L/d
45 M (InJ +C,)

u

C77 End Effect term ~ 2 In 2 —25/12 Yamakawa 1975
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Shear Rate Dependence for Polymers

10°

10° 3

10 o

10° 4 ——rrre
10" 10° 10’ 10°

10°
shear rate / (s™)

€ xanthan gum

M, =1.810° g/mol, c = 0,1 %

® poly(acrylami

M, =7.910°g/mol, c = 0.1 %

T=25°C

ide)

c+0.001y

Fig. 5.8. Dynamic viscosity rj as a func-
tion of the shear rate y for an aqueous
xanthan gum and an aqueous poly(acry-
lamide) solution of a comparable de-
gree of polymerization and the same
concentration ¢=0.1 wt% data from
[92].The viscosity depends on the shear
rate above a critical shear rate y;

Fig. 5.9. Net diagram for the determination
of the intrinsic viscosity [] from

measurements of the reduced viscosity at

shear rates=0

—~10°
m .
€ Zimm-Crothers Capillary
g Viscosimeter Viscosimeter
Eq0t] T —
10°)
10% 10" 10° 10" 10° 10° 10°
-1
vl (s
M, /(g mol™) )
A 11.710°
o 10.510°
o 11.610°
® 93010°
<& 8.50-10°

Fig. 5.10. Intrinsic viscosity [1] deter-
mined at high shear rates y with a capil-
lary viscosimeter and at lower shear rates
with a Zimm-Crothers viscosimeter for
different xanthan gums in 0.1 mol/I
sodium chloride (NaCl) solution at 25 °C.
Data from [93]. For strongly shear thin-
ning polymer solutions, only low shear
viscosimeters reach the shear rate inde-
pendent viscosity region

Capillary Viscometer
Volume R*Ap

time

Ap = pgh
_ 4Volume

,J/Max

—\ V,

mawo 1 = 0

v

Ty V= 0

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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8nl

- TR’time

Fig. 3.2. Velocity profile in a capillary viscosimeter. The fluid
velocity v has a parabolic profile with a maximum in the middle
of the capillary; the shear rate y and the shear stress r have a
maximum at the capillary wall and are zero in the middle of the

capillary



Branching and Intrinsic Viscosity

5.5 Branching

Branching in a polymer coil leads for polymers of the same molar mass to changes
of the intrinsic viscosity. Although the chemical composition is the same, branched
polymers have a higher density p.,in solution than linear polymers and therefore

~ 10°
o
E
= 10°.
= HDPE
(linear)
10° Fig. 5.11. Intrinsic viscosity [1]] as a func-
3 LDPE tion of the molar mass M for linear
branched poly(ethylene) (high density poly(ethyl-
( ) ene), HDPE) and longchain branched
10" _ poly(ethylene) (low density poly(ethyl-
_ ene), LDPE) in tetraline at T=120 °C (data
M (dendrimer) from [47,94]) as well as for a dendrimer
0 with 3,5-dioxybenzylidene units in tetra-
10 . - . . hydrofuran at T=30 °C (data from [47, 95])
10° 10° 10* 10° 10° 10

M, /(g mol”)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Branching and Intrinsic Viscosity

Q‘ O Simulation
0.8} ® PS

A A PI

0.6

~.
~
~
~
~
~
~
~
~
~
~
~

~

0.4 1 | 1 | 1 | 1

1.7  Plots of viscometric branching parameter, g,, versus branch functionality, p, for
ins on a simple cubic lattice (unfilled circles), together with experimental data for star
in theta solvents: e, polystyrene in cyclohexane; A , polyisoprene in dioxane. Solid
ed lines represent calculated values via Egs. (1.70) and (1.71), respectively. (Adapted
Shida et al. [2004].)

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |
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Polyelectrolytes and Intrinsic Viscosity

N/ (Mg

1 in pure H,0 Fig. 5.16. Different behavior of a polyelec-

1 trolyte in aqueous solution and a salt solution.

At high concentrations of the polyelectrolyte
in aqueous solution is the concentration of

. counter ions inside the polymer coil higher

than outside, leading to an expansion of the

coil due to osmotic pressure. At low concen-
1 trations of the polyelectrolyte in aqueous
_ in 0.1 MNaCl|  solution, the polyelectrolyte is highly dissoci-

ated, leading to an expansion of the coil due
1 to coulomb repulsion forces. Both expansion
effects are compensated in the salt solution

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

8l

0.018

0.016
0.014
0.012-
0.010
0.008
0.006
0.004
0.002
0.000

PSSNa in H,0

AN

A
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107 10° 10° 10

—&— M_= 690000 g-ml”
—O— M, = 345000 gmi”
—A— M = 212000 gml”
—A— M, = 177000 g:ml”
—e— M_= 138000 gml”
—O—M,= 88000 gml’
—=—M = 31000 gml”
—o—M,= 16000 g-ml”

10°  10?
c/(gml’)

