Long Range Interactions

van der Waals' Equation

$$
p=n R T / V
$$

i.g. from kinetic theory of gasses
Atoms can pass through each other
No enthalpy of interaction Totally entropic

Modify for excluded volume
"b"
$$
p=n R T /(V-b)
$$

Which increases pressure

Modify for excluded volume "b"
and
Attractive enthalpic interaction
" a "

$$
p=n R T /(V-b)-a(n / V)^{2}
$$

$$
-T \Delta S+\Delta H
$$

$$
\mathrm{n} / V=\rho \sim \phi \text { or } c
$$

Binary attractive interactions (can form a liquid)

Which decreases pressure

Van der Waals' Equation

$p=n R T /(V-b)-a(n / V)^{2} \quad$ Van der Waals Equation
Compressibility Factor $Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+\ldots$ Virial Expansion B_{2} has units of molar volume
Solve for B_{2} using the van der Waals Equation
$B_{2}=b-a / R T$ for molar volume or $B_{2}=b-a / k_{B} T$ for molecular volume
Flory and Krigbaum knew they needed an energy for an expanded chain of the van der Waals form

Molar Energy $=p V_{\text {molar }}=R T\left(1+B_{2} / V_{\text {molar }}\right)$
Where: $B_{2}=$ Excluded Volume - Attractive Potential $/ R T=b-a / R T$
Energy $=$ Ideal + repulsive " $b "$ and attractive " $a "$
When $T^{*}=a / R b$, interactions disappear, $B_{2}=0$, and system becomes "ideal". This is a "critical point" just before phase separation.

Van der Waals' Equation

$p=n R T /(V-b)-a(n / V)^{2} \quad$ Van der Waals Equation
Compressibility Factor $Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+\ldots$ Virial Expansion B_{2} has units of molar volume
$Z_{\mathrm{VdW}}=p V_{\text {molar }} / R T=V /(V-b)-a \rho=1 /(1-b \rho)-a \rho$
Geometric series $\Sigma a r^{k}=a /(1-r)$ sum from 0 to ∞
So, $l /(1-b \rho)=\Sigma a r^{k}=1+b \rho+(b \rho)^{2}+\ldots$ and for $b \rho=b / V$ is very small
$Z_{\mathrm{VdW}}=1 /(1-b \rho)-a \rho=1+(b-a / R T) \rho+(b \rho)^{2}+\ldots$
Compare with the virial expansion
$Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots$
$B_{2}=b-a / R T$ and $B_{3}=b^{2}$

Van der Waals' Equation

$p=n R T /(V-b)-a(n / V)^{2}+\mathrm{c}(n / V)^{3}$ Van der Waals Equation with repulsive ternary interactions
Compressibility Factor $Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots$ Virial Expansion B_{2} has units of molar volume
$Z_{\mathrm{VdW}}=p V_{\text {molar }} / R T=V /(V-b)-a \rho=1 /(1-b \rho)-a \rho+\mathrm{c} \rho^{2}$
Geometric series $\sum a r^{k}=a /(1-r)$ sum from 0 to ∞

So, $1 /(1-b \rho)=\Sigma a r^{k}=1+b \rho+(b \rho)^{2}+\ldots$ and for $b \rho=b / V$ is very small
$Z_{\mathrm{VdW}}=1 /(1-b \rho)-a \rho=1+(b-a / R T) \rho+\left(b^{2}+c / \mathrm{RT}\right) \rho^{2}+\ldots$
Compare with the virial expansion
$Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots$
$B_{2}=b-a / R T$ and $B_{3}=b^{2}+c / \mathrm{RT}$
For an immiscible system B_{2} is negative or very small (low temperature) B_{3} can be positive leading to a discrete phase transition or negative leading to a continuous transition

The Secondary Structure for Synthetic Polymers

Long-Range Interactions

Boltzman Probability
For a Thermally Equilibrated System

$$
P_{B}(R)=\exp \left(-\frac{E(R)}{k T}\right)
$$

Gaussian Probability
For a Chain of End-to-End Distance R

$$
P(R)=\left(\frac{3}{2 \pi \sigma^{2}}\right)^{3 / 2} \exp \left(-\frac{3(R)^{2}}{2(\sigma)^{2}}\right)
$$

By Comparison, The Energy to stretch a Thermally Equilibrated Chain Can be Written

$$
E=k T \frac{3 R^{2}}{2 n l_{K}^{2}}
$$

For a Chain with Long-Range Interactions There is and Additional Term

$$
\begin{gathered}
\begin{array}{c}
P_{E x}(R)=\left(1-V_{c} / R^{3}\right)^{n^{2} / 2} \\
\text { Number of pairs }
\end{array}=\exp \left(\frac{n^{2} \ln \left(1-V_{c} / R^{3}\right)}{2}\right) \sim \exp \left(-\frac{n^{2} V_{c}}{2 R^{3}}\right) \\
\frac{n(n-1)}{2!}
\end{gathered} \quad \text { So, } \quad \text { exp }(x)=1+x+\frac{x^{2}}{2}+\cdots .
$$

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right)
$$

Flory-Krigbaum Theory
Result is called a Self-Avoiding Walk
$\mathrm{R}^{*} \sim 1_{\mathrm{K}} \mathrm{n}^{3 / 5}$
$W_{0}(R)$ is the Gaussian probability $P(R, N) 4 \pi R^{2} d R$ times the total number of chain conformations possible for chains of N steps, Z^{N},
$W_{0}(R) d R=Z^{N} 4 \pi R^{2}\left(\frac{2 \pi}{3} N b^{2}\right)^{-3 / 2} \exp \left[-\frac{3}{2}\left(\frac{R}{b \sqrt{N}}\right)^{2}\right] d R$
of this number the fraction which follow self-avoidance is $p(R)=\left(1-V_{C} / R^{3}\right)^{N(N-1) / 2}$ where V_{C} is the volume of one segment of the chain so $\left(1-V_{c} / R^{3}\right)$ is the probability of the chain avoiding one segment, and this is raised to the total number of possible combinations of two segment pairs, $\mathrm{N}(\mathrm{N}-1) / 2$!. This function for $\mathrm{p}(\mathrm{R})$ can be expressed as an exponential,
$p(R)=\exp \left[\frac{1}{2} N(N-1) \ln \left(1-\frac{V_{C}}{R^{3}}\right)\right]=\exp \left(-\frac{N^{2} V_{C}}{2 R^{3}}\right)$
where the second equality uses the fact that for small $x, \ln (1-x)=-x$, and that for large N, $(\mathrm{N}-1)=>\mathrm{N} . \mathrm{W}(\mathrm{R}) \mathrm{dR}$ for the excluded volume chain can be estimated by $\mathrm{W}_{0}(\mathrm{R}) \mathrm{p}(\mathrm{R}) \mathrm{dR}$ and since both are expressed as exponentials the powers sum leading to,
$W(R) d R=W_{0}(R) p(R) d R=k R^{2} \exp \left(-\frac{3 R^{2}}{2 N b^{2}}-\frac{N^{2} V_{C}}{2 R^{3}}\right)$
The derivative of $\mathrm{W}_{0}(\mathrm{R})$ will equal 0 at $\mathrm{R}_{0}=\left(2 \mathrm{Nb}^{2} / 3\right)^{1 / 2}$. This is proportional to $\mathrm{N}^{1 / 2} \mathrm{~b}$ as expected. Setting the derivative of $W(\mathrm{R})$ to 0 yields,
$-\frac{3 R^{* 2}}{2 N b^{2}}+\frac{3 N^{2} V_{C}}{4 R^{* 3}}+1=0$
Rearranging and substituting R^{*} yields,

$$
\left(\frac{R^{*}}{R_{0}^{*}}\right)^{5}-\left(\frac{R^{*}}{R_{0}^{*}}\right)^{3}=\frac{9 \sqrt{6}}{16} \frac{V_{C}}{b^{3}} \sqrt{N}
$$

For large N the R ratio is large and the cubic term can be ignored with respect to the 5 'th power term. This yields,

$$
R^{*} \cong R_{0}^{*}\left(\frac{N^{1 / 2} V_{C}}{b^{3}}\right)^{1 / 5}=k N^{3 / 5}
$$

This critical result was first noted by Flory and Krigbaum and its development is termed FloryKrigbaum theory.

The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Self-Avoiding Walk
Good Solvent
Expanded Coil
(The Normal Condition in Solution)

$$
\begin{gathered}
\mathrm{R}^{*} \sim 1_{\mathrm{K}} \mathrm{n}^{3 / 5} \\
d_{f}=5 / 3 \approx 1.67
\end{gathered}
$$

(The Normal Condition in the Melt/Solid)

$$
\begin{gathered}
\left\langle R^{2}\right\rangle=N l^{2} \\
d_{f}=2
\end{gathered}
$$

These are statistical features. That is, a single simulation of a SAW
and a GC could look identical.

The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Self-Avoiding Walk
Good Solvent
Expanded Coil
(The Normal Condition in Solution)

$$
\begin{gathered}
\mathrm{R}^{*} \sim \mathrm{l}_{\mathrm{K}} \mathrm{n}^{3 / 5} \\
d_{f}=5 / 3 \approx 1.67
\end{gathered}
$$

Gaussian Chain
Random Walk
Theta-Condition
Brownian Chain
(The Normal Condition in the Melt/Solid)

$$
\begin{gathered}
\left\langle R^{2}\right\rangle=N l^{2} \\
d_{f}=2
\end{gathered}
$$

Concentration driven contraction
Consider going from dilute conditions, $\mathrm{c}<\mathrm{c}^{*}$, to the melt by increasing concentration.
The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate concentration changes
through a scaling transition. Primary, Secondary, Tertiary Structures.

The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Self-Avoiding Walk
Good Solvent
Expanded Coil
(The Normal Condition in Solution)

$$
\begin{gathered}
\mathrm{R}^{*} \sim \mathrm{l}_{\mathrm{K}} \mathrm{n}^{3 / 5} \\
d_{f}=5 / 3 \approx 1.67
\end{gathered}
$$

Gaussian Chain
Random Walk
Theta-Condition
Brownian Chain
(The Normal Condition in the Melt/Solid)

$\left\langle R^{2}\right\rangle=N l^{2}$
$d_{f}=2$

Thermally driven expansion
Consider going from Theta Temperature, $T=\theta$, to the expanded coil by increasing temperature.
The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate thermal changes through a scaling transition. Primary, Secondary, Tertiary Structures.

Problem: The transition in chain size is gradual not discrete as predicted by FK theory.

