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Long Range Interactions	
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Long-Range Interactions	



Boltzman Probability	


For a Thermally Equilibrated System	



Gaussian Probability	


For a Chain of End to End Distance R	



By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written	



For a Chain with Long-Range Interactions There is and Additional Term	



So,	



Flory-Krigbaum Theory	


Result is called a Self-Avoiding Walk	



The Secondary Structure for Synthetic Polymers	



Number of pairs	



n n −1( )
2!
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Linear Polymer Chains have Two Possible Secondary Structure States:	



Self-Avoiding Walk	


Good Solvent	


Expanded Coil	



(The Normal Condition in Solution)	



Gaussian Chain	


Random Walk	



Theta-Condition	


Brownian Chain	



(The Normal Condition in the Melt/Solid)	



The Secondary Structure for Synthetic Polymers	



These are statistical features. That is, a single simulation of a SAW and a 
GC could look identical.	
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Linear Polymer Chains have Two Possible Secondary Structure States:	



Self-Avoiding Walk	


Good Solvent	


Expanded Coil	



(The Normal Condition in Solution)	



Gaussian Chain	


Random Walk	



Theta-Condition	


Brownian Chain	



(The Normal Condition in the Melt/Solid)	



The Secondary Structure for Synthetic Polymers	



Consider going from dilute conditions, c < c*, to the melt by increasing 
concentration.	



The transition in chain size is gradual not discrete.	


Synthetic polymers at thermal equilibrium accommodate concentration changes 

through a scaling transition.  Primary, Secondary, Tertiary Structures.	
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We have considered an athermal hard core potential	



But Vc actually has an inverse temperature component associated with enthalpic interactions 
between monomers and solvent molecules	


	


The interaction energy between a monomer and the polymer/solvent system is on average 
<E(R)> for a given end-to-end distance R (defining a conformational state).  This modifies the 
probability of a chain having an end-to-end distance R by the Boltzmann probability,	


	


	


<E(R)> is made up of pp, ps, ss interactions with an average change in energy on solvation of 
a polymer Δε = (εpp+εss-2εps)/2	


	


	


For a monomer with z sites of interaction we can define a unitless energy parameter 	


χ = zΔε/kT that reflects the average enthalpy of interaction per kT for a monomer	



PBoltzman (R) = exp
− E(R)
kT

⎛
⎝⎜

⎞
⎠⎟



8	



E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E(R)
kT

= n
2Vcχ
R3

For a monomer with z sites of interaction we can define a unitless energy parameter 	


χ = zΔε/kT that reflects the average enthalpy of interaction per kT for a monomer	


	


The volume fraction of monomers in the polymer coil is nVc/R3	



And there are n monomers in the chain with a conformational state of end-to-end distance 
R so,	



We can then write the energy of the chain as,	



This indicates that when χ = ½ the coil acts as if it were an ideal chain, excluded volume 
disappears.  This condition is called the theta-state and the temperature where χ = ½ is 
called the theta-temperature.  It is a critical point for the polymer coil in solution.	
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R* = R0
* n1 2V0 1 2 − χ( )

b3
⎛
⎝⎜

⎞
⎠⎟

1 5
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R* = R0
* n1 2V0 1 2 − χ( )

b3
⎛
⎝⎜

⎞
⎠⎟

1 5
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ΔG
kTNcells

= φA

NA

lnφA +
φB
NB

lnφB +φAφBχ

Flory-Huggins Equation	



dΔG
dφ

= 0 Miscibility Limit	


Binodal	



d 2ΔG
dφ 2

= 0 Spinodal	



d3ΔG
dφ 3

= 0 Critical Point	



All three equalities apply	


At the critical point	



http://rkt.chem.ox.ac.uk/lectures/liqsolns/regular_solutions.html	
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Tc = θ(1-2Φc)	


Linear 

Relationship	
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Consider also Φ* which is the coil 
composition, generally below the 
critical composition for normal n 
or N	



φ* = n
V

= n
R3

   ~ n−4
5  (for good solvents) 

or ~ n-1
2  (for theta solvents)

Overlap Composition	
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Overlap Composition	



Φ*	



Both Φ* and Φc 
depend on 1/√N	


	



Below Φ* the 
composition is fixed 
since the coil can not 
be diluted!	
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Overlap Composition	



Φ*	



Both Φ* and Φc 
depend on 1/√N	


	



Below Φ* the 
composition is fixed 
since the coil can not 
be diluted!	


	


So there is a regime of 
coil collapse below the 
binodal at Φ* in 
composition and 
temperature	



Coil	


Collapse	
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Overlap Composition	



Φ*	



Both Φ* and Φc 
depend on 1/√N	


	



Below Φ* the 
composition is fixed 
since the coil can not 
be diluted!	