Fig. 5.15. Reduced viscosity 1,4 as a function of

the concentration ¢ for the polyelectrolyte sodium
poly(styrene sulfonate) in nearly salt free aqueous
solution (cy,q=4%107° mol I") and for different molar
masses.The concentration is plotted on a logarithmic
scale to show the maximum behavior of the viscosity
at very low concentrations of the polyelectrolyte. Data
from [83,97]



Polyelectrolytes and Intrinsic Viscosity

3+
2+
log Msp i
=
'1 T | T T T T T T T
-4 -3 -2 -1 0 1
log ¢ (mol/l)

E 1.16 Determination of the chain overlap concentration ¢*, the entanglement concen-
. the electrostatic blob overlap concentration ¢** from the concentration dependence

viscosity for a 17%-quaternized P2VP copolymer (17PMVP-CI) in solution in ethy-
weol at 25°C. Symbols are experimental data and solid lines represent the power laws
%=d from scaling theory. (Adapted from Dou and Colby [2006].)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Hydrodynamic Radius from
Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HiemenzRajagopalanDLS.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HydrodyamicRadius.pdf
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Consider motion of molecules
or nanoparticles in solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the
starting point at t = 0 is a Gaussian Function that defines the
diffusion Coefficient, D

1 e_%th)
(47rDt)1/ ?
<x2> =0>=2Dt

p(x.1)=

The Stokes-Einstein relationship states that D is related to R,
kT
67NR,,

A laser beam hitting the solution will display a fluctuating
scattered intensity at “q” that varies with q since the
particles or molecules move in and out of the beam

l(q,t)

This fluctuation is related to the diffusion of the particles
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For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
gi(q.7)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
(q.t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales
and consider only the fluctuations at a given size scale,r or 271 /r = q
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Dynamic Light Scattering

Pgm) =1+ 8g(g7)]

9'(q;7) = exp(-I1)
I' = q2Dt

D=k T/6xna

IIVI 'A ) M|
{

A ,.l |f ¢ ‘l:-v T . 3
goo .&‘r.ﬁlf "I\I“I“N' “,‘.. Ur_'v '-'lu \f

a = Ry = Hydrodynamic Radius
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The radius of an equivalent sphere following Stokes’ Law
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Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

http://webcache.googleusercontent.com/search?g=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic light scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?g=cache:yZDPRbgZ1BIlJ:en.wikipedia.org/wiki/Einstein_relation (kinetic _theory)+&cd=1&hl=en&ct=cInk&gl=us
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Diffusing Wave Spectroscopy (DWS)

Will need to come back to this after introducing dynamics
And linear response theory

http://www.formulaction.com/technology-dws.html
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Static Scattering for Fractal
Scaling
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At intermediate sizes the chain is “self-similar”

. d ;
Mass ~ Size '

R f
7 ~|—=
Rl
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At intermediate sizes the chain is “self-similar”

I(q) ~N ne2

N = Number of
Intermediate
Spheres in the
Aggregate

n, = Mass of inter.

sphere




The Debye Scattering Function for a Polymer Coil

100

10

S
—
i

Intensity (em)™

1Q) = é(Q—H exp(-0))
0=q'R,
For ng << 1
exp(-Q)=1-Q+ % - %: " ‘i .
I(g)= 1-%+ ...zex;{—quﬁ

Guinier’ s Law!

] 0.01 £

0.001 Loy
0.001

92




The Debye Scattering Function for a Polymer Coil

2
[(Q)=—(Q~-1+exp(-0Q))
o
252 100
Q — q Rg ;
10 b
For qRg >> | DR
E b
< E
2 f
£ i
2 2 4 I 0.1 r
I(Q)=§— 2R2~q ! = i
91 0.01 |
di=2
L B T e I SR 3
0.001 0.01 0.1
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Ornstein-Zernike Equation

I(q):1+(q;2<§2 I(g=>)=—

Has the correct functionality at high q
Debye Scattering Function =>

2G
I(q)= 222 (qug —1+exp(—q2R§)) I(q => oo) = quz
g 8

So, R; = 252
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Ornstein-Zernike Equation

G
I(q)= 1+¢°*  1(¢g=>0)=G eXP(‘qz‘fz)

Has the correct functionality at low q
Debye =>

q2R2

(qugz —1+6XP(—q2R§)) I(q => 0) =Gexp| — 3 g

The relatoinship between R, and correlation
length differs for the two regimes.
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How does a polymer chain respond to external perturbation?
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The Gaussian Chain

Boltzman Probability Gaussian Probability

For a Thermally Equilibrated System For a Chain of End to End Distance R
" E(R) 3 Ve [ 3R
PH(R)=€XD[{——I\T ] [>(R)=[2;:’3J exy{—zga;

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

E = kT 3R:
2nl;
Force Force
Assumptions:
F = dE — 3kT R=k R -Gaussian Chain
“dR a2 ™ “Thermally Equilibrated

-Small Perturbation of Structure (so
it is still Gaussian after the deformation)
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Tensile Blob

t
-
-
(a)
=
3
m
wn

For Larger Perturbations of Structure
-At small scales, small lever arm, structure remains Gaussian
-At large scales, large lever arm, structure becomes linear
Perturbation of Structure leads to a structural transition at a
size scale 5

"~

v 3k
E = k12K pdE S g
2nl; dR  nl;

1
For weak perturbations of the chain R = nél,{ = .

3kT
éTensile = T

Application of an external stress to the ends of a chain
create a transition size where the coil goes from Gaussian

to Linear called the Tensile Blob.
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3kT

F=k,R=""R
R? 3kT
§Tensile ~ —
R F
= _
fl};’ \\ .