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

We have considered an athermal hard core potential (excluded volume, 'b', from VdW equation)

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right)
$$

VdW equation

$$
\begin{gathered}
p=n R T /(V-b)-a(n / V)^{2} \\
B_{2}=b-a / R T \\
P V=R T+R T B_{2} / V \text { (Virial Expansion) } \\
\text { Energy }=\text { Ideal + repulsive " } b " \text { and attractive " } a "
\end{gathered}
$$

Excluded
volume like " b "
But V_{c} actually has an inverse temperature component associated with attractive enthalpic interactions between monomers and solvent molecules (attractive binary interactions, ' a ', from VdW equation)

The interaction (attractive) energy between a monomer and the polymer/solvent system is on average $<\mathrm{E}(\mathrm{R})>$ for a given end-to-end distance R (defining a conformational state). This modifies the probability of a chain having an end-to-end distance R by the Boltzmann probability,

$$
P_{\text {Boltzman }}(R)=\exp \left(\frac{-\langle E(R)\rangle}{k T}\right)
$$

$<\mathrm{E}(\mathrm{R})>$ is made up of pp, ps, ss interactions with an average change in attractive energy on solvation of a polymer $\Delta \varepsilon=\left(\varepsilon_{p p}+\varepsilon_{s s}-2 \varepsilon_{p s}\right) / 2$

For a monomer with z sites of interaction we can define a unitless attractive energy parameter $\chi=z \Delta \varepsilon / k T$ that reflects the average enthalpy of attractive interaction per $k T$ per monomer

For a monomer with z sites of interaction we can define a unitless energy parameter $\chi=z \Delta \varepsilon / k T$ that reflects the average enthalpy of attractive interaction per kT for a monomer

The volume fraction of monomers in the polymer coil with a conformational state of end-toend distance R is $n V_{c} / R^{3}$
And there are n monomers in the chain, attractive chain energy " $n \chi$ ", so,

$$
\frac{\langle E(R)\rangle}{k T}=\frac{n^{2} V_{c} \chi}{R^{3}}
$$

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right)
$$

We can then write the energy of the chain as, (remember $\chi \sim 1 / T$)

$$
E(R)=k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right) \quad \begin{gathered}
P V=R T\left(l+B_{2} / V\right) \\
B_{2}=b-a / R T \\
\text { When } T^{*}=a / R b \text { interactions disappear }
\end{gathered}
$$

This indicates that when $\chi=1 / 2$ the coil acts as if it were an ideal chain, excluded volume disappears. This condition is called the theta-state and the temperature where $\chi=1 / 2$ is called the theta-temperature. It is a critical point for the polymer coil in solution.

$$
E(R)=k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right) \quad E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right)
$$

The effective excluded volume is now $V_{\text {ex }}=V_{0}(1 / 2-\chi)$
The Flory-Krigbaum result for coil size is: $\quad R^{*} \cong R_{0}^{*}\left(\frac{N^{1 / 2} V_{C}}{b^{3}}\right)^{1 / 5}=k N^{\frac{3}{5}}$

Using this approximation for conditions of large molecular weight:

$$
R^{*}=R_{0}^{*}\left(\frac{n^{1 / 2} V_{0}(1 / 2-\chi)}{b^{3}}\right)^{1 / 5} \quad \text { where } \quad \chi=z \Delta \varepsilon / \mathrm{kT}
$$

This Solves the Problem: The transition in chain size is gradual not discrete as predicted by FK theory.

$$
R^{*}=R_{0}^{*}\left(\frac{n^{1 / 2} V_{0}(1 / 2-\chi)}{b^{3}}\right)^{1 / 5}
$$

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

$$
R^{*}=R_{0}^{*}\left(\frac{n^{1 / 2} V_{0}(1 / 2-\chi)}{b^{3}}\right)^{1 / 5}
$$

16 Properties of an isolated polymer molecule

Fig. 1.6 The coil-globule transition in a solution of polystyrene in cyclohexane. The radius of gyration R_{9} and the hydrodynamic radius R_{h} of the poly. mer show a dramatic change as temperature passes through the θ temperature. The hydrodynamic radius R_{n} is defined by $R_{h}=k_{B} T / 6 \pi \eta D$ where D is the diffusion constant of the polymer and η is the viscosity of the solvent. (Sun, S.T., Nishio, I., Swislow, G., and Tanaka, T. (1980). J. Chem. Phys., 73, 5971, Fig.2.)

Flory Krigbaum prediction (left) and experimental measurement (right)

For a single polymer coil

$$
\begin{gathered}
\frac{\langle E(R)\rangle}{k T}=\frac{n^{2} V_{c} \chi}{R^{3}} \quad \begin{array}{c}
\text { Average attractive } \\
\text { enthalpy of interaction } \\
\chi=\mathrm{z} \Delta \varepsilon / \mathrm{kT}
\end{array} \\
E(R)=k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right) \quad \begin{array}{c}
P V=R T\left(1+B_{2} / V\right) \\
B_{2}=b-a / R T \\
B_{2}=V_{\mathrm{c}} / 2-V_{\mathrm{c}} \chi \\
\chi=\mathrm{z} \Delta \varepsilon / \mathrm{kT}
\end{array}
\end{gathered}
$$

For a polymer mixture (polymer/polymer or polymer/solvent)
Flory-Huggins Equation

$$
\frac{\Delta G}{k T N_{\text {cells }}}=\frac{\phi_{A}}{N_{A}} \ln \phi_{A}+\frac{\phi_{B}}{N_{B}} \ln \phi_{B}+\phi_{A} \phi_{B} \chi+\frac{P V}{k T N_{\text {cells }}}
$$

$$
\begin{aligned}
E(R) & =k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right) \\
\frac{\Delta G}{k T N_{\text {cells }}} & =\frac{\phi_{A}}{N_{A}} \ln \phi_{A}+\frac{\phi_{B}}{N_{B}} \ln \phi_{B}+\phi_{A} \phi_{B} \chi
\end{aligned}
$$

$$
\chi=\frac{z \Delta \varepsilon}{k T}=\frac{B}{T}
$$

Lower-Critical Solution Temperature (LCST)

0 Composition

Polymers can order or disorder on mixing leading to a noncombinatorial entropy term, A in the interaction parameter.

$$
\chi=A+\frac{B}{T}
$$

If the polymer orders on mixing then A is positive and the energy is lowered.

If the polymer-solvent shows a specific interaction then B can be negative.

This Positive A and Negative B favors mixing at low temperature and demixing at high temperature, LCST behavior.

$$
E(R)=k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right) \quad \chi=\frac{z \Delta \varepsilon}{k T}=\frac{B}{T}
$$

Lower-Critical Solution Temperature (LCST)

$$
\chi=A+\frac{B}{T}
$$

Poly vinyl methyl ether/Water PVME/PS

$$
\Delta G_{m}=R T\left(x_{A} \ln \left(x_{A}\right)+x_{B} \ln \left(x_{B}\right)\right)+\Omega x_{A} x_{B}
$$

$\frac{d \Delta G}{d \phi}=0 \begin{array}{cccc}\text { Miscibility Limit } \\ \text { Binodal } & \frac{d^{2} \Delta G}{d \phi^{2}}=0 & \text { Spinodal } & \frac{d^{3} \Delta G}{d \phi^{3}}=0 \quad \text { Critical Point }\end{array}$

(a) $\frac{v}{k}$
(b)

Figure 4.9 (a) Immiscibility gap of the binary solid solution $\mathrm{V}_{2} \mathrm{O}_{3}-\mathrm{Cr}_{2} \mathrm{O}_{3}$ as described by the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the temperatures marked in the phase diagram. Thermodynamic data are taken from reference [7].

Flory-Huggins Equation

$$
\frac{\Delta G}{k T N_{\text {cells }}}=\frac{\phi_{A}}{N_{A}} \ln \phi_{A}+\frac{\phi_{B}}{N_{B}} \ln \phi_{B}+\phi_{A} \phi_{B} \chi+\frac{P V}{k T N_{\text {cells }}}
$$

$$
\Delta_{\mathrm{mix}} G_{\mathrm{m}}=R T\left[x_{\mathrm{A}} \ln x_{\mathrm{A}}+x_{\mathrm{B}} \ln x_{\mathrm{B}}\right]+\Omega \mathrm{AB}_{\mathrm{A}} x_{\mathrm{B}}
$$

$$
\frac{d \Delta G}{d \phi}=0 \quad \begin{gathered}
\text { Miscibility Limit } \\
\text { Binodal }
\end{gathered}
$$

$$
\frac{d^{2} \Delta G}{d \phi^{2}}=0 \quad \text { Spinodal }
$$

$$
\frac{d^{3} \Delta G}{d \phi^{3}}=0 \quad \text { Critical Point }
$$

All three equalities apply At the critical point

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\mathrm{coe}}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {cocet }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con/Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {ceex }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {cocet }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con-Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {ceex }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {coev }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con-Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

Wilding, Müler, and Binder: Polymer-solvent critical point parameters

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {ceex }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {cocet }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

Overlap Composition

Consider also ϕ^{*} which is the coil composition, generally below the critical composition for normal n or N

$$
\begin{aligned}
\phi^{*} & =\frac{n}{V}=\frac{n}{R^{3}} \\
& \sim n^{-4 / 5}(\text { for good solvents }) \\
\text { or } & \sim \mathrm{n}^{-1 / 2} \text { (for theta solvents) }
\end{aligned}
$$

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {ceex }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {coest }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

Overlap Composition

Both ϕ^{*} and ϕ_{c} depend on $1 / \sqrt{ } \mathrm{N}$

Below ϕ^{*} the composition is fixed since the coil can not be diluted!

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {coex }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {cocer }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain con Egurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

Overlap Composition
Both ϕ^{*} and ϕ_{c} depend on $1 / \sqrt{ } \mathrm{N}$

Below ϕ^{*} the composition is fixed since the coil can not be diluted!

So, there is a region (yellow) of coil collapse below the binodal at ϕ^{*} in composition and temperature

FIG. 1. Schematic phase diagram of a polymer solution in the space of the temperature T and the volume fraction ϕ. The coexistence curve separates a dilute solution of collapsed chains [at $\phi_{\text {ceed }}^{(1)}$] from a semidilute solution of overlapping chains [at $\phi_{\text {coeres }}^{(2)}$]. These two branches of the coexistence curve merge at a critical point $T_{c}(N), \phi_{c}(N)$. For $N \rightarrow \infty$ the critical point merges with the Θ point of a dilute polymer solution $\left[T_{c}(N \rightarrow \infty) \rightarrow \Theta\right.$, $\left.\phi_{c}(N \rightarrow \infty) \rightarrow 0\right]$ and the unmixing transition has a tricritical character. At $T=\Theta$, the chain conEgurations are ideal Gaussian coils, while their structure at $T_{c}(N)$ is nontrivial.