	


So there is a regime of 
coil collapse below the 
binodal at Φ* in 
composition and 
temperature	



Coil	


Collapse	



Phase 	


Separation	



Θ	


Coil	



GS-Coil	
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For a polymer in solution there is an inherent concentration to the chain	


since the chain contains some solvent	



The polymer concentration is Mass/Volume, within a chain	



When the solution concentration matches c* the chains “overlap”	


Then an individual chain is can not be resolved and the chains entangle	



This is called a concentrated solution, the regime near c* is called semi-dilute	


and the regime below c* is called dilute	
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In concentrated solutions with chain overlap 	


chain entanglements lead to a higher solution viscosity	



J.R. Fried Introduction to Polymer Science	
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ χ = zΔε

kT
= B
T

Lower-Critical Solution Temperature (LCST)	



Polymers can order or disorder on 
mixing leading to a noncombinatorial 
entropy term, A in the interaction 
parameter.	



χ = A + B
T

If the polymer orders on mixing then A 
is positive and the energy is lowered.	


	


If the polymer-solvent shows a specific 
interaction then B can be negative.	


	


This Positive A and Negative B favors 
mixing at low temperature and 
demixing at high temperature, LCST 
behavior.	



ΔG
kTNcells

= φA

NA

lnφA +
φB
NB

lnφB +φAφBχ
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

χ = zΔε
kT

= B
T

Lower-Critical Solution Temperature (LCST)	



χ = A + B
T

Poly vinyl methyl ether/Water	


PVME/PS	



Also see Poly(N-isopropylacrylamide)/Water	
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”	



Grosberg uses:  	

α 2 = R2

R0
2

Rather than the normal definition used by Flory:	

 α = R2

R0
2

What Happens to the left of the theta temperature?	
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R ~ R0α = z1 2bα ~ z3 5B1 5b
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Generally B is negative and C is positive, i.e. favors coil collapse	


So C is important below the theta temperature to model the coil to globule transition	


For simplicity we ignore higher order terms because C is enough to give the gross features	


Of this transition.  Generally it is known that this transition can be either first order for 	


Biopolymers such as protein folding, or second order for synthetic polymers.	


First order means that the first derivative of the free energy is not continuous, i.e. a jump in 	


Free energy at a discrete transition temperature, such as a melting point.	
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Φ*	



Coil	


Collapse	



Phase 	


Separation	



Θ	


Coil	



GS-Coil	



Consider the coil of length n as 
composed of g* chain subunits each with 
(n/g*) Kuhn units of length lk.  g* can be 
any value between one and n.  	


	


Small size g* units have a lower Tc 
compared to large size g* units.	
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!

Blob model for coil collapse	



R2 ~ g*

Assume Gaussian	


Collection of	


Blobs	





27	



R2 ~ g*
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R2 ~ g*

α is >1 for expansion 
<1 for contraction 
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Ratio of C/B determines behavior, the collapsed coil is 3d	
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!
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!
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!
Generally it is known that this transition can be either first order for 	


Biopolymers such as protein folding, or second order for synthetic polymers.	


First order means that the first derivative of the free energy is not continuous, i.e. a jump in 	


Free energy at a discrete transition temperature, such as a melting point.	
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1.5 Theta	


1.6 Expanded	


0.774 Sphere	



0.92 Draining Sphere	


(We will Look at this 	



further)	
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Size of a Chain, “R”	


(You can not directly measure the End-to-End Distance)	
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What are the measures of Size, “R”,  for a polymer coil?	



Radius of Gyration, Rg	



http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf	
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What are the measures of Size, “R”,  for a polymer coil?	



Radius of Gyration, Rg	



2.45 Rg = Reted	



Rg is a direct measure of the end-to-end distance for a 
Gaussian Chain	



http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf	
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Static Light Scattering for Rg	



� 

I q( ) = IeNne
2 exp −Rg

2q2
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Guinier’s Law	



Guinier Plot linearizes this function	



ln I q( )
G

⎛
⎝⎜

⎞
⎠⎟
= −

Rg
2

3
q2        G = IeNne

2

The exponential can be expanded at low-q 
and linearized to make a Zimm Plot	



G
I q( ) = 1+

Rg
2

3
q2

⎛

⎝⎜
⎞

⎠⎟
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Zimm Plot	



I q( ) = G

exp
q2Rg

2

3
⎛
⎝⎜

⎞
⎠⎟

G
I(q)

= exp
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟
≈1+

q2Rg
2

3
+ ...