For sizes larger than the blob size the structure is linear, one
conformational state so the conformational entropy is 0. For
sizes smaller the blob has the minimum spring constant so the
weakest link governs the mechanical properties and the chains
are random below this size.
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Semi-Dilute Solution Chain Statistics



In dilute solution the coil contains a concentration c¢* ~ |/[ 7]

c*=kn/R'=kn™ for good solvent conditions

For semi-dilute solution the coil contains a concentration ¢ > c*

At large sizes the coil acts as if it were in a concentrated solution (¢>>>c*),d. = 2. At
small sizes the coil acts as if it were in a dilute solution, d; = 5/3. There is a size scale,
&, where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coill
and a tertiary structure of Gaussian Chains.

What is the value of £?

& is related to the coil size R since it has a limiting value of R for ¢ < ¢* and has a
scaling relationship with the reduced concentration c/c*

E ~R (CXC*)P — n(3*4["]"5

There are no dependencies on n above c* so (3+4P)/5 =0 and P = -3/4

E ~R (c/c*)”"
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Coil Size in terms of the concentration

R =En." =Ry (c/c*) ™ (c/c*)™" = Ryp (c/c*) ™"

This is called the “Concentration Blob”
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Three regimes of chain scaling in concentration.

In dilute solution the chain displays good solvent scaling in most cases, dr=5/3. When the
concentration is increased above the overlap concentration, c* a concentration blob, &, is
introduced between Rg and 1. For sizes larger than the blob size, screening of interactions
leads to Gaussian scaling, dr = 2. For sizes smaller than the screening length of blob size,
the chains are not screened and good solvent scaling is observed. The blob size follows

-3/4
c : : .
&~ R(—*) until a concentration where § =1,. At that concentrations above c**,
c

4/3
£33 k R - - - - . . -
¢ ~c|—| ,thechainisin aconcentrated condition and all interactions are screened so

p
that the chain has a Gaussian configuration, dr = 2.
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Thermal Blob

n
8
i
Y
1

5

Radius (A)
T

0 1 | | 1 | 1
20 30 50

40
Temperature (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

’ 2 2 7 3 B 2"" 1=-2
| 3R, V. E=“{.R:+~ (- x))
20}~ 2R’ 2nl; 2R
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|

3R’

Thermal Blob
Ae = (grp + &g )/2 = Epg

=T

K'.cmhufpﬁ" = ‘/¢ (I = ZX)

n’V_ (1-2x)

2nl;

. nzvﬁ E-k 3R: N
1R} 2nl;
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Thermal Blob

3R* n'V.(1-2y)
E=k7‘( 3R n'V. (1-2y)

2 T 3
2nl; 2R

Energy Depends on n, a chain with a mer unit of length 1 and n = 10000
could be re cast (renormalized) as a chain of unit length 100 and n = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This 1s the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.

As the temperature drops further the Gaussian blob becomes larger until the entire chain is
Gaussian at the theta temperature.
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Thermal Blob

%

R:N%éﬁ{ﬁé)%é;:/;%%ﬁjz £ o NHEH

Flory-Krigbaum Theory yields: R = ch5 (1 — 2%)% N%l%

By equating these:

[

é:T:(1—2Jc)
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Growth of Nanoparticles
® .5

e

WG ;

b At T
‘- % 2 HAB = 30 mm
P bsh

8. ¥
% 'f ; 52
(A" 6% . # iHAB=5mm

Fig. 1: Silica particles as collected by conventional
thermophoretic sampling (TS) along the axis of a
premixed flame of hexamethyldisifoxane and oxygen
[1,2]. Using aluminum foil in-stead of TEM gnds and
performing multiple sampling from the same location
in the flame, the Al-probe was covered with a silica
monolayer [1] (as indicated in Fig. 2).

Spray Flame Appearance

Air
12.5 Vmin

12.5 Vmin
w/ sheath O,

3

100g/h 200g/h 300 g/h

Fig. 3: Spray flames {1.26 M HMDSO in EtOH)
producing 100, 200 and 300 g/h of sifica using 12.5
Vmin air (a-c) or O, as dispersion gas without (d-f)
and with (g-) additional 25 I/min of O, sheath flow
at 1 bar pressure drop across the nozzie tip.

Powder Morphology

” S <) .