Overlap Composition
Both ϕ^{*} and ϕ_{c} depend on $1 / \sqrt{ } \mathrm{N}$

Below ϕ^{*} the composition is fixed since the coil can not be diluted!

So, there is a regime of coil collapse below the binodal at ϕ^{*} in composition and temperature

For a polymer in solution there is an inherent concentration to the chain since the chain contains some solvent

The polymer concentration is Mass/Volume, within a chain

$$
\begin{gathered}
c^{*}=\frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }}{\operatorname{Size}^{3}}=\frac{\operatorname{Size}^{d_{f}}}{\operatorname{Size}^{3}} \sim \operatorname{Size}^{d_{f}-3} \\
c^{*} \sim n^{\left(1-3 / d_{f}\right)}
\end{gathered}
$$

When the solution concentration matches c* the chains "overlap" Then an individual chain is can not be resolved and the chains entangle
This is called semi-dilute since the solution is still of very low concentration.
The regime below c* is called dilute. Very high concentrations, θ-coil, are called concentrated.

In concentrated solutions with chain overlap chain entanglements lead to a higher solution viscosity

Figure 11.17. Concentration Jependence of the speelfic viscosity of dilute and moderately concentrated solutions of celluluse acetate an dimethyl sulforide. ${ }^{3}$, The intersection of stralght liuses that are drawn through the diate-solution (O) and concentated-אmlution (C) Jata marks the critical ooncentration, c^{*} (ca. 3.7 g dL ${ }^{-1}$ ie this case).
J.R. Fried Introduction to Polymer Science

$$
\begin{aligned}
& \eta \sim c^{P} \\
& P=1 \text { for } \mathrm{c}<\mathrm{c}^{*}
\end{aligned}
$$

Later called c_{e}, entanglement concentration

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010)

$$
\begin{gathered}
\eta=\eta_{0}(1+[\eta] \mathrm{c}) \\
\eta_{\mathrm{sp}}=\left(\eta-\eta_{0} / \eta_{0}\right. \\
{[\eta]=\lim _{\mathrm{c}=>0}\left(\eta_{\mathrm{sp}} / \mathrm{c}\right)}
\end{gathered}
$$

$$
[\eta]=V_{\text {coil }} / m=1 / c^{*}=m^{3 / d f-1}
$$

Fig. 15 Concentration dependences of specific viscosity and diffusion coefficient for polyelectrolyte solutions clearly showing the entanglement concentration. a Specific viscosity of sodium poly(2-acrylamido-2-methylpropane sulfonate) in water: filled circles $M=1.7 \times 10^{6}$, filled squares $M=9.5 \times 10^{5}$ (Krause et al. 1999) and sodium poly(styrene sulfonate) in water: open circles $\mathrm{M}=1.2 \times 10^{6}$ (Boris and Colby 1998), open squares $M=$ 3.0×10^{5} (Fernandez Prini and Lagos 1964). Solid lines have the expected slopes of $1 / 2$ and $3 / 2$, dotted line has slope -1.76 . b Diffusion coefficient of sodium poly(styrene sulfonate) in water: filled circles $M=16,000$, open circles $M=31000$, filled squares $M=65000$, open squares $M=88,000$, filled diamonds $M=$ 177,000 , open diamonds $M=354,000$ (Oostwal et al. 1993). Solid lines have the expected slopes of 0 and $-1 / 2$, dotted line has slope 2.29

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010)

This can be explained if you consider that c^{*} is on a chain size-scale while c_{e} is on a bulk size scale, that is c_{e} is for bulk network pathways while c^{*} is for the coil pathway. c_{e} behaves the same in rigid rods and coils because both make a self-avoiding network on large size scales, c^{*} is different because one chain is a rod the other a self-avoiding walk.

Fig. 2 Comparison of overlap concentrations and entanglement concentrations for neutral polymer solutions in good solvent; red stars overlap concentrations, c^{*}, of polystyrene in toluene (Kulicke and Kniewske 1984); red circles entanglement concentrations, c_{e}, of polystyrene in toluene (Onogi et al. 1966 viscosity data fit to power laws with slope 1.3 and 3.9 , highest M point from Kulicke and Kniewske 1984) with polyelectrolyte solutions in water with no added salt; blue stars overlap concentrations, c^{*}, of sodium poly(styrene sulfonate) from SAXS (Kaji et al. 1988); stars with blue circles overlap concentrations, c^{*}, of sodium poly(styrene sulfonate) from viscosity (Boris and Colby 1998); blue circles entanglement concentrations of sodium poly(styrene sulfonate) from viscosity (Boris and Colby 1998). Lowest line has slope -2 , expected for c^{*} of polyelectrolyte solutions with no salt; middle line is Mark-Houwink fit with slope -0.7356 (predicted slope is -0.76); upper line has same slope going through neutral c_{e} data

Red circles neutral good solvent c_{e} Red stars neutral good solvent c*

Blue circles polyelectrolyte c_{e} Blue stars polyelectrolyte c*

$$
\begin{array}{rlr}
c^{*} \sim n^{\left(1-3 / d_{f}\right)} \\
\boldsymbol{d}_{\mathbf{f}} & =\mathbf{5 / 3} \\
\boldsymbol{d}_{\mathbf{f}} & =\mathbf{2} & -\mathbf{0 . 8} \\
\boldsymbol{d}_{\mathbf{f}} & =\mathbf{1 .} . & -\mathbf{- 2}
\end{array}
$$

Extensional Flow

Shadowgraph images from the capillary breakup of a 0.2 wt . \% polyethylene oxide (PEO, Mw= $4 \times 106 \mathrm{~g} / \mathrm{mol}$) in a $60 / 40 \mathrm{wt}$. \% glycerol/water solution. Images are taken at $\mathrm{t}=-0.05,0.25,0.43$, and 0.65 s (cf. Fig. 4). The size of the images is $0.55 \times 1.1 \mathrm{~mm}$. The horizontal lines in the second image indicate the region shown in Fig. 5 . The last image shows the final instability of the viscoelastic thread when many small droplets are formed.

Visualization of the flow profile inside a thinning filament during capillary breakup of a polymer solution via particle image velocimetry and particle tracking velocimetry
Physics of Fluids 24, 053102 (2012); https://doi.org/10.1063/1.4718675

Extensional Flow

$$
\eta_{e}=\frac{\sigma_{z z}-\frac{1}{2} \sigma_{x x}-\frac{1}{2} \sigma_{y y}}{\dot{\varepsilon}}
$$

$T r=\eta_{e} / \eta \quad$ Trouton Viscosity $=3$ Shear Viscosity for a Newtonian fluid

For a constant extensional strain rate, $\gamma_{\mathrm{zz}}^{\prime}=\mathrm{d} v_{\mathrm{z}} / \mathrm{d} z=$ constant

$$
\begin{gathered}
\text { So, } v_{\mathrm{z}}=\mathrm{d} z / \mathrm{d} t=\mathrm{constant} z \\
\mathrm{~d} z / z=\mathrm{constant} \mathrm{~d} t \\
z=\exp (\mathrm{K} t)
\end{gathered}
$$

You need to stretch the fluid with exponentially increasing length. That is hard to do in a lab.

How dilute are dilute solutions in extensional flows? C. Clasen, J. P. Plog,,W.-M. Kulicke, M. Owens, C. Macosko, L. E. Scriven, M.Verani and G. H. McKinley, J. Rheol. 50 84988I (2006);

Graessley (1980) provides a simple definition of c^{*} that is widely accepted for demarking the boundary separating the physical and rheological definition of dilute and semidilute polymer solutions

$$
c^{*}=\frac{0.77}{[\eta]},
$$

$$
c_{R_{G}}^{*}=\frac{M_{w}}{\frac{4}{3} \pi\left\langle R_{G}^{2}\right\rangle^{3 / 2} N_{A}}
$$

Diameter from capillary thinning experiments

$$
\frac{D(t)}{D_{0}}=\left(\frac{G D_{0}}{4 \gamma}\right)^{1 / 3} \exp \left(-t / 3 \tau_{0}\right)
$$

FIG. 1. Comparison of the numerically calculated evolution in the filament diameter (open symbols) with experimental data from capillary thinning experiments (closed symbols) for a dilution series of the Boger fluid from sample $\mathrm{E}\left(M_{w}=8.3 \times 10^{6} \mathrm{~g} / \mathrm{mol}\right)$ for different concentrations spanning $0.1 \leqslant c \leqslant 1000 \mathrm{ppm}$. In addition the relaxation times $\tau_{\text {exp }}$, determined from fitting the elasto-capillary thinning regime [Eq. (22)] of the experiments, and $\tau_{\text {num }}$, determined from fitting the numerical calculations [Eqs. (17)-(21)] to the experimental data, are given for selected concentrations.

FIG. 5. Reduced relaxation time τ_{0} / τ_{z} as a function of the reduced concentration c / c^{*}, determined from SAOS experiments and fits of the moduli to Eqs. (2) and (3) for polystyrene of different molar masses dissolved in styrene oligomer.

Thurston relation, Eq. (5), giving a Zimm relaxation time τ_{Z} of

$$
\begin{equation*}
\tau_{z}=\frac{1}{\sum_{i} \frac{1}{i^{2+\tilde{\sigma}}}} \frac{[\eta] \eta_{s} M_{w}}{R T} \tag{31}
\end{equation*}
$$

How dilute are dilute solutions in extensional flows? C. Clasen, J. P. Plog,,W.-M. Kulicke, M. Owens, C. Macosko, L. E. Scriven, M.Verani and G. H. McKinley, J. Rheol. 50 84988I (2006);

Extensional

 Measurement

FIG. 6. Reduced relaxation time τ_{0} / τ_{z} as a function of the reduced concentration c / c^{*} for several dilution series of polystyrene Boger fluids determined from capillary break thinning experiments. In addition to the data obtained in this work, data points for the boger fluids SM1 $\left(2 \times 10^{6} \mathrm{~g} / \mathrm{mol}, \mathrm{O}\right)$, SM2 $\left(6.5 \times 10^{6} \mathrm{~g} / \mathrm{mol}\right.$, $\left.\square\right)$, and SM3 $\left(20 \times 10^{6} \mathrm{~g} / \mathrm{mol}, \diamond\right)$ are shown (taken from [7] and [20]). For comparison, also a mean square fit to the results from the SAOS experiments in Fig. 5 is shown.