Plot is linearized by G I q( )  versus q2

q = 4π
λ
sin θ

2
⎛
⎝⎜

⎞
⎠⎟

Concentration part will be described later	
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Static Light Scattering for Radius of Gyration	



Guinier’s Law	



Beaucage G J. Appl. Cryst. 28 717-728 (1995). 	



� 

γGaussian r( ) = exp −3r2
2σ 2( )

σ 2 =
xi −µ( )2

i=1

N

∑
N −1

= 2Rg
2

� 

I q( ) = IeNne
2 exp −Rg

2q2
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Lead Term is 	



� 

I(1/ r) ~ N r( )n r( )2

� 

I(0) = Nne
2

� 

γ0 r( ) =1− S
4V

r + ...

A particle with no surface	



� 

r⇒ 0  then  d γGaussian r( )( )
dr⇒ 0

Consider binary interference at a distance “r” for a particle with arbitrary orientation	


Rotate and translate a particle so that two points separated by r lie in the particle for all rotations	



and average the structures at these different orientations	



Binary Autocorrelation	


Function	



Scattered Intensity is the Fourier Transform of	


The Binary Autocorrelation Function	
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Two possibilities for an arrow with both ends in a particle	


(A) Different Particles => Guinier’s Law	


(B)  Same Particle => Surface Scattering	



(Only near the surface is there constructive interference with no 
intermediate destructive vector at ½ the distance r)	


There is a transition between (A) and (B) near r = Rg	
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Debye Scattering Function for Gaussian Polymer Coil	



gn rn( ) =
δ rn − Rm − Rn( )( )

m=1

N

∑
N

g r( ) = 1
2N 2 gn rn( )

n=1

N

∑ = 1
2N 2 δ r − Rm − Rn( )( )

m=1

N

∑
n=1

N

∑
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g q( ) = drg r( )exp iqir( )∫ = 1
2N 2 exp iqi Rm − Rn( )( )

m=1

N

∑
n=1

N

∑
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Low-q and High-q Limits of Debye Function	



At high q the last term => 0	


Q-1 => Q	



g(q) => 2/Q ~ q-2	



Which is a mass-fractal scaling law with df = 2	



At low q,  exp(-Q) => 1-Q+Q2/2-Q3/6+…	


Bracketed term => Q2/2-Q3/6+…	



	


g(q) => 1-Q/3+… ~ exp(-Q/3) = exp(-q2Rg

2/3)	


	



Which is Guinier’s Law	
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Ornstein-Zernike Function, Limits and Related Functions	



The Zimm equation involves a truncated form of the Guinier Expression intended 	


For use at extremely low-qRg: 	



If this expression is generalized for a fixed composition and all q, Rg is no longer	


the size parameter and the equation is empirical (no theoretical basis) but has a form	


similar to the Debye Function for polymer coils:	



I q( ) = G
1+ q2ξ 2

This function is called the Ornstein-Zernike function and ξ is called a correlation length.	


	


The inverse Fourier transform of this function can be solved and is given by	


(Benoit-Higgins Polymers and Neutron Scattering p. 233 1994):	



p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟

This function is empirical and displays the odd (impossible) feature that the correlation	


function for a “random” system is not symmetric about 0, that is + and – values for r	


are not equivalent even though the system is random.  (Compare with the normal 	


behavior of the Guinier correlation function.)	



p r( ) = K exp − 3r
2

4Rg
2

⎛

⎝⎜
⎞

⎠⎟
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Ornstein-Zernike Function, Limits and Related Functions	



I q( ) = G
1+ q2ξ 2

Low-q limit	



High-q limit	



I q( ) = G
q2ξ 2

I(q) = 2G
q2Rg

2

I q( ) ~G 1−
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟
~Gexp −

q2Rg
2

3
⎛

⎝⎜
⎞

⎠⎟I q( ) ~Gexp −q2ξ 2( ) 3ξ 2 = Rg
2

2ξ 2 = Rg
2

Ornstein-Zernike (Empirical)	

 Debye (Exact)	
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Ornstein-Zernike Function, Limits and Related Functions	



I q( ) = G
1+ q2ξ 2

p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟

Empirical Correlation Function	

 Transformed Empirical Scattering Function	



Ornstein-Zernike Function	



Debye-Bueche Function	



Teubner-Strey Function	



Sinha Function	



p r( ) = K exp − r
ξ

⎛
⎝⎜

⎞
⎠⎟

I q( ) = G
1+ q4ξ 4

p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟
sin 2πr

d
⎛
⎝⎜

⎞
⎠⎟

I q( ) = G
1+ q2c2 + q

4c3
c2 is negative to create a peak	



p r( ) = K
r3−d f

exp − r
ξ

⎛
⎝⎜

⎞
⎠⎟

Correlation function in all of these cases is not symmetric about 0 which is 
physically impossible for a random system.  The resulting scattering functions can 
be shown to be non-physical, that is they do not follow fundamental rules of 
scattering.  Fitting parameters have no physical meaning.	