100nm o 4 B
Fig. 4: Transmission electron micrographs of siica
nanoparticles at production rates of 150 (top row)
and 300 g/h (botfom row) using 12.5 Vmin air (a,b)
or O, as dispersion gas without (c,d) and with (e,f)
additional 25 ¥min of O, sheath flow using 1.26 M
HMDSO in EtOH. 110

Fractal Aggregates and Agglomerates

Powder Morphology

Single
Diffusion
Flame
(SDF)

- — — —_—
100 nm 100 rm 100 am 100 rm

8.5 I/min

O, flow rate: 2.5 I/min

Double
Diffusion
Flame
(DDF)

100 nm

Fig. 5: Transmission Efectron Micrographs (TEM) of SiO, synthesized in SDF and DDF at different oxygen
flow rates. Particles made in flames at low oxygen flow rates stay longer at high temperatures leading to the
formation of rather big sphencal, non-agglomerated particles with diameters of about 100 nm. At high oxygen
flow rates the particles are agglomerates of small primary particles. Particles synthesized in DDF have
narrower size distnibutions indicated by TEM compared to those made in SDF.

Flame Structure

Single Diffusion Flame (SDF)

Double Diffusion Flame (SDF)
Fig. 3: Effect of oxygen flow rate on flame structure
of @ SDF and DDF. Increasing the oxygen flow rate
decreases the flame height of the HMDSO-
methane-oxygen diffusion flame as turbulence
accelerates the mixing of fuef and oxidant.



Polymer Chains are Mass-Fractals

Rrms = n'’2 | Mass ~ Size?
3-d object Mass ~ Size3
2-d object Mass ~ Size?
| -d object Mass ~ Size'
d-object Mass ~ Sizef

This leads to odd properties:

d; -3

Mass  Mass  Size" ,
density p= =——7F=——75 ~Size
Volume  Size Size
For a 3-d object density doesn’ t depend on size,
For a 2-d object density drops with Size

Larger polymers are less dense
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A

RY o
y P

2l

How Complex Mass Fractal Structures
Can be Decomposed

=d_.

min

C

Tortuosity

R

Connectivity

E d in ) E C
P4 d
Z ds P Amin S C R/d
27 11.36| 12 |1.03| 22 [1.28 | 11.2
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Disk Random Coil

c=2

Extended 3-sheet
(misfolded protein)

i “ http://emgm stanford.edu/biochem201/Slides/
Protein %20Structyre/Pleated%20Beta-sheets.JPG



Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering

Cryo Scanning Electron Microscopy

A scanning electron micrograph of a frozen sample was taken.
The sizes of the particles visible on the picture were measured
dvidually with & ruler and used to coculate a number-mean,
001,01, & volume-mean, D(4,3) and & number-distribution

Tum

Figure 2. TEM picture of titania (TiO; ) fractal aggregates with
D =~ 1.8 produced by pyrolysis of Titanium Isopropoxide.

. L 2001 ¢ Number Mean - D1,0) = 45,2 nm
Volume Mean - Di4,3) = 63.0 nm

Note © due to the limited number (82) of particies measwed
this resuft is anly Indécative.

heep://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf
118



Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering

Dynamic Light Scattering

To evalbate repeatability and robustness, the measure was made 8 times,
using 3 different dilutions, The following graph presents one of these
measures, expressed a8 intensity-distribution, volume-distribution and
number {length)-distribution,

Meaure on Mooy Mode' 170 - sorepdes d¥uted (o chlargfarme to JOO- 353 anfe.

MLMELN WIIOTRD  SOLEEE WEIDATRG N TENITY A O TIE
e e R

The following table shows the averaged results for the & measurements.
Prectsion & caloulated s the Relative Standard Deviation of the mexsurements.

Menn Calculation  Particle Size  Precision

Intensity Weightiog | 127.9 rm 1%
Volume Weighting 7.6 v 16 %
Number Weighting 36.2 rem 5%
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For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
gi(q.7)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
(q.t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales
and consider only the fluctuations at a given size scale,r or 271 /r = q

120



Interaity
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Dynamic Light Scattering
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9'(q;7) = exp(-I1)
I' = q2Dt

D=k T/6xna

a = Ry = Hydrodynamic Radius
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Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

http://webcache.googleusercontent.com/search?g=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic light scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?g=cache:yZDPRbgZ1BIlJ:en.wikipedia.org/wiki/Einstein_relation (kinetic _theory)+&cd=1&hl=en&ct=cInk&gl=us
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Gas Adsorption

B adsorbed sites
total sites (N)

A+ S <=>AS

800+ Adsorption Desorption
. 500 MCM-41
§ ] a0, — Equilibrium a0 _,
é 300 - "l dt e - dt o
% 2003 Mesoporous SiO
§ 100 AMM-Si

12

1| Na-Z8M-5

0 0.2 04 o 06 08 9 — p K — I% n = “é’s
1+ Kp g oT  RT

Fig. 2. Adsorption isotherms of the samples tested with Ar at
875K

08 :_ vs. pres|

0.6F 1

theta

04F 3

02 3
htep://www.chem.ufl.edu/~itl/441 | L_f00/ads/ads_|.html 3

123



Multilayer adsorption

600
T E MCM-41
o 3
5 400
oy i
© ] |
2 300 '
3 ' Na-¥ I\
S - |
GE’ Zl)Cli Mesoporous SiO, I
= i AMM-Si
g 1004|/ Sl

f Na-ZSM-5

0 0.2 04 08 08 10

p'p

Fig. 2. Adsorption isotherms of the samples tested with Ar at
875K

htep//www.chem.ufl.edu/~itl/441 I L_f00/ads/ads_]|.html

Gas Adsorption

Coverage (Theta)