Thurston relation, Eq. (5), giving a Zimm relaxation time τ_{Z} of

$$
\begin{equation*}
\tau_{z}=\frac{1}{\sum_{i} \frac{1}{i^{2+\tilde{\sigma}}}} \frac{[\eta] \eta_{s} M_{w}}{R T} \tag{31}
\end{equation*}
$$

neutral polymers in
good solvent

dilute polyelectrolyte with no salt

Fig. 1 Conformations of polymers in dilute solution. Neutral polymers in poor solvent collapse into dense coils with size $\approx b N^{1 / 3}$ (purple). Neutral polymers in θ-solvent are random walks with ideal end-to-end distance $R_{0}=b N^{1 / 2}$ (black). Neutral polymers in good solvent are self-avoiding walks with Flory end-toend distance $R_{\mathrm{F}}=b N^{0.588}$ (red). Polyelectrolytes with no salt adopt the highly extended directed random walk conformation (blue) with length L proportional to N

Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010)

neutral polymers in

dilute polyelectrolyte with no salt

$\longleftarrow<$
Fig. 1 Conformations of polymers in dilute solution. Neutral polymers in poor solvent collapse into dense coils with size $\approx b N^{1 / 3}$ (purple). Neutral polymers in θ-solvent are random walks with ideal end-to-end distance $R_{0}=b N^{1 / 2}$ (black). Neutral polymers in good solvent are self-avoiding walks with Flory end-toend distance $R_{\mathrm{F}}=b N^{0.588}$ (red). Polyelectrolytes with no salt adopt the highly extended directed random walk conformation (blue) with length L proportional to N

Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov "Giant Molecules"

What Happens to the left of the theta temperature?

Grosberg uses: $\quad \alpha^{2}=\frac{R^{2}}{R_{0}^{2}}$

Coil Expansion Factor α

Rather than the normal definition used by Flory: $\alpha=\frac{R^{2}}{R_{0}^{2}}$

$$
E(R)=k T\left(\frac{3 R^{2}}{2 n l^{2}}+\frac{n^{2} V_{c}(1 / 2-\chi)}{R^{3}}\right)
$$

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov "Giant Molecules"

What Happens to the left of the theta temperature?

Grosberg uses: $\quad \alpha^{2}=\frac{R^{2}}{R_{0}^{2}} \quad$ Rather than the normal definition used by Flory: $\alpha=\frac{R^{2}}{R_{0}^{2}}$

Short-Range Interactions
We had $C_{\infty}=R^{2} / R^{2}{ }_{0}=n_{K} l_{K}{ }^{2} / n_{0} l_{0}{ }^{2}=L l_{K} / L l_{0}=l_{K} / l_{0}$

Long-Range Interactions
Flory $\alpha=R^{2} / R^{2}{ }_{0}=n^{6 / 5} l^{2} / n l^{2} \sim n^{1 / 5}$
Grosberg
$\alpha^{2}=R^{2} / R^{2}{ }_{0}: \because \alpha \sim n^{1 / 10}$

Fig. C9.1 A computer simulated globule of a long chain. Notice that the globule is pretty accurately spherical, its surface consists of loops, while its interior, particularly well seen in the zoomed part, reminds a concentrated solution of different chains (compare Figure C12.3) - even though in reality they are all distant parts of the same chain. The chain is a homopolymer in terms of chain flexibility and monomer-monomer interactions being the same for all monomers. However, to help the eye, the chain is colored, smoothly going through the rainbow colors from one end to the other (e.g., one end is red and the other is violet, with all intermediate colors in between). What one should notice is that any particular color is not located in a particular region of the globule; just the opposite, every color is reasonably uniformly distributed throughout the globule, and the local surrounding of any monomer is full of all sorts of different colors, confirming that very distant parts of the chain form contacts in the globule. The figure is courtesy of L. Mirny.

Fig. C9.6 A cartoon showing gel collapse and swelling upon change of environment conditions, such as, e.g., solvent composition, temperature and so on. The figure is courtesy of T. Tanaka.

Fig. C9.10 A variety of factors that can cause gel to collapse. The figure is courtesy of T . Tanaka.

The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by,

$$
\begin{equation*}
F(R)=\frac{z^{2} V_{0}(1-2 \chi) k T}{2 R^{3}}+\frac{3 R^{2} k T}{2 z l^{2}}=U(R)-T S(R) \tag{1}
\end{equation*}
$$

Equation (1) can be rewritten using the coil expansion coefficient, α,

$$
\begin{align*}
& \alpha^{2}=\frac{R^{2}}{R_{\theta}^{2}}=\frac{R^{2}}{z l^{2}} \\
& F(\alpha)=\frac{z^{1 / 2} B k T}{2 \alpha^{3} l^{3}}+\frac{3 \alpha^{2} k T}{2}=U(\alpha)-T S(\alpha) \tag{3}
\end{align*}
$$

Van der Waals $P=\frac{R T}{V-b}-\frac{a}{V^{2}}$

$$
\frac{p V}{R T}=1+\frac{1}{V}\left(b-\frac{c}{R T}\right)+\left(\frac{b}{V}\right)^{2}+\left(\frac{b}{V}\right)^{s}+\cdots
$$

$$
p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots
$$

where B is the second virial coefficient,

$$
B=V_{0}(1-2 \chi)
$$

Finding the minimum in the free energy expression, equation (3), yields the most probable value for α,

$$
\begin{equation*}
\alpha \sim\left(\frac{z^{1 / 2} B}{l^{3}}\right)^{1 / 5} \quad \mathrm{~d} F(\alpha) / \mathrm{d} \alpha=0 \tag{5}
\end{equation*}
$$

$R \sim R_{0} \alpha=z^{1 / 2} b \alpha \sim z^{3 / 5} B^{1 / 5} b$

This is an exact solution by Grosberg's method

Van der Waals' Equation

$p=n R T /(V-b)-a(n / V)^{2}+\mathrm{c}(n / V)^{3}$ Van der Waals Equation with repulsive ternary interactions
Compressibility Factor $Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots$ Virial Expansion B_{2} has units of molar volume
$Z_{\mathrm{VdW}}=p V_{\text {molar }} / R T=V /(V-b)-a \rho=1 /(1-b \rho)-a \rho+\mathrm{c} \rho^{2}$
Geometric series $\sum a r^{k}=a /(1-r)$ sum from 0 to ∞

So, $1 /(1-b \rho)=\Sigma a r^{k}=1+b \rho+(b \rho)^{2}+\ldots$ and for $b \rho=b / V$ is very small
$Z_{\mathrm{VdW}}=1 /(1-b \rho)-a \rho=1+(b-a / R T) \rho+\left(b^{2}+c / \mathrm{RT}\right) \rho^{2}+\ldots$
Compare with the virial expansion
$Z=p V_{\text {molar }} / R T=p / \rho R T=1+B_{2} \rho+B_{3} \rho^{2}+\ldots$
$B_{2}=b-a / R T$ and $B_{3}=b^{2}+c / \mathrm{RT}$
For an immiscible system B_{2} is negative or very small (low temperature) B_{3} can be positive leading to a discrete phase transition or negative leading to a continuous transition

$$
F(\alpha)=\frac{z^{1 / 2} B k T}{2 \alpha^{3} l^{3}}+\frac{3 \alpha^{2} k T}{2}=U(\alpha)-T S(\alpha)
$$

The virial expansion of the enthalpic interactions is given by,

$$
\alpha^{2}=\frac{R^{2}}{R_{0}^{2}}=\frac{R^{2}}{z l^{2}}
$$

$$
\begin{equation*}
U(\alpha)=V_{\text {Coil }} k T\left[n^{2} B+n^{3} C+\ldots\right] \approx V_{\text {Coil }} k T n^{2} B \sim \frac{k T R^{3} B z^{2}}{R^{6}}=\frac{z^{1 / 2} B k T}{2 \alpha^{3} l^{3}} \tag{6}
\end{equation*}
$$

where n is the segmental density in the coil and $\mathrm{V}_{\text {coil }}$ is the volume of the coil. The second virial coefficient describes binary interactions and the third virial coefficient describes ternary interactions. In dilute conditions we can ignore the higher order interactions and use only the second virial coefficient.

B changes sign, positive for miscible, negative for phase separation below the Boyle temperature $T_{\mathrm{B}}=a / b(B=b-a / \mathrm{T}$ so " a " (or $\chi)$ is negative for miscibility/repulsive pp$)$
C is always positive, i.e., favors coil expansion.
C is important below the theta temperature to model the coil to globule transition at high monomer density
For simplicity we ignore higher order terms because C is enough to give the gross features of this transition.
Generally, it is known that this transition can be either first-order for biopolymers such as protein folding, or second-order for synthetic polymers.
First-order means that the first derivative of the free energy is not continuous, i.e., a jump in free energy at a discrete transition temperature, such as a melting point, heat of melting.
Second order, free energy, volume, entropy etc. are continuous through the transition, slope changes in T (heat capacity, thermal expansion coefficient).

Blob model for coil collapse

-The expanded coil transitions to a Gaussian chain by locally forming Gaussian "blobs" called "thermal blobs" (will cover later). Neutron scattering provides evidence.
(b) -These blobs grow as the theta point is approached.
-Thermally driven structural
changes occur from the bottom
-Thermally driven structural
changes occur from the bottom up.
-Propose a similar model for
the collapse of the theta coil
-Propose a similar model for
the collapse of the theta coil using a different kind of "blob".

Gaussian
Scaling of
g^{*} Blobs

$$
R^{2} \sim g^{*}
$$

Blob model for coil collapse

$$
\begin{aligned}
& d_{\mathrm{f}}=2 \text { for coil } \\
& d_{\mathrm{f}}=3 \text { for blob }
\end{aligned}
$$

FIGURE 8.6
A few initial stages of the coil-globule transition. This looks self-similar! (Compare with what we write about self-similarity in Chapter 10). Source:
Courtesy of S. Nechaev.
Number of
Blobs $=z / g^{*}$
Gaussian Scaling of g^{*} Blobs $R^{2} \sim g^{*}$

Grosberg and Khokhlov's figure 8.6 shows a model for chain collapse that explains the entropic behavior in terms of blobs of g^{*} chain units associated with a confined chain. We can consider the collapsed chain as composed of $\mathrm{z} / \mathrm{g}^{*}$ collapsed blobs each with an energy kT .