I q( ) =
Gsin d f −1( )arctan qξ( )⎡⎣ ⎤⎦

qξ 1+ q2ξ 2( ) d f −1( ) 2
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Measurement of the Hydrodynamic Radius, Rh	



http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HydrodyamicRadius.pdf	



RH = kT
6πηD

1
RH

= 1
2N 2

1
ri − rjj=1

N

∑
i=1

N

∑ Kirkwood, J. Polym. Sci. 12 1(1953).	

η[ ] = 4 3πRH
3

N
http://theor.jinr.ru/~kuzemsky/kirkbio.html	
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Viscosity

Native state has the smallest volume
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Intrinsic, specific & reduced “viscosity”	



τ xy =η γ xy Shear Flow (may or may not exist in a capillary/Couette geometry)	



η =η0 1+φ η[ ]+ k1φ 2 η[ ]2 + k2φ 3 η[ ]3 ++ kn−1φ
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
φ

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
φ

ηr −1( ) = ηsp

φ
Limit φ=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



We can approximate (1) as:	



ηr =
η
η0

=1+φ η[ ]exp KMφ η[ ]( ) Martin Equation	



Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1	
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



Concentration Effect	
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



Concentration Effect, c*	
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



Solvent Quality	
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



Molecular Weight Effect	



η[ ] = KMa
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Viscosity

For the Native State Mass ~ ρ VMolecule

Einstein Equation (for Suspension of 3d Objects)

For “Gaussian” Chain Mass ~ Size2 ~ V2/3

V ~ Mass3/2

For “Expanded Coil”  Mass ~ Size5/3 ~ V5/9

V ~ Mass9/5

For “Fractal”  Mass ~ Sizedf ~ Vdf/3

V ~ Mass3/df
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Viscosity

For the Native State Mass ~ ρ VMolecule

Einstein Equation (for Suspension of 3d Objects)

For “Gaussian” Chain Mass ~ Size2 ~ V2/3

V ~ Mass3/2

For “Expanded Coil”  Mass ~ Size5/3 ~ V5/9

V ~ Mass9/5

For “Fractal”  Mass ~ Sizedf ~ Vdf/3

V ~ Mass3/df

“Size” is the
“Hydrodynamic Size”
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



Temperature Effect	



η0 = Aexp
E
kBT

⎛
⎝⎜

⎞
⎠⎟
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Intrinsic, specific & reduced “viscosity”	



η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)	



1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)	



We can approximate (1) as:	



ηr =
η
η0

=1+ c η[ ]exp KMc η[ ]( ) Martin Equation	



Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1	



ηsp

c
= η[ ]+ k1 η[ ]2 c Huggins Equation	



ln ηr( )
c

= η[ ]+ k1' η[ ]2 c Kraemer Equation 	


(exponential expansion)	
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Intrinsic “viscosity” for colloids (Simha, Case Western)	



η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

For a solid object with a surface v is a constant in molecular weight, depending only on shape	


	


For a symmetric object (sphere) v = 2.5  (Einstein)	


	


For ellipsoids v is larger than for a sphere,	



	

 	

	



η[ ] = 2.5
ρ

 ml g

J = a/b	



prolate	



oblate	



a, b, b :: a>b	



a, a, b :: a<b	



v = J 2

15 ln 2J( )− 3 2( )

v = 16J
15tan−1 J( )
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Intrinsic “viscosity” for colloids (Simha, Case Western)	



η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

Hydrodynamic volume for “bound” solvent	



VH = M
NA

v2 +δSv1
0( )

Partial Specific Volume	


Bound Solvent (g solvent/g polymer)	


Molar Volume of Solvent	



v2
δS
v1
0
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Intrinsic “viscosity” for colloids (Simha, Case Western)	



η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

Long cylinders (TMV, DNA, Nanotubes)	



η[ ] = 2
45

πNAL
3

M ln J +Cη( )
J=L/d	



Cη End Effect term ~ 2 ln 2 – 25/12   Yamakawa 1975	
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Shear Rate Dependence for Polymers	



Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	



Volume
time

= πR4Δp
8ηl

Δp = ρgh

γ Max =
4Volume
πR3time

Capillary Viscometer	
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Branching and Intrinsic Viscosity	



Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	
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Branching and Intrinsic Viscosity	



Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1	



Rg,b,M
2 ≤ Rg,l,M

2

g =
Rg,b,M
2

Rg,l,M
2

g = 3 f − 2
f 2

gη =
η[ ]b,M
η[ ]l,M

= g0.58 = 3 f − 2
f 2

⎛
⎝⎜

⎞
⎠⎟

0.58
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Polyelectrolytes and Intrinsic Viscosity	



Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	
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Polyelectrolytes and Intrinsic Viscosity	



Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)	
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Hydrodynamic Radius from 
Dynamic Light Scattering	



http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HydrodyamicRadius.pdf	



http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf	



http://www.eng.uc.edu/~gbeaucag/Classes/Properties/
HiemenzRajagopalanDLS.pdf	
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Consider motion of molecules 
or nanoparticles in solution	



Particles move by Brownian Motion/Diffusion	


The probability of finding a particle at a distance x from the 
starting point at t = 0 is a Gaussian Function that defines the 

diffusion Coefficient, D	



ρ x, t( ) = 1
4πDt( )1 2

e
−x

2

2 2Dt( )

x2 =σ 2 = 2Dt

A laser beam hitting the solution will display a fluctuating 
scattered intensity at “q” that varies with q since the 
particles or molecules move in and out of the beam	



I(q,t)	


This fluctuation is related to the diffusion of the particles	



The Stokes-Einstein relationship states that D is related to RH,	



D = kT
6πηRH
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For static scattering p(r) is the binary spatial auto-correlation function	



We can also consider correlations in time, binary temporal correlation function	


g1(q,τ)	



For dynamics we consider a single value of q or r and watch how the intensity changes with time	


I(q,t)	



We consider correlation between intensities separated by t	


We need to subtract the constant intensity due to scattering at different size scales	



and consider only the fluctuations at a given size scale, r or 2π/r = q	
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Dynamic Light Scattering	



a = RH = Hydrodynamic Radius	



The radius of an equivalent sphere following Stokes’ Law	
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Dynamic Light Scattering	



http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf 

my DLS web page	



Wiki	


http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us 

Wiki Einstein Stokes	



http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us 
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Diffusing Wave Spectroscopy (DWS)	



Will need to come back to this after introducing dynamics	


And linear response theory	



http://www.formulaction.com/technology-dws.html	
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Static Scattering for Fractal 
Scaling	
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For qRg >> 1	



df = 2	
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Ornstein-Zernike Equation	



I q( ) = G
1+ q2ξ 2

Has the correct functionality at high q	


Debye Scattering Function => 	



I q => ∞( ) = G
q2ξ 2

I q => ∞( ) = 2G
q2Rg

2

Rg
2 = 2ζ 2

So,	



I q( ) = 2
q2Rg

2 q2Rg
2 −1+ exp −q2Rg

2( )( )
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Ornstein-Zernike Equation	



I q( ) = G
1+ q2ξ 2

Has the correct functionality at low q	


Debye => 	



I q => 0( ) =Gexp −
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟

I q => 0( ) =Gexp −q2ξ 2( )

The relatoinship between Rg and correlation 
length differs for the two regimes.	



I q( ) = 2
q2Rg

2 q2Rg
2 −1+ exp −q2Rg

2( )( )

Rg
2 = 3ζ 2
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How does a polymer chain respond to external  perturbation?	
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The Gaussian Chain	



Boltzman Probability	


For a Thermally Equilibrated System	



Gaussian Probability	


For a Chain of End to End Distance R	



By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written	



Force	

 Force	



Assumptions:	


-Gaussian Chain	



-Thermally Equilibrated	


-Small Perturbation of Structure (so 
it is still Gaussian after the deformation)	
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Tensile Blob	



For weak perturbations of the chain 	



Application of an external stress to the ends of a chain 
create a transition size where the coil goes from Gaussian 

to Linear called the Tensile Blob.	



For Larger Perturbations of Structure 	


-At small scales, small lever arm, structure remains Gaussian	


-At large scales, large lever arm, structure becomes linear	



Perturbation of Structure leads to a structural transition at a 
size scale  ξ
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F = ksprR = 3kT
R*2

R

ξTensile ~
R*2

R
= 3kT

F

For sizes larger than the blob size the structure is linear, one 
conformational state so the conformational entropy is 0.  For 
sizes smaller the blob has the minimum spring constant so the 
weakest link governs the mechanical properties and the chains 
are random below this size.	
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Semi-Dilute Solution Chain Statistics	
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In dilute solution the coil contains a concentration c* ~ 1/[η]	



for good solvent conditions	



At large sizes the coil acts as if it were in a concentrated solution (c>>>c*), df = 2.  At 
small sizes the coil acts as if it were in a dilute solution, df = 5/3.  There is a size scale, 

ξ, where this “scaling transition” occurs.	