BET Isotherm

Various Values of ¢
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S. Storck et al. /Applied Catalysis A: General 174 (1998) 137-146

Typel

Type ll

Type lll

plp,

Type IV

Type V

Fig. 1. Adsorption isotherm types defined by Brunauer [6].

p/p,

volume adsorbed /cm’ g

Fig. 2. Adsorption isotherms of the samples tested with Ar at
875K,

20+

18- /|

differential pore volume / ml nm” g

1 2 3 4
pore diameter / nm

Fig. 3. Pore-size distribution according to the BJH method.
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From gas adsorption obtain surface area by number of gas atoms
times an area for the adsorbed gas atoms in a monolayer

Have a volume from the mass and density.
So you have S/V or V/S
Assume sphere S =47 R% V =4/3 1R}

So dp = 6V/S

Sauter Mean Diameter d, = <R3>/<R?>
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Log-Normal Distribution

1 . [log(R/m ) N
/(R) —mt\pi 20: } | 1.5t
<R’> =m' exp(r202/2) = exp(r,u + r20'2/2) J o
(R)=mexp(c*/2) e
Mean
Gg = exp(()') Xg = exp(m) 8% 05 1.0 115 2.0 25 3.0

Geometric standard deviation and geometric mean (median)

Gaussian is centered at the Mean and is symmetric. For values that are positive (size) we
need an asymmetric distribution function that has only values for greater than |. In random
processes we have a minimum size with high probability and diminishing probability for larger
values.

6]
P
T——

n n !
T

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf
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Log-Normal Distribution

f(R . =

) =——3 .xp{..“"g‘R"""’”. . T L e’
Ro(2)'"

Intensity, a. u

s %
Imtensity % -

(Ry=m' exp(r262/2) = exp(r,u + r20'2/2) 10 o

w' Guinier Functions L U

(R) = mexp(c?/2) A o,
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering
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Figure 2

USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines). primary particle Guinier and Porod functions at high g, the
intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (@) Fumed titania sample with multi-grain particles and low-¢
excess scattering due to soft agglomerates. dys = 16.7 nm (corrected to 18.0 nm), PDI =3.01 (0, = 1.35), R, = 11.2 nm. d,; = 1.99, 7, = 175, g, = 226, Ry, =
171 nm. From gas adsorption, d;, = 162 nm. (b) Fumed zircoma sample (Mucller ef al., 2004) with single-grain particles, as shown in the inset. The primary
particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. dy,g = 20.3 nm, PDI = 10.8

(o, = 1.56), R, = 26.5 nm, d; = 2.90. From gas adsorption. d,, = 19.7 nm.

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf
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SAXS SV, m¥cm’®

dvs, saxs, nm

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
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oy || O MeasedSy -Static Scattering Rg, dp
Equvalent SV @ Kammier et al (2002) -
y g = *
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. : (c) I~
400 °é b, | &)30
L | . S
300 at : Figure 3 %) *
(@) 'V from SAXS for utama particles produced by vapor-phase 2
200 Q’ pyrolysis of titania tetraisopropoxide by Kammler er al. (2002, 2003). The ©20 7
v, ! SAXS §/V can be made to agree with the BET value by subtraction of s i
0o | %" 27Tm em " (b) dyx from USAXS [and corrected from (a)] versus d, g
’ from BET analysis of gas adsorption data for a series of titania samples 10 F ) - .
0.0 . produced by Kammler (tnangles and filled circles), and samples made in a P
00 100 200 300 400 500 €00 70O 800 quenched-spray flame from Wegner & Pratsinis (2003) (crosses, single- /
dﬂ nm grain particles). The calculated dy; from TEM mscrographs for the yd y ) .
»BET Kammler samples is also shown (filled squares). (¢) dy,s from USAXS 0

versus dy, from BET for fumed zirconia samples of Mueller er al. (2004) 0 10 20 30 40 50
d,, (TEM), nm

n)

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf

. 1ay )
Figure 4
(a) Companson of the median particle size from expm. with m defined by equation (18), and the median particle size calculated from an analysis of TEM
data on TiO:. (b) Mean particle size, (R) from USAXS, equation (2) with r = 1, and from TEM (Kammler er al., 2003) for the same samples as Figs. 3(a)
and 3(b)
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates
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Figure 5
3.1 gh™ titania. (¢) Repeat USAXS runs on a non-aggregated titania 0.0
powder (Fig. 1). (b) Particle size distributions from TEM (circles; ml 102 IO" ID‘
Kammler er al, 2003), equations (1), (2), (17) and (18) using PDI and R,
and using the maximum-entropy program of Jemian (Jemian ef al, 1991). Particle Diameter, A

Distribution curves are shifted vertically for clarity. dys = 34.9 nm, PDI =
144 (0, = 1.60), Ry = 44.2 nm.
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Fractal Aggregates and Agglomerates
Aggregate growth