Entropic Part of Collapse Free Energy

Number of Blobs (z / g^{*}) times $\boldsymbol{k T}$ is the Confinement Entropy

$$
\alpha^{2}=\frac{R^{2}}{R_{0}^{2}}=\frac{R^{2}}{z l^{2}}
$$

$$
\begin{equation*}
[-T S(\alpha)]_{\text {Corginement }}-k T \frac{z}{g^{*}}=k T \frac{z l^{2}}{R^{2}}=\frac{k T}{\alpha^{2}} \quad R^{2} \sim g^{*} \tag{7}
\end{equation*}
$$

In the absence of confinement (coil collapse) the expression was,

$$
[-T S(\alpha)]_{E x \text { pansion }} \sim k T \alpha^{2} \quad F(\alpha)=\frac{z^{1 / 2} B k T}{2 \alpha^{3} l^{3}}+\frac{3 \alpha^{2} k T}{2}=U(\alpha)-T S(\alpha)
$$

and a sum of these terms (approximation),

$$
\begin{equation*}
-T S(\alpha)=[-T S(\alpha)]_{\text {Conffinement }}+[-T S(\alpha)]_{\text {Evprsion }}-k T\left(\alpha^{2}+\alpha^{-2}\right) \tag{9}
\end{equation*}
$$

Total Collapse Free Energy

$$
F(\alpha) \sim k T\left(\alpha^{2}+\alpha^{-2}\right)+\frac{k T B z^{1 / 2}}{2 \alpha^{3} l^{3}}+\frac{k T C}{\alpha^{6} l^{6}} \quad \begin{array}{r}
k T C n^{3}=k T C z^{3} / R^{3} \\
=k T C /\left(\alpha^{6} l^{6}\right)
\end{array}
$$

$$
\begin{equation*}
F(\alpha)=\frac{z^{1 / 2} B k T}{2 \alpha^{3} l^{3}}+\frac{3 \alpha^{2} k T}{2}=U(\alpha)-T S(\alpha) \tag{3}
\end{equation*}
$$

Free Energy Including Third Virial Coefficient

$$
\begin{equation*}
F(\alpha) \sim k T\left(\alpha^{2}+\alpha^{-2}\right)+\frac{k T B z^{1 / 2}}{2 \alpha^{3} l^{3}}+\frac{k T C}{\alpha^{6} l^{6}} \tag{10}
\end{equation*}
$$

$\alpha>1$ for expansion $\alpha<1$ for contraction

Which works for both expansion and collapse. Finding the minimum in this free energy yields the most probable value for α, (equivalent of equation (5)),
$\alpha^{5}-\alpha=x+y \alpha^{-3}$
where x is related to B and is given by,
$x=K_{1} B z^{1 / 2} / l^{3}$
and y is related to C and is given by,
$y=K_{2} C / l^{6}$
If α is small you can neglect the terms on the left hand side of equation (11) and solve for R,
$R \sim \alpha z^{1 / 2} l \sim\left(\frac{-C}{B}\right)^{1 / 3} z^{1 / 3}$

Ratio of C/B determines behavior The collapsed coil is $\mathbf{3 d}$

$$
\begin{equation*}
\alpha^{5}-\alpha=x+y \alpha^{-3} \tag{11}
\end{equation*}
$$

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

Equation (11) can be understood by plotting the coil expansion factor, α, versus the reduced temperature function x for fixed values of y as shown in Figure 8.3 from Grosberg and Khokhlov reproduced below. In this figure, at large y the chain is flexible and the coil only slightly collapses on cooling (smaller x). The theta temperature occurs at $x=0$. For rigid chains with a small value for y, the curve shows three values for a given x just below the θ-temperature.

FIGURE 8.3
The dependence $\alpha(x)$ given by equation (8.7) for different values of y; from top to bottom, the curves correspond to the following values of y : 10, 1, $\mathbf{0 . 1}, 1 / 60$, $0.01,0.001,0.0001$.

Maxwell Construction

Lieden the Netherlands van der Waals place

Isotherm of a Cubic Equation of State in the Two-Phase Region of Temperature

There are three possible roots, two points are at equilibrium, middle is not real.

FIGURE 8.3
The dependence $\alpha(x)$ given by equation (8.7) for different values of y; from top to bottom, the curves correspond to the following values of $y: 10,1,0.1,1 / 60$, $0.01,0.001,0.0001$.

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

EOS Calculation

Phase Diagram

Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot is prepared from the steam tables in Appendix E.

FIGURE 8.3
The dependence $\alpha(x)$ given by equation (8.7) for different values of y; from top to bottom, the curves correspond to the following values of y : $10,1,0.1,1 / 60$, $0.01,0.001,0.0001$.

EOS Calculation

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

Phase Diagram

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

FIGURE 8.4
The dependence $F(\alpha)$ in the case where $\alpha(x)$ is multivalued. As \boldsymbol{x} changes (which can be controlled by, say, temperature change), the shape of the $F(\alpha)$ dependence changes such that one minimum gets deeper at the expense of the other. Deeper minimum corresponds to the more stable state. For this figure, we choose the value $y=0.001$.

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

FIGURE 8.5
The curves $\alpha(x)$ in Figure 8.3 are multivalued at some x; in this figure, one solution is selected for each x such that the values of $\alpha(x)$ correspond to the absolute minimum free energy for every x. The values of y are the same as in Figure 8.3.

Generally, it is known that this transition can be either first-order for biopolymers such as protein folding, or second-order for synthetic polymers.
First order means that the first derivative of the free energy is not continuous, i.e. a jump in Free energy at a discrete transition temperature, such as a melting point.

$$
\begin{gathered}
x \sim B ; y \sim C \\
B \sim 1 / T ; \alpha \sim V^{1 / 3}
\end{gathered}
$$

FIGURE 8.5
The curves $\alpha(x)$ in Figure 8.3 are multivalued at some x; in this figure, one solution is selected for each x such that the values of $\alpha(x)$ correspond to the absolute minimum free energy for every x. The values of y are the same as in Figure 8.3.

Generally, it is known that this transition can be either first-order for biopolymers such as protein folding, or second-order for synthetic polymers.
First order means that the first derivative of the free energy is not continuous, i.e. a jump in Free energy at a discrete transition temperature, such as a melting point.

Figure 4. Temperature dependence of average radius of gyration $\left(\left\langle R_{\mathrm{g}}\right\rangle\right)$ and hydrodynamic radius ($\left.\left\langle R_{h}\right\rangle\right)$ of poly(N, N-diethylacrylamide) (PDEAM) chains in water in one heating-and-cooling cycle.

> I. 5 Theta
> I. Expanded 0.774 Sphere 0.92 Draining Sphere (We will Look at this further)

FIG. 2. Temperature dependence of the average radius of gyration $\left\langle R_{g}\right\rangle$ and the average hydrodynamic radius $\left\langle R_{h}\right\rangle$ respectively, in the coil-to-globule (heating) and the globule-to-coil (cooling) processes, where each point was obtained at least 2 h after the solution reached the thermal equilibrium to ensure that the polymer chains were thermodynamically stable. The inset shows the temperature dependence of $\left\langle R_{g}\right\rangle /\left\langle R_{h}\right\rangle$ in the heating and the cooling processes.

Figure 5. Temperature dependence of ratio of average radius of gyration to average hydrodynamic radius $\left(\left\langle R_{\mathrm{g}}\right\rangle\left\langle\left\langle R_{\mathrm{h}}\right\rangle\right)\right.$ of poly(N, N-diethylacrylamide) (PDEAM) chains in water in one heating-and-cooling cycle.

Figure 4. Temperature dependt
and hydrodynamic radius $\left(\left\langle R_{h}\right\rangle\right)$ (chains in water in one heating.

Figure 5. Temperature dependen to average hydrodynamic radius

ABSTRACT: Our previous sudies of the captioned ransition have shown that thermally sensitive poly(N.

Volume 80, Number 18 physical review letters

Size of a Chain, "R"
 (You can not directly measure the End-to-End Distance)

What are the measures of Size, " R ", for a polymer coil?

Radius of Gyration, R_{g}

$$
\begin{gathered}
R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-R_{G}\right)^{2}\right\rangle \quad R_{G}=\frac{1}{N} \sum_{n=1}^{N} R_{n} \\
R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-\frac{1}{N} \sum_{m=1}^{N} R_{m}\right)^{2}\right\rangle=\frac{1}{N} \sum_{n=1}^{N}\left\langle\frac{1}{2 N} \sum_{m=1}^{N}\left(R_{n}-R_{m}\right)^{2}\right\rangle=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle \\
\sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle=\sum_{n=1}^{N} \sum_{m=1}^{N}|n-m| b^{2}=2 \sum_{n=m m=1}^{N} \sum_{n-m}^{N}(n-m) b^{2}=2 b^{2}[Z+2(Z-1)+3(Z-2) \ldots(Z-1) 2+Z] \\
Z=\mathrm{N}-1 \\
\sum_{p=1}^{Z}(Z+1-p) p=(Z+1) \sum_{p=1}^{Z} p-\sum_{p=1}^{Z} p^{2}=\frac{Z(Z+1)(Z+2)}{6} \cong \frac{N^{3}}{6} \\
\sum_{n=1}^{n} u^{p}=\frac{n^{p+1}}{p+1}+\frac{n^{p}}{2}+\frac{p n^{p-1}}{12} \quad \text { for p<3 (other terms needed for higher p's) }
\end{gathered}
$$

What are the measures of Size, " R ", for a polymer coil?

Radius of Gyration, R_{g}

$$
R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-R_{G}\right)^{2}\right\rangle \quad R_{G}=\frac{1}{N} \sum_{n=1}^{N} R_{n}
$$

$$
R_{g}^{2}=\frac{N b^{2}}{6}=\frac{R_{R M S \text { eted }}^{2}}{6}
$$

R_{g} is $1 / \sqrt{ } 6$ of the RMS end-to-end distance.

$$
2.45 \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\text {eted }}
$$

R_{g} is a direct measure of the end-to-end distance for a linear Gaussian chain

Static Light Scattering for $\mathbf{R}_{\mathbf{g}}$

$$
I(q)=I_{e} N n_{e}^{2} \exp \left(-R_{g}^{2} q^{2} / 3\right)
$$

Guinier Plot linearizes this function

$$
\ln \left(\frac{I(q)}{G}\right)=-\frac{R_{g}^{2}}{3} q^{2} \quad G=I_{e} N n_{e}^{2}
$$

The exponential can be expanded at low-q and linearized to make a Zimm Plot

$$
\frac{G}{I(q)}=\left(1+\frac{R_{g}^{2}}{3} q^{2}\right)
$$

Guinier's Law

Binary Interference Yields Scattering Pattern.

$$
\begin{aligned}
& \mathrm{I}(\mathrm{q}) \sim \mathrm{N}_{\mathrm{e}}{ }^{2} \\
& \mathrm{n}_{\mathrm{e}} \text { Reflects the density of a } \\
& \text { Point generating waves } \\
& \mathrm{N} \text { is total number of points }
\end{aligned}
$$

The Scattering Event

I(q) is related to amount Nn^{2}
q is related to size/distances

$$
\begin{gathered}
q=\frac{4 \pi}{\lambda} \sin (\theta / 2) \\
\mathrm{d}=\frac{2 \pi}{\mathrm{q}}
\end{gathered}
$$

2) Rather than consider specific structures, we can consider general scattering laws by which all scatters are governed under the premises that 1) "Particles" have a size and 2) "Particles" have a surface.

$$
T^{\circ}
$$

Binary Interference Yields Scattering Pattern.