	



We have a primary structure of rod-like units, a secondary structure of expanded coil 
and a tertiary structure of Gaussian Chains.	



	


What is the value of ξ?	



ξ is related to the coil size R since it has a limiting value of R for c < c* and has a 
scaling relationship with the reduced concentration c/c*	



There are no dependencies on n above c* so (3+4P)/5 = 0 and P = -3/4	



For semi-dilute solution the coil contains a concentration c > c*	
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Coil Size in terms of the concentration	



This is called the “Concentration Blob”	



ξ = b N
nξ

⎛

⎝⎜
⎞

⎠⎟

3
5

~ c
c*

⎛
⎝⎜

⎞
⎠⎟
−3
4

nξ ~
c
c*

⎛
⎝⎜

⎞
⎠⎟
3
4( ) 53( )

= c
c*

⎛
⎝⎜

⎞
⎠⎟
5
4( )

R = ξnξ
1
2 ~ c

c*
⎛
⎝⎜

⎞
⎠⎟
−3
4 c
c*

⎛
⎝⎜

⎞
⎠⎟
5
8( )
= c

c*
⎛
⎝⎜

⎞
⎠⎟
−1
8
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Three regimes of chain scaling in concentration.	
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Thermal Blob	



Chain expands from the theta condition to fully expanded gradually.	


At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).	





106	



Thermal Blob	
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Thermal Blob	



Energy Depends on n,  a chain with a mer unit of length 1 and n = 10000 
could be re cast (renormalized) as a chain of unit length 100 and n = 100 
The energy changes with n so depends on the definition of the base unit 

 
Smaller chain segments have less entropy so phase separate first. 

We expect the chain to become Gaussian on small scales first. 
This is the opposite of the concentration blob. 

 
Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first. 

As the temperature drops further the Gaussian blob becomes larger until the entire chain is 
Gaussian at the theta temperature. 
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Thermal Blob	



Flory-Krigbaum Theory yields:	



By equating these:	
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Fractal Aggregates and Agglomerates	
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Polymer Chains are Mass-Fractals	



RRMS = n1/2 l	

 Mass ~ Size2	



3-d object	

 Mass ~ Size3	



2-d object	

 Mass ~ Size2	



1-d object	

 Mass ~ Size1	



df-object	

 Mass ~ Sizedf	



This leads to odd properties:	


	



density	



For a 3-d object density doesn’t depend on size,	


For a 2-d object density drops with Size	



Larger polymers are less dense	
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� 

p ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
dmin

� 

s ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
c

Tortuosity Connectivity 

How Complex Mass Fractal Structures 
Can be Decomposed 

� 

df = dminc� 

z ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
d f

~ pc ~ sdmin

z df p dmin s c R/d 

27 1.36 12 1.03 22 1.28 11.2 
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Disk Random Coil 

� 

df = 2
dmin =1
c = 2

� 

df = 2
dmin = 2
c =1

Extended β-sheet 
(misfolded protein) Unfolded Gaussian chain 
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	



http://www.phys.ksu.edu/personal/sor/publications/2001/light.pdf	



-Particle counting from TEM	


-Gas adsorption V/S => dp	


-Static Scattering Rg, dp	


-Dynamic Light Scattering	



http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf	
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	



-Particle counting from TEM	


-Gas adsorption V/S => dp	


-Static Scattering Rg, dp	


-Dynamic Light Scattering	



http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf	
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For static scattering p(r) is the binary spatial auto-correlation function	



We can also consider correlations in time, binary temporal correlation function	


g1(q,τ)	



For dynamics we consider a single value of q or r and watch how the intensity changes with time	


I(q,t)	



We consider correlation between intensities separated by t	


We need to subtract the constant intensity due to scattering at different size scales	



and consider only the fluctuations at a given size scale, r or 2π/r = q	
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Dynamic Light Scattering	



a = RH = Hydrodynamic Radius	
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Dynamic Light Scattering	



http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf 

my DLS web page	



Wiki	


http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us 

Wiki Einstein Stokes	



http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us 
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Gas Adsorption	



http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html	



A + S <=> AS	



Adsorption	

 Desorption	



Equilibrium	


=	
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Gas Adsorption	



http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html	



Multilayer adsorption	
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http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/GasAdsorptionReviews/ReviewofGasAdsorptionGOodOne.pdf	
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From gas adsorption obtain surface area by number of gas atoms 
times an area for the adsorbed gas atoms in a monolayer	


	


Have a volume from the mass and density.	