Some Issues to Consider for Aggregation/Agglomeration

Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)
Concentration of Monomers
persistence length of velocity compared to mean separation distance
Branching and structural complexity

What happens when monomers or clusters get to a growth site:
Diffusion Limited Aggregation
Reaction Limited Aggregation

Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster)
or a Combination of Both (mass versus time plots)

Cluster-Cluster Aggregation
Monomer-Cluster Aggregation
Monomer-Monomer Aggregation

DLCA Diffusion Limited Cluster-Cluster Aggregation
RLCA Reaction Limited Cluster Aggregation

Post Growth: Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/Agsregate Growth.pdf
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Fractal Aggregates and Agglomerates

Aggregate growth

Consider what might effect the dimension of a growing aggregate.

Transport Diffusion/Ballistic
Growth Early/Late (0-d point => Linear |-d => Convoluted
2-d => Branched 2+d)
Speed of Transport Cluster, Monomer ‘
Shielding of Interior
‘ Rearrangement

Sintering

‘ Primary Particle Shape

‘ DLA df = 2.5 Monomer-Cluster (Meakin 1980 Low
Concentration)
‘ DLCA df = |.8 (Higher Concentration Meakin 1985)

Ballistic Monomer-Cluster (low concentration) df =3
Ballistic Cluster-Cluster (high concentration) df = .95
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Fractal Aggregates and Agglomerates
Aggregate growth

Colloids with Strongly attractive forces

NEAR EQUILIBRIUM: Ostwald Ripening

Kinetic Growth: DIFFUSION LIMITED

E Kinetic Growth: CHEMICALLY LIMITED

F e
ey ) .“ , ; |
wp.é Precipitated Silica
©

Reaction Limited,
Short persistence of velocity

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Sticking Law

Particle-Cluster Growth

B IR

Cluster-Cluster Growth

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates
Aggregate growth

Transport

Diffusion-Limited

Ballistic

Reaction-Limited
(Independent of transport)

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Aggregation Models

In RLCA a “sticking
probability is introduced
in the random growth
process of clusters. This
increases the dimension.

randomly oriented dimers.
Dimers are coupled at random
to construct tetramers, then
octoamers etc. This is a step-
growth process except that all
reactions occur synchronously
(monodisperse system).

Transport
Reaction-Limited Ballistic Diffusion-Limited
N EDEN VOLD WITTEN-SANDER
:
2| §
- | = .
= D =3.00 D =3.00 .
% RLCA SUTHERLAND DLCA
i
.
3
o
D=209 D=1495 D=180
Sutherland Model pairs of
particles are assembled into
In DLCA the

“sticking probability
is 1. Clusters follow

random walk.

Eden Model particles are added
at random with equal probability
to any unoccupied site adjacent
to one or more occupied sites
(Surface Fractals are Produced)

Vold-Sutherland Model particles
with random linear trajectories
are added to a growing cluster of
particles at the position where
they first contact the cluster

Witten-Sander Model particles
with random Brownian
trajectories are added to a

growing cluster of particles at

the position where they first
contact the cluster

2 PAUL MEAKIN
S S e S L A S
8t _-!
: 4
= §F 1
- |
z ]
<
=T )
2k 1‘
L 5.0 20.0 1
o .l-&;-_LL.L» 1 L
0 1 2 3 )

In(1)

FiG. 8. Dependence of In (M(/)) on In (/) for eight clusters grown using the WS model of diffusion-
limited cluster formation on a three-dimensional cubic lattice.

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Analysis of Fractals
Log(N)=DLog(R)

Log Number

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Self Similarity

Euclidian Objects
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Course Grain

From DW Schaefer Class Notes
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Intensity, a. u.

Fractal Aggregates and Agglomerates
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From DW Schaefer Class Notes

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf

140



Hierarchy of Polymer Chain Dynamics
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Dilute Solution Chain

Dynamics of the chain

5.1 Response Functions 199
1.0 1.0
0.6 08 |-
' (a) - (b)
S 06
0.0 {\VAVAVAVA A F
05 |- i
02 |-
qo L v b 1y d g 1 0.0 [ T U I Y
00 02 04 06 08 1.0 00 02 04 06 08 1.0
t t
1.0 1.0
08 |- 08 —
i (c) . (d)
06 |- 06 -
n 3
04 |- 04
02 |- 02 |-
0.0 T U N B 0.0 o I )
00 02 04 06 08 1.0 00 02 04 06 08 1.0
t t
t
= / k ! ! Fig. 5.4. Pri function of a damped harmonic oscillator (a), a perfect]
X(t) == dt eXp - r—t g t ig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly
spr viscous body (b), a Hookean solid (c), a simple relaxatory system {d)
—o0

The exponential term is the “response function”

response to a pulse perturbation
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Damped Harmonic
Oscillator

x(t) = ]dt'exp(—

6.2 The Rouse-Maodel

k, (1=1)/€)g(r’)

Fig. 6.4. Tima dependence of the amplity

Dilute Solution Chain —r

Dynamics of the chain

Step Response

For Brownian motion
of a harmonic bead in a solvent
this response function can be used to calculate the
time correlation function <x(t)x(0)>
for DLS for instance

(x(r)x(0 J drfdt exp| —k,, (=1, —1.)/€ (& (1)8(1.))