-Consider that an in-phase wave scattered at angle θ was in phase with the incident wave at the source of scattering.
-This can occur for points separated by r such that
$|r|=2 \pi /|q|$

- $q=\frac{4 \pi}{\lambda} \sin \frac{\theta}{2}$

Binary Interference Yields Scattering Pattern.

-For high θ, \boldsymbol{r} is small

Binary Interference Yields Scattering Pattern.

-For small θ, \boldsymbol{r} is large

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

Rather than random placement of the vector we can hold The vector fixed and rotate the particle

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

Rather than random placement of the vector we can hold The vector fixed and rotate the particle

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

Rather than random placement of the vector we can hold The vector fixed and rotate the particle

For an isotropic sample we consider scattering as arising from the probability of the random placement of a vector r in the scattering phase.

Rather than random placement of the vector we can hold The vector fixed and rotate the particle

The particle becomes a probability density function from the center of mass.

That follows a Gaussian Distribution.

$$
p(r)=\exp \left(\frac{-3 r^{2}}{4 R_{g}^{2}}\right)
$$

The particle becomes a probability density function from the center of mass.

Whose Fourier Transform is Guinier's Law.

$$
\begin{array}{r}
p(r)=\exp \left(\frac{-3 r^{2}}{4 R_{g}^{2}}\right) \Rightarrow \mathrm{I}(\mathrm{q})=G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right) \\
\mathrm{G}=\mathrm{Nn}_{\mathrm{e}}^{2}
\end{array}
$$

Static Light Scattering for Radius of Gyration

Consider binary interference at a distance " r " for a particle with arbitrary orientation Rotate and translate a particle so that two points separated by r lie in the particle for all rotations and average the structures at these different orientations

Fig. 4. Averaging of a particle about the origin of the vector r in analogy to random translations and rotations of the particle about the ongin of (b), the superposition of a number of such translations and rotations in random directions leads to a Gaussian distribution of scattering density $\rho(r)$.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\gamma_{\text {Gaussian }}(r)=\exp \left(-3 r^{2} / 2 \sigma^{2}\right) \\
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N-1}=2 R_{g}^{2} \\
\text { Function }
\end{array} \\
& I(q)=I_{e} N n_{e}^{2} \exp \left(-R_{g}^{2} q^{2} / 3\right) \quad \begin{array}{l}
\text { Lead Term is } \\
I(0)=N n_{e}^{2}
\end{array} \\
& \text { Scattered Intensity is the Fourier Transform of } \\
& \text { The Binary Autocorrelation Function }
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{0}(r)=1-\frac{S}{4 V} r+\ldots \quad \exp \left(\frac{-3 r^{2}}{4 R_{s}^{2}}\right) \approx 1-\frac{3 r^{2}}{4 R_{s}^{2}}+\ldots \\
& r \Rightarrow 0 \text { then } d\left(\gamma_{\text {Gaussian }}(r)\right) / d r \Rightarrow 0 \quad \text { A particle with no surface }
\end{aligned}
$$

Guinier's Law Pertains to a Particle with no Surface.

$$
\begin{array}{r}
p(r)=\exp \left(\frac{-3 r^{2}}{4 R_{g}^{2}}\right) \Rightarrow \mathrm{I}(\mathrm{q})=G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right) \\
\mathrm{G}=\mathrm{Nn}_{\mathrm{e}}^{2}
\end{array}
$$

Any "Particle" can be Approximated as a Gaussian probability distribution in this context.

$$
p(r)=\exp \left(\frac{-3 r^{2}}{4 R_{g}^{2}}\right) \quad \Rightarrow \quad \mathrm{I}(\mathrm{q})=G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right)
$$

Guinier's Law can be thought of as the First Premise of Scattering:
All "Particles" have a size reflected by the radius of gyration.

Table 3.1. Radii of Gyration of Some Homogeneous Bodies
Sphere of radius $R \quad R_{g}^{2}=\frac{3}{5} \mathrm{R}^{2}$

Spherical shell with radii $R_{1}>R_{2} \quad R_{\mathrm{g}}^{2}=\frac{3}{5} \frac{R_{1}^{5}-R_{2}^{5}}{R_{1}^{3}-R_{2}^{3}}$
Ellipse with semiaxes a and b

$$
R_{8}^{2}=\frac{a^{2}+b^{2}}{4}
$$

Ellipsoid with semiaxes a, b, and c

$$
R_{\mathrm{g}}^{2}=\frac{a^{2}+b^{2}+c^{2}}{5}
$$

Prism with edges A, B, and C
$R_{\mathrm{g}}^{2}=\frac{A^{2}+B^{2}+C^{2}}{12}$
Elliptical cylinder with semiaxes a and b and height h

$$
R_{\mathrm{g}}^{2}=\frac{a^{2}+b^{2}}{4}+\frac{h^{2}}{12}
$$

Hollow circular cylinder with radii $R_{1}>R_{2}$
and height h

$$
R_{\mathrm{g}}^{2}=\frac{R_{1}^{2}+R_{2}^{2}}{2}+\frac{h^{2}}{12}
$$

Debye Scattering Function for Gaussian Polymer Coil

Consider a chain of length N whose average end to end distance is $\mathrm{N}^{1 / 2} \mathrm{~b}$, where b is the effective step length for the chain which has no long-range interactions. For the n'th chain step, $\mathrm{g}_{\mathrm{a}}(\mathrm{r})$ is the average density of segments at a radial position r from step $\mathrm{n} . \mathrm{R}_{\mathrm{n}}$ is here the position vector for the segments of the chain. It is important to keep clear that r_{i} is a radial position relative to segment " n " while R_{n} is the segmental position relative to a coordinate system based at the first segment where $\mathrm{n}=1$. n can have values from 1 to N . Then,

$$
g_{n}\left(r_{n}\right)=\frac{\sum_{n=1}^{N}\left\langle\delta\left(r_{n}-\left(R_{m}-R_{n}\right)\right)\right\rangle}{N}
$$

where the del operator has a value of 1 when the position vector difference (R 's) is equal to r. $g_{\mathrm{n}}(\mathrm{r})$ will have values between 0 for r 's larger than the chain to 1 for $\mathrm{r}=0$.

Since $\mathrm{g}_{\mathrm{a}}(\mathrm{r})$ only considers a single segment, " n ", it must be averaged over all segments in order to obtain a statistical description of the spatial distribution of chain segments for the entire coil. This averaging results in the pair correlation function, $g(r)$ for the coil,

$$
g(r)=\frac{1}{2 N^{2}} \sum_{n=1}^{N} g_{n}\left(r_{n}\right)=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\delta\left(r-\left(R_{m}-R_{n}\right)\right)\right\rangle
$$

The pair correlation function, $g(r)$, is directly related to the intensity scattered by light, neutrons or x-rays from a polymer coil. The scattered intensity is measured as a function of scattering angle, θ, and is usually plotted against the reduced parameter, $q=|q|=4 \pi / \lambda \sin (\theta / 2)$, which is called the scattering vector. " q " is the inverse space vector and is related to the Bragg spacing, d , by $\mathrm{d}=2 \pi / \mathrm{q}$.

What are the measures of Size, "R", for a polymer coil?

Radius of Gyration, R_{g}

$$
\begin{gathered}
R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-R_{G}\right)^{2}\right\rangle \quad R_{G}=\frac{1}{N} \sum_{n=1}^{N} R_{n} \\
R_{g}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left\langle\left(R_{n}-\frac{1}{N} \sum_{m=1}^{N} R_{m}\right)^{2}\right\rangle=\frac{1}{N} \sum_{n=1}^{N}\left\langle\frac{1}{2 N} \sum_{m=1}^{N}\left(R_{n}-R_{m}\right)^{2}\right\rangle=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle \\
\sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\left(R_{n}-R_{m}\right)^{2}\right\rangle=\sum_{n=1}^{N} \sum_{m=1}^{N}|n-m| b^{2}=2 \sum_{n=m m=1}^{N} \sum_{m-m) b^{2}=2 b^{2}[Z+2(Z-1)+3(Z-2) \ldots(Z-1) 2+Z]}^{Z=\mathrm{N}-1} \\
\sum_{p=1}^{Z}(Z+1-p) p=(Z+1) \sum_{p=1}^{Z} p-\sum_{p=1}^{Z} p^{2}=\frac{Z(Z+1)(Z+2)}{6} \cong \frac{N^{3}}{6} \\
\sum_{n=1}^{n} u^{p}=\frac{n^{p+1}}{p+1}+\frac{n^{p}}{2}+\frac{p n^{p-1}}{12} \quad \text { for p<3 (other terms needed for higher p's) }
\end{gathered}
$$

Scattered Intensity $=\mathrm{Kg}(\mathrm{q})$ where K is a constant for a given system which includes the contrast and instrumental parameters. $g(q)$ is the Fourier Transform of $g(r)$,

$$
g(q)=\int d r g(r) \exp (i q \cdot r)=\frac{1}{2 N^{2}} \sum_{n=1}^{N} \sum_{m=1}^{N}\left\langle\exp \left(i q \cdot\left(R_{m}-R_{n}\right)\right)\right\rangle
$$

For a Gaussian polymer coil the solution to this double summation is the Debye Equation for Polymer Coils which was first solved in 1946 by P. Debye.
$g(q)_{\text {Gaussian }}=\frac{2}{Q^{2}}[Q-1+\exp (-Q)]$
where $\mathrm{Q}=\mathrm{q}^{2} \mathrm{Nb}^{2} / 6=\mathrm{q}^{2} \mathrm{R}_{\mathrm{g}}{ }^{2}$
The Debye function for polymer coils describes a decay of scattered intensity following a powerlaw of -2 at high- q and a constant value for intensity at low- q (below R_{g}).