	


So you have S/V or V/S	


	


Assume sphere S = 4πR2,  V = 4/3 πR3	


	


So dp = 6V/S	


	


Sauter Mean Diameter dp = <R3>/<R2>	
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Log-Normal Distribution	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	



Geometric standard deviation and geometric mean (median)	



Mean	



Gaussian is centered at the Mean and is symmetric.  For values that are positive (size) we 
need an asymmetric distribution function that has only values for greater than 1.  In random 
processes we have a minimum size with high probability and diminishing probability for larger 
values.	



http://en.wikipedia.org/wiki/Log-normal_distribution	
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Log-Normal Distribution	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	



Geometric standard deviation and geometric mean (median)	



Mean	



Static Scattering Determination of Log Normal Parameters	
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	



-Particle counting from TEM	


-Gas adsorption V/S => dp	


-Static Scattering Rg, dp	


-Dynamic Light Scattering	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	



-Particle counting from TEM	


-Gas adsorption V/S => dp	


-Static Scattering Rg, dp	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	



Smaller Size = Higher S/V 	


(Closed Pores or similar issues)	
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Fractal Aggregates and Agglomerates	



Primary Size for Fractal Aggregates	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	



Fractal Aggregate Primary Particles	
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Fractal Aggregates and Agglomerates	



http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/AggregateGrowth.pdf	



Aggregate growth	



Some Issues to Consider for Aggregation/Agglomeration	


	



Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)	


Concentration of Monomers	



persistence length of velocity compared to mean separation distance	


Branching and structural complexity	



	


What happens when monomers or clusters get to a growth site:	



Diffusion Limited Aggregation	


Reaction Limited Aggregation	



	


Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster) 

or a Combination of Both (mass versus time plots)	


	



Cluster-Cluster Aggregation	


Monomer-Cluster Aggregation	



Monomer-Monomer Aggregation	


	



DLCA Diffusion Limited Cluster-Cluster Aggregation	


RLCA Reaction Limited Cluster Aggregation	



	


Post Growth:  Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



Consider what might effect the dimension of a growing aggregate.	



Transport Diffusion/Ballistic	


Growth Early/Late (0-d point => Linear 1-d => Convoluted 

2-d => Branched 2+d)	


Speed of Transport Cluster, Monomer	



Shielding of Interior 	


Rearrangement	



Sintering	


Primary Particle Shape	



	


	



DLA df = 2.5  Monomer-Cluster (Meakin 1980 Low 
Concentration)	



DLCA df = 1.8 (Higher Concentration Meakin 1985)	


	



Ballistic Monomer-Cluster (low concentration)  df = 3	


Ballistic Cluster-Cluster (high concentration) df = 1.95	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	



Reaction Limited, 	


Short persistence of velocity	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	



http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/
MeakinVoldSunderlandEdenWittenSanders.pdf	



Vold-Sutherland Model particles 
with random linear trajectories 
are added to a growing cluster of 
particles at the position where 
they first contact the cluster	



Eden Model particles are added 
at random with equal probability 
to any unoccupied site adjacent 
to one or more occupied sites	


(Surface Fractals are Produced)	



Witten-Sander Model particles 
with random Brownian 
trajectories are added to a 

growing cluster of particles at 
the position where they first 

contact the cluster	



Sutherland Model pairs of 
particles are assembled into 
randomly oriented dimers.  

Dimers are coupled at random 
to construct tetramers, then 
octoamers etc.  This is a step-
growth process except that all 
reactions occur synchronously 

(monodisperse system).	



In RLCA a “sticking 
probability is introduced 
in the random growth 

process of clusters.  This 
increases the dimension.	



In DLCA the 
“sticking probability 
is 1.  Clusters follow 

random walk.	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	
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Fractal Aggregates and Agglomerates	



Aggregate growth	



From DW Schaefer Class Notes	
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Fractal Aggregates and Agglomerates	



From DW Schaefer Class Notes	



http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf	



Primary: Primary Particles	


Secondary: Aggregates	


Tertiary: Agglomerates	



Primary: Primary Particles	


	



Tertiary: Agglomerates	
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Hierarchy of Polymer Chain Dynamics	
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Dilute Solution Chain	



Dynamics of the chain 	



The exponential term is the “response function”	


response to a pulse perturbation	
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Dilute Solution Chain	



Dynamics of the chain 	



Damped Harmonic	


Oscillator	

 For Brownian motion	



of a harmonic bead in a solvent	


this response function can be used to calculate the	



time correlation function <x(t)x(0)>	


for DLS for instance	



τ is a relaxation time.	
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Dilute Solution Chain	



Dynamics of the chain 	



Rouse Motion	



Beads 0 and N are special	



For Beads 1 to N-1	



For Bead 0 use R-1 = R0 and for bead N RN+1 = RN	



This is called a closure relationship	
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Dilute Solution Chain	