_2kT

<g(ll)g(t2)> £

A

(x(1)x(0)) = ’Ij—Texp(-t/f)

spr

T is a relaxation time.
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Dilute Solution Chain
Dynamics of the chain

Rouse Motion

r;'-ff? ':.: : ,:‘

Parameters A=3kg TAC, ¢ AJEzal Garamacer 4

' Beads 0 and N are special
E=—2%(R-R_Y

2 ;‘( ~ K1) For Beads | to N-I|

—k

drR, —(dE/dR R _ (R 4R -2R)+g,
dtl — ( 6/ 1) +gl(t) dt é (R1+l +Rl—1 2Rl)+gl(t)

For Bead 0 use R.; = Ro and for bead N Rn+1 = RN

& = O, 100 This is called a closure relationship
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Dilute Solution Chain
Dynamics of the chain
Rouse Motion

4

Parameters A=3kg T2, ¢ AJetz0al garamacer 4
drR, —k,,
- = R, +R_ —2R )+ g(t
dt 5 ( i+1 i—1 1) gl()
The Rouse unit size is arbitrary so we can make it very small and:
dR —k, d°R
= -+ &,(1) With dR/dt =0 ati=0and N
dt E di
d’R

—5 Reflects the curvature of R in i,
di it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain

OW .
N ?g\
\ QP A Rouse Motion

Describes modes of vibration like on a guitar string

di’

For the “p’ th” mode (0" th mode is the whole chain (string))

2p°n’k,,  6mkT 3 B
Ky, = ~ 2= N p’ gp_ZNg S =Ng

S, 2N°b*¢
Tp o = > >
k 3n"p kT

Spr,p
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Dilute Solution Chain
Dynamics of the chain

Rouse Motion

av_

e “v,

. P4 .

- o .'
. sTa» \d
“e »
-

v
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.‘.

s ¥

St

-
fat

Predicts that the viscosity will follow N which is true for low molecular
weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N? (actually follows N3/df)
Diffusion constant follows |/N (zeroth order mode is translation of the molecule) (actually
follows N-!/d)

Both failings are due to hydrodynamic interactions (incomplete draining of coil)
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! T
Dilute Solution Chain 5 i
Dynamics of the chain
Rouse Motion g
5.3 Specific Relaxation Prosesses and Flow Behavicr 235
.ob -
1w - E‘ - el
el ‘.e. Palydinathyisi oxere
10 g — —
w? 8 Palyisobutylen:
108 - Folyethy ena / j
10° |- Polysunditne / i
107 |- f ! ;ovmm.ngl'nwp-‘inm.vhm |
: = - I siluxany |
M
Palymaihyinethac ylste
Fig. 5.21. Molecular weight dependence of the relaxation time of the dielectric
normal mode in ces-PIP. Data from Boese and Kromer 58 | Folythylere 2
£ glycol
Palyvinyl
acetate =
Predicts that the viscosity will follow N ymimn L
a 1 2 3 1 b &

Canstant + log M

364, Plots of coustaut + lug 17 vs consisne + log M for nine different polymers The
1sh are different for cach of the pelymeex, and the one appearicg in the abscissa s

which is true for low molecular weights in
the melt and for fully draining polymers in
solution

ion, whick is ¢ Lfur o given und:lutad polymer. For each polymer the
th hﬁ and right sltalg)n line regions are 1.0 and 3.4, respectively. [G. C. Barry and T, G,
Ide. Palyw:. Sci,, 8, 261-357 (1963).]

Rouse model predicts
Relaxation time follows N2 (actually follows N3/df)
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Hierarchy of Entangled Melts
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Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific paramters”

Tube Diameter dt
Kuhn Length I
Packing Length p

“n
- :.. .,
- P .0
. .. -
T >
-
L4
& .ste %
4 ¥ - h o)
rJ ~ .' O
LR a5

AJTRizrad 3aramete a

FParameters A=3

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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6.3 Entanglement Effects 22
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Fig. 6.8. Results of o quasiclastic neutron scattering experiment on a melt of
poly(ethylene- co-propylene) at 199°C (105 protonated chains dissolyed 0 a deuter
ated matrix; M = 5.6- 10'): [otermedinte seattering laws messured ot the indi-
cated scaltering vectors (top); data representation using the dimensionkes variable
n = oM 12kTad /() 2 (bottom). Prom Richter ot al[67]

6.3 Entangioment Effects FLs]

AN

Fig. 6.10. Modelling the Iateral constraints on the chain motion imposed by the
entanglements hy a ‘tube’. The average over the rapid wriggling motion within the
tube defines the ‘primitive path’ (continwons dark ling)

Quasi-elastic neutron scattering data
demonstrating the existence of the tube

Unconstrained motion => $(q) goes to 0 at very long times
Each curve is for a different q = |/size
At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained
dr
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.3 Entangfement Effects 281