Low-q and High-q Limits of Debye Function

$$
\begin{aligned}
& g(q)_{\text {Gaussian }}=\frac{2}{Q^{2}}[Q-1+\exp (-Q)] \\
& \text { where } \mathrm{Q}=\mathrm{q}^{2} \mathrm{Nb}^{2} / 6=\mathrm{q}^{2} \mathrm{R}_{\mathrm{g}}{ }^{2}
\end{aligned}
$$

At high q the last term $=>0$

$$
\begin{gathered}
Q-1=>Q \\
g(q)=>2 / Q \sim q^{-2}
\end{gathered}
$$

Which is a mass-fractal scaling law with $d_{f}=2$

At low $q, \exp (-\mathrm{Q})=>1-Q+Q^{2} / 2-Q^{3} / 6+\ldots$

$$
\text { Bracketed term }=>Q^{2} / 2-Q^{3} / 6+\ldots
$$

$$
g(q)=>I-Q / 3+\ldots \sim \exp (-Q / 3)=\exp \left(-q^{2} R_{g}^{2} / 3\right)
$$

Which is Guinier's Law

Ornstein-Zernike Function, Limits and Related Functions

The Zimm equation involves a truncated form of the Guinier Expression intended For use at extremely low-qR:

$$
\begin{equation*}
\frac{\phi}{S\left(q R_{g} \ll 1\right)}=\left(\frac{1}{N}+(1-2 \chi) \phi\right)\left(1+\frac{q^{2} R_{g}^{2}}{3}\right) \tag{6}
\end{equation*}
$$

If this expression is generalized for a fixed composition and all q, R_{g} is no longer the size parameter and the equation is empirical (no theoretical basis) but has a form similar to the Debye Function for polymer coils:

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}}
$$

This function is called the Ornstein-Zernike function and ξ is called a correlation length.
The inverse Fourier transform of this function can be solved and is given by (Benoit-Higgins Polymers and Neutron Scattering p. 233 1994):

$$
p(r)=\frac{K}{r} \exp \left(-\frac{r}{\xi}\right)
$$

This function is empirical and displays the odd (impossible) feature that the correlation function for a "random" system is not symmetric about 0 , that is + and - values for r are not equivalent even though the system is random. (Compare with the normal behavior of the Guinier correlation function.)

$$
p(r)=K \exp \left(-\frac{3 r^{2}}{4 R_{g}^{2}}\right)
$$

The Flory Expression indicates a linear dependence of osmotic pressure in concentration at low concentration and a dependence on concentration to the power 2 at
high concentration.

$$
\Pi=\frac{k T}{V_{c}}\left(\frac{\phi}{N}+\left(\frac{1}{2}-\chi\right) \phi^{2}+\ldots\right)
$$

Fig. 3.2. Osmotic pressures measured for samples of poly(α-methylstyrene) disFig. 3.2. Osmotic pressures measured for samples of poly(α-methylstyrene) dis-
solved in toluene $\left(25^{\circ} \mathrm{C}\right)$. Molecular weights vary between $M=7 \cdot 10^{4}$ (uppermost curve) and $M=7.47 \cdot 10^{6}$ (lowest curve). Data taken from Noda et al.[9]

68
8 Chapter 3. Liquid Equilibrium States

Fig. 3.3. Data of Fig. 3.2, presented in a plot of the reduced osmotic pressure versus the overlap ratio. The continuous lines correspond to the theoretical results Eqs. (3.26), (3.41)

From Gert Strobl, Polymer Physics

Ornstein-Zernike Function, Limits and Related Functions

Ornstein-Zernike (Empirical)

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}}
$$

High-q limit

$$
I(q)=\frac{G}{q^{2} \xi^{2}} \quad 2 \xi^{2}=R_{g}^{2}
$$

Low-q limit

$$
I(q) \sim G \exp \left(-q^{2} \xi^{2}\right) \quad \quad 3 \xi^{2}=R_{g}^{2} \quad I(q) \sim G\left(1-\frac{q^{2} R_{g}^{2}}{3}\right) \sim G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right)
$$

Ornstein-Zernike Function, Limits and Related Functions

Empirical Correlation Function

Transformed Empirical Scattering Function

$$
\left.\begin{array}{ccc}
p(r)=\frac{K}{r} \exp \left(-\frac{r}{\xi}\right) & \text { Ornstein-Zernike Function } & I(q)=\frac{G}{1+q^{2} \xi^{2}} \\
p(r)=K \exp \left(-\frac{r}{\xi}\right) & \text { Debye-Bueche Function } & I(q)=\frac{G}{1+q^{4} \xi^{4}} \\
p(r)=\frac{K}{r} \exp \left(-\frac{r}{\xi}\right) \sin \left(\frac{2 \pi r}{d}\right) & \begin{array}{c}
\text { Teubner-Strey Function } \\
\text { (F Brochard and } \\
\text { JF Lennon I 975 }
\end{array} & I(q)=\frac{G}{1+q^{2} c_{2}+q^{4} c_{3}} \\
p(r)=\frac{K}{r^{3-d_{f}}} \exp \left(-\frac{r}{\xi}\right) & \mathrm{c}_{2} \text { is negative to create a phy. 36(II) I035) Sinha Function }
\end{array} \quad I(q)=\frac{G \sin \left[\left(d_{f}-1\right) \arctan (q \xi)\right]}{\left.q \xi\left(1+q^{2} \xi^{2}\right)^{2} d_{f}-1\right) / 2}\right)
$$

Correlation function in all of these cases is not symmetric about 0 which is physically impossible for a random system. The resulting scattering functions can be shown to be non-physical, that is they do not follow fundamental rules of scattering. Fitting parameters have no physical meaning.

Mean-Field Interactions

The license of the image source clearly states that it can be used for commercial and noncommercial purposes and there is no need to ask permission from or provide credit to the photographer or Unsplash, although it is appreciated when possible.

Specific Interactions

Reprinted (adapted) with permission from McGlasson, A.; Rishi, K.; Beaucage, G. Chauby, M.; Kuppa, V.;. Ilavsky, J.; Rackaitis, M. Quantification of Dispersion fo
Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites.
. 2 . American Chemical Society

Random Phase Approximation (RPA) Equation

$$
\frac{\phi}{I(q)}=\frac{\phi_{0}}{I_{0}(q)}-2 \chi \phi \quad \text { Polymer in Solution }
$$

At high- $\mathrm{q}, \mathrm{I}_{0}(\mathrm{q})$ is small and $1 / \mathrm{I}_{0}(\mathrm{q})$ is much larger than 2χ.
At low- $\mathrm{q}, \mathrm{I}_{0}(\mathrm{q})$ is large, and 2χ is much larger than $1 / \mathrm{I}_{0}(\mathrm{q})$.
Negative 2χ indicates miscibility, positive, phase separation.

Temperature, $\chi \sim B / T$, high T small χ

How to observe the concentration blob?

Contrast match the solvent with a mixture of deuterated and hydrogenous solvents
Tag one chain by deuteration (1% of chains)

$$
\frac{\phi}{I(q)}=\frac{\phi_{0}}{I_{0}(q)}-2 \chi \phi
$$

Zimm Plot

$$
\begin{aligned}
& I(q)=\frac{G}{\exp \left(\frac{q^{2} R_{g}^{2}}{3}\right)} \\
& \frac{G}{I(q)}=\exp \left(\frac{q^{2} R_{g}^{2}}{3}\right) \approx 1+\frac{q^{2} R_{g}^{2}}{3}+\ldots
\end{aligned}
$$

Plot is linearized by $G / I(q)$ versus q^{2}

$$
q=\frac{4 \pi}{\lambda} \sin \left(\frac{\theta}{2}\right)
$$

$$
\frac{\phi}{S\left(q R_{\varepsilon} \ll 1\right)}=\left(\frac{1}{N}+(1-2 \chi) \phi\right)\left(1+\frac{q^{2} R_{\varepsilon}^{2}}{3}\right)
$$

At $\mathrm{q}=>0$ this is $1 /$ osmotic compressibility, $\mathrm{d} \Pi / \mathrm{d} \phi=1 / \mathrm{N}+\phi \mathrm{B}_{2}=(1 / \mathrm{N}+(1-2 \chi) \phi)$

Zimm Plot

$$
\begin{equation*}
\frac{\phi}{S\left(q R_{g} \ll 1\right)}=\left(\frac{1}{N}+(1-2 \chi) \phi\right)\left(1+\frac{q^{2} R_{g}^{2}}{3}\right) \tag{6}
\end{equation*}
$$

In a GPC you have $\phi \sim 0$ for each fraction Measure light scattering at a few angles and extrapolate q^{2} to 0 to find weight average MW for each fraction. For each fraction the polydispersity, $\mathrm{M}_{\mathrm{w}} / \mathrm{M}_{\mathrm{n}} \sim 1$ so $\mathrm{M}_{\mathrm{w}}=\mathrm{M}_{\mathrm{n}}=\mathrm{M}_{\mathrm{z}}$

Two types of correlation: Mean Field and Specific Interactions are Experimentally Observed

Dynamic Article Links

Cite this: Soft Matter, 2011, 7, 2725
www.rsc.org/softmatter
PAPER
Mechanical reinforcement of polymer nanocomposites: theory and ultra-small angle X-ray scattering (USAXS) studies \dagger

Maura E. McEwan, ${ }^{a}$ Sergei A. Egorov, ${ }^{b}$ Jan Ilavsky, ${ }^{c}$ David L. Green ${ }^{* a}$ and Yang Yang ${ }^{a}$

(b)

Fig. 2 SEM micrographs of the silica cores used in this study and USAXS scattering curves of the cores grafted with $25 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS in PDMS: (a) SEM of radius $R \approx 100 \mathrm{~nm}$ nanoparticles; (b) USAXS scattering intensity $I(q)$ of $R \approx 100 \mathrm{~nm}$ nanoparticles in $2 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS at a particle core volume fraction of $\phi_{\mathrm{c}}=0.02$; (c) SEM of $R \approx 600 \mathrm{~nm}$ silica particles; and (d) $I(q)$ of $R \approx 600 \mathrm{~nm}$ particles in $8 \mathrm{~kg} \mathrm{~mol}{ }^{-1}$ PDMS at $\phi_{\mathrm{C}}=0.01$. Lines in (b) and (d) are fits of eqn (12) to $I(q)$.

Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG

Non-woven fabric (fleece, tissue, paper)

These are related to Thermodynamics: Virial Coefficient $=$ Mean Field $=$ FH χ EOS like Van der Waals = Specific Interaction (There is overlap)

At large-scale (q => 0) they appear the same. We expect $\mathrm{I} / \phi(\mathrm{q}=>0)$ to drop at higher concentrations as a Woven fabric measure of $1 /\left(\phi B_{2}\right)$ for both.

Critical ordering 1

Rishi, K.; Pallerla, L.; Beaucage, G.; Tang, A. Dispersion of Surface-Modified, Aggregated, Fumed Silica in Polymer Nanocomposites. J. Appl. Phys. 2020, 127 (17), 174702.