Dynamics of the chain 	



Rouse Motion	



The Rouse unit size is arbitrary so we can make it very small and:	



With dR/dt = 0 at i = 0 and N	



Reflects the curvature of R in i, 	


it describes modes of vibration like on a guitar string	
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Dilute Solution Chain	



Dynamics of the chain 	



Rouse Motion	



Describes modes of vibration like on a guitar string	



For the “p’th” mode (0’th mode is the whole chain (string))	
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Dilute Solution Chain	



Dynamics of the chain 	



Rouse Motion	



Rouse model predicts 	


Relaxation time follows N2  (actually follows N3/df)	



Diffusion constant follows 1/N (zeroth order mode is translation of the molecule)  (actually 
follows N-1/df)	



Both failings are due to hydrodynamic interactions (incomplete draining of coil)	



Predicts that the viscosity will follow N which is true for low molecular 
weights in the melt and for fully draining polymers in solution	
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Dilute Solution Chain	



Dynamics of the chain 	



Rouse Motion	



Rouse model predicts 	


Relaxation time follows N2  (actually follows N3/df)	



Predicts that the viscosity will follow N 
which is true for low molecular weights in 
the melt and for fully draining polymers in 

solution	
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Hierarchy of Entangled Melts	
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf	



Chain dynamics in the melt can be described by a small set of “physically motivated, 
material-specific paramters” 	



	


Tube Diameter dT	



Kuhn Length lK	


Packing Length p	



	



Hierarchy of Entangled Melts	
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Quasi-elastic neutron scattering data 
demonstrating the existence of the tube	



Unconstrained motion => S(q) goes to 0 at very long times	


	



Each curve is for a different q = 1/size	


	



At small size there are less constraints (within the tube)	


	



At large sizes there is substantial constraint (the tube)	



By extrapolation to high times 	


a size for the tube can be obtained	



dT	
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There are two regimes of hierarchy in time dependence	


Small-scale unconstrained Rouse behavior	



Large-scale tube behavior	


	



We say that the tube follows a “primitive path”	


This path can “relax” in time  = Tube relaxation or Tube Renewal	



	


Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)	
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Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)	
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Reptation predicts that the diffusion coefficient will follow N2 (Experimentally it follows N2)	


Reptation has some experimental verification	



Where it is not verified we understand that tube renewal is the main issue.	



(Rouse Model predicts D ~ 1/N)	





155	



Reptation of DNA in a concentrated solution	
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Simulation of the tube	
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Simulation of the tube	
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Plateau Modulus	



Not Dependent on N, Depends on T and concentration	
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Kuhn Length- conformations of chains  <R2> = lKL	



Packing Length- length were polymers interpenetrate  p = 1/(ρchain <R2>)	


where ρchain is the number density of monomers	
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this implies that dT ~ p	
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model	



http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf	
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Block Copolymers	


http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf	
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Block Copolymers	



SBR Rubber	
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf	
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf	
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Hierarchy in BCP’s and Micellar Systems	



We consider primary structure as the block nature of the polymer chain.	


	



This is similar to hydrophobic and hydrophilic interactions in proteins.	


	



These cause a secondary self-organization into rods/spheres/sheets.	


	



A tertiary organizaiton of these secondary structures occurs.	


	



There are some similarities to proteins but BCP’s are extremely simple systems by comparison.	



Pluronics (PEO/PPO block copolymers)	
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What is the size of a Block Copolymer Domain?	



-For and symmetric A-B block copolymer	


-Consider a lamellar structure with Φ = 1/2	


-Layer thickness D in a cube of edge length L, surface energy σ	


-                         so larger D means less surface and a lower Free Energy F.	


	


-The polymer chain is stretched as D increases.  The free energy of 	


a stretched chain as a function of the extension length D is given by	


	


-                         where N is the degree of polymerization for A or B,	


	


b is the step length per N unit, νc is the excluded volume for a unit step	


So the stretching free energy, F, increases with D2. 	


 	


-To minimize the free energies we have	



Masao Doi, Introduction to Polymer Physics	
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Chain Scaling (Long-Range Interactions)	



Long-range interactions are interactions of chain units separated by such a	


great index difference that we have no means to determine if they are from the same chain	


other than following the chain over great distances to determine the connectivity.  That is,	



Orientation/continuity or polarity and other short range linking properties are completely lost.	


	



Long-range interactions occur over short spatial distances (as do all interactions).	



Consider chain scaling with no long-range interactions.	


	


	

The chain is composed of a series of steps with no orientational relationship to each other.	


	



So <R> = 0	


	



<R2> has a value:	


	


	



We assume no long range interactions so that the second term can be 0.	