0
50 |-
— —f
i B s
e it < ‘_'-‘
-
0 1 1
400 500 600
T (K]
Fig. 6.9. Size d of the confinement range, as derived from the long teem limits of
the curves shown in Fig. 6.5 [67)

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time =Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)
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284 Chapter . Micrescopic Dynamical Models

Fig. 6.11. Reptation model: Decompesition of the tube resulting from a replative
motion of the primitive chain. The parts which are left empty disappeat

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)
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286 Chapter 6. Microscopic Dynamical Models

0.02
W 0.01
w 0.0
~
- -
000
Lol B8
10*
M

Fig. 6.12. Determination of diffusion eoeffickents of deuterated PE's in a PE malsix
by infrared absorption messurements in a micrescope. Concentration profiles 4(x)
obined in the separated state at the begin of o diffusion run and at » later stage
of diffusive mixing (the deshad fnes wore calculated for monodisperse components;
the deviations are due to polydispersity) (Lft]. Diffusion coeflicients at 77 = 1767°C,
derived from messurements on aseries of G PE's of different molecular weight {72008),
[he contéricons dne corresponds to a power luw D ~ M, Work of Klein [68]

Reptation predicts that the diffusion coefficient will follow N? (Experimentally it follows N?)
Reptation has some experimental verification
Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ [/N)
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Simulation of the tube

156

Fig. 3. Result of the primitive-path
analysis of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.



Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the correspond-
ing network of primitive paths.



Plateau Modulus

Not Dependent on N, Depends on T and concentration

10°
10°
§ 10*
. 4poRT 4RT
o . Go = spM T 5,0
4 : 4
v 10° 1 1 | 1 L

105 10° 10" 10 10° 10°
wls']

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9- 10" to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54]
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Kuhn Length- conformations of chains <R?> = |xL

Packing Length- length were polymers interpenetrate p = /(0 chain <RZ>)
where 0 chain is the number density of monomers
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Fig. 2. Dimensionless
plateau moduli Gl /kgT
as a function of the di-
mensionless ratio /,/p
of Kuhn length [, and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (+;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26-28)
(X); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35, 36) (Cl;)and a semi-

10 T : |
polyolefins  +
polydienes + ; @

10° [ polyacrylates  + ad

miscellaneous +
polycarbonate  + ﬁ'
1 PsTCcP X
107 PBPO X 1
0.00226 (I/p)®
2 - X ¥+
o e _
X X
10° | ]
X meits ™ []
4 X solutions @
o x BPAPC ¢ O 7
.5 1 | |
10
107! 10 .
IK/p

atomistic polycarbonate melt (37) (<) under an elongational strain; and (iii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (m), bead-spring
semidilute solutions (@), and the semi-atomistic polycarbonate melt (4 ). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dt ~ p
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Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by
virtual links. (b) Dual slip-links. (c) Real space representation of the
corresponding network of primitive paths.
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

comb

star

gEE

linear

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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Block Copolymers

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf
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Block Copolymers
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block copolymers
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Figure 9. Schematics of block, star, and graft amphiphilic block copolymers.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf
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Figure I. lllustration of model I (left) and II (right) of the AB-diblock copolymer micelle in a
selective solvent (lower pancl) and the volume fraction profiles of the polymer blocks (upper
panel) applied for the large core case (N, >> Np) and the small core case (N, << Np),

respectively.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf
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Hierarchy in BCP' s and Micellar Systems

HO %CHQCHQO >_<CH;‘J CHO >—< CH,CH,0 >7H
n2 | m 2
CH4

Pluronics (PEO/PPO block copolymers)

We consider primary structure as the block nature of the polymer chain.
This is similar to hydrophobic and hydrophilic interactions in proteins.
These cause a secondary self-organization into rods/spheres/sheets.

A tertiary organizaiton of these secondary structures occurs.

There are some similarities to proteins but BCP’ s are extremely simple systems by comparison.
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What is the size of a Block Copolymer Domain?

Masao Doi, Introduction to Polymer Physics

-For and symmetric A-B block copolymer

-Consider a lamellar structure with @ = 1/2

-Layer thickness D in a cube of edge length L, surface energy O

- so larger D means less surface and a lower Free Energy F
Ftace = 265L2

-The polymer chain is stretched as D increases. The free energy of
a stretched chain as a function of the extension length D is given by

D2 L3
F;'rretch = kT 2
Nb® Nv,

where N is the degree of polymerization for A or B,

b is the step length per N unit, ¥ c is the excluded volume for a unit step
So the stretching free energy, F, increases with D2,

ON’b™, jl/ g

-To minimize the free energies we have DE[ -
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Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a
great index difference that we have no means to determine if they are from the same chain
other than following the chain over great distances to determine the connectivity. That is,
Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.

The chain is composed of a series of steps with no orientational relationship to each other.
So<R>=0

<R2> has a value:

(R?)= XX = Lrer+ X Xren

i j#i

We assume no long range interactions so that the second term can be 0.
<R2> = Nr’
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