Soft Matter

PAPER

Mechanical reinforcement of polymer nanocomposites: theory and ultra-small angle X-ray scattering (USAXS) studies \dagger

Maura E. McEwan, ${ }^{a}$ Sergei A. Egorov, ${ }^{b}$ Jan Ilavsky, ${ }^{c}$ David L. Green*a and Yang Yang ${ }^{a}$

$$
\begin{gathered}
I(q)=\phi_{\mathrm{c}} V_{\mathrm{p}}(\Delta \rho)^{2} P(q) S(q) \\
S(q)=1+4 \pi \rho_{\mathrm{p}} \int_{0}^{\infty}(g(r)-1) r^{2} \frac{\sin (q r)}{q r} \mathrm{~d} r \\
P(q R)=\left(3 \frac{\sin (q R)-q R \cos (q R)}{(q R)^{3}}\right)^{2} \\
S(q)=\frac{I(q)_{\text {conc }} \phi_{\text {c.dil }}}{I(q)_{\text {dil }} \phi_{\text {c.onc }}}
\end{gathered}
$$

(d)

Soft Matter

PAPER
Mechanical reinforcement of polymer nanocomposites: theory and ultra-small angle X-ray scattering (USAXS) studies \dagger

Maura E. McEwan, ${ }^{a}$ Sergei A. Egorov, ${ }^{b}$ Jan Ilavsky, ${ }^{c}$ David L. Green*a and Yang Yang ${ }^{a}$

$$
\begin{gathered}
I(q)=\phi_{\mathrm{c}} V_{\mathrm{p}}(\Delta \rho)^{2} P(q) S(q) \\
S(q)=1+4 \pi \rho_{\mathrm{p}} \int_{0}^{\infty}(g(r)-1) r^{2} \frac{\sin (q r)}{q r} \mathrm{~d} r \\
P(q R)=\left(3 \frac{\sin (q R)-q R \cos (q R)}{(q R)^{3}}\right)^{2} \\
S(q)=\frac{I(q)_{\text {conc }} \phi_{\text {c.dil }}}{I(q)_{\text {dil }} \phi_{\text {c.onc }}}
\end{gathered}
$$

(b)
(d)

$$
\begin{aligned}
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& \cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

$N-2$ remaining particles through the Ornstein-Zernike (OZ) relation which decomposes the total correlation function, $h(r)=$ $g(r)-1$, into direct and indirect contributions, $c(r)$ and $\gamma(r)$, respectively, through:

$$
\begin{equation*}
\gamma(r)=h(r)-c(r)=\rho_{\mathrm{p}} \int h\left(r^{\prime}\right) c\left(\left|r-r^{\prime}\right|\right) \mathrm{d} r^{\prime} \tag{5}
\end{equation*}
$$

To solve the OZ equation, an appropriate closure relation is needed to approximate how particle interactions through $U(r)$ impact the local microstructure through $g(r), h(r)$, and $c(r)$. To this end, we chose the Percus-Yevick (PY) approximation in eqn (6),

$$
\begin{gather*}
g(r)=\exp \left[\frac{-U(r)}{k_{\mathrm{B}} T}\right](1+\gamma(r)) \\
U(r)=U_{0}\left[\begin{array}{c}
U(r)=\infty ; \\
-\ln (y)-\frac{9}{5}(1-y)+\frac{1}{3}\left(1-y^{3}\right)-\frac{1}{30}\left(1-y^{6}\right) \\
U(r)=0 \\
y \leq 0 \\
0<y \leq 1 \\
y>1
\end{array}\right. \tag{7}
\end{gather*}
$$

where dimensionless separation distance $y=(r-2 R / 2 L)$ and prefactor $U_{0}=\left(\pi^{3} / 12\right)\left(\Sigma R L^{3} / a^{2} N_{\text {in }}\right) k_{\mathrm{B}} T$ for monomer size a,

Fig. 3 USAXS scattering intensity $I(q)$ of radius $R=100 \mathrm{~nm}$ silica nanoparticles grafted with $25 \mathrm{~kg} \mathrm{~mol}^{-1}$ in $13 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS. The silica core volume fraction range from $\phi_{c}=0.02-0.47$.

Fig. 4 Comparison of experimental and theoretical structure factors $S(q)$ for radius $R=100 \mathrm{~nm}$ silica nanoparticles grafted with $25 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS in $13 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS with varying core volume fractions $\phi_{\mathrm{c}}=$ $0.09-0.47$. Thin solid lines are predictions of $S(q)$ from Percus-Yevick closure from eqn (13) for particles with a size distribution of $109 \pm 13 \mathrm{~nm}$ obtained from analysis of USAXS intensities.

Fig. 6 Correspondence between the radial distribution function $g(r)$ predicted with Percus-Yevick closure (black) and Monte Carlo simulations (gray) for radius $R \approx 100 \mathrm{~nm}$ silica nanoparticles grafted with 25 kg mol^{-1} PDMS in $13 \mathrm{~kg} \mathrm{~mol}^{-1}$ PDMS at $\phi_{\mathrm{c}}=0.20$. The interactions of the polymer-grafted nanoparticles in the melts were simulated with MewisRussell potential in eqn (7).

Go to slides 2 second half

Measurement of the Hydrodynamic Radius, \mathbf{R}_{h}

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd

Native state has the smallest volume

Intrinsic, specific \& reduced "viscosity"

$\tau_{x y}=\eta \dot{\gamma}_{x y} \quad$ Shear Flow (may or may not exist in a capillary/Couette geometry)

$$
\begin{gather*}
\eta=\eta_{0}\left(1+\phi[\eta]+k_{1} \phi^{2}[\eta]^{2}+k_{2} \phi^{3}[\eta]^{3}+\cdots+k_{n-1} \phi^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction (2 }=\text { binary, } 3=\text { ternary etc. })
\end{gather*}
$$

$$
\frac{1}{\phi}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{\phi}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{\phi} \xrightarrow{\text { Limit } \phi=0}[\eta]=\frac{V_{H}}{M}
$$

We can approximate (I) as:

$$
\eta_{r}=\frac{\eta}{\eta_{0}}=1+\phi[\eta] \exp \left(K_{M} \phi[\eta]\right) \quad \text { Martin Equation }
$$

Utracki and Jamieson "Polymer Physics From Suspensions to Nanocomposites and Beyond" 2010 Chapter I

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gathered}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. })
\end{gathered}
$$

$$
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c>0}[\eta]=\frac{V_{H}}{M}
$$

$$
\begin{aligned}
& \cdots-M_{\mathrm{w}}=709.000 \mathrm{~g} / \mathrm{mol}, \mathrm{DS}=0,91 \\
& \cdots-M_{\mathrm{w}}=517.000 \mathrm{~g} / \mathrm{mol}, \mathrm{DS}=0,86 \\
& \cdots-M_{\mathrm{w}}=263.000 \mathrm{~g} / \mathrm{mol}, \mathrm{DS}=0,82 \\
& \cdots-M_{\mathrm{w}}=152.000 \mathrm{~g} / \mathrm{mol}, \text { DS }=0,94
\end{aligned}
$$

Concentration Effect

Fig. 4.5. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for acetyl starch of different molar masses in aqueous solution at $T=25^{\circ} \mathrm{C}$. The degree of substitution (DS) with acetyl groups is nearly constant at $D S \approx 0.9$. Due to the compact structure of the polymer coil the concentrations of the dilution series are relatively high to reach the required relative viscosity range of $\eta_{\mathrm{r}}=1.2-2.5$

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gathered}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\qquad \frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c \Rightarrow 0}[\eta]=\frac{V_{H}}{M}
\end{gathered}
$$

Concentration Effect, c*

Fig. 4.2. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for different molar masses of the polycation poly(acrylamide-co-($\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethyl- N -[2-methacryloethyl]-ammoniumchloride) (PTMAC) in $0.1 \mathrm{~mol} / \mathrm{I} \mathrm{NaNO}_{3}$ solution. Data from [87]. All data points are measured at concentrations below the critical concentration $c^{*}{ }_{[\eta]}$. The copolymer consists of $8 \mathrm{~mol} \%$ TMAC and $92 \mathrm{~mol} \%$ AAm

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gathered}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\qquad \frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c \Rightarrow 0}[\eta]=\frac{V_{H}}{M}
\end{gathered}
$$

Solvent Quality

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\qquad \frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c=>0}[\eta]=\frac{V_{H}}{M}
\end{gather*}
$$

Molecular Weight Effect

Fig. 5.4. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for sodium poly(styrene sulfonate) (PSSNa) of different molar masses in aqueous solution. The second virial coefficient of the viscosimetry, $K_{\mathrm{H}}[\eta]^{2}$, is equivalent to the slope of the curves and is given for each molar mass. The Huggins constant K_{H} is constant and independent of the molar mass. Data from $[35,91]$

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Viscosity

$$
\begin{gathered}
\eta_{s}=\eta_{0}(1+[\eta] \phi) \\
{[\eta] \approx \frac{V_{\text {Molecule }}}{M_{\text {Moledule }}}}
\end{gathered}
$$

For the Native State Mass $\sim \rho V_{\text {Molecule }}$ Einstein Equation (for Suspension of 3d Objects)

$$
\eta_{s}=\eta_{0}(1+2.5 \phi)
$$

$$
\begin{aligned}
& \text { For "Gaussian" Chain Mass } \sim \text { Size }^{2} \sim \mathrm{~V}^{2 / 3} \\
& \mathrm{~V} \sim \text { Mass }^{3 / 2} \\
& \text { For "Expanded Coil" Mass } \sim \text { Size }^{5 / 3} \sim \mathrm{~V}^{5 / 9} \\
& \mathrm{~V} \sim \text { Mass }^{9 / 5} \\
& \text { For "Fractal" Mass } \sim \text { Size }^{\mathrm{df}} \sim \mathrm{Vdf}^{\text {df/3 }} \\
& \mathrm{V} \sim \text { Mass }^{3 / \mathrm{df}} \\
& \qquad[\eta] \sim M_{\text {Molecule }}^{\frac{3}{d_{f}}-1}
\end{aligned}
$$

Viscosity

$$
\begin{gathered}
\eta_{s}=\eta_{0}(1+[\eta] \phi) \\
{[\eta] \approx \frac{V_{\text {Molecule }}}{M_{\text {Moledulue }}}}
\end{gathered}
$$

For the Native State Mass $\sim \rho V_{\text {Molecule }}$ Einstein Equation (for Suspension of 3d Objects)

$$
\eta_{s}=\eta_{0}(1+2.5 \phi)
$$

$$
\begin{gathered}
\text { For "Gaussian" Chain Mass } \sim \text { Size }^{2} \sim V^{2 / 3} \\
\text { V } \sim \text { Mass }^{3 / 2}
\end{gathered}
$$

"Size" is the
"Hydrodynamic Size" For "Expanded Coil" Mass \sim Size ${ }^{5 / 3} \sim V^{5 / 9}$ $V \sim$ Mass ${ }^{9 / 5}$

$$
\begin{aligned}
& \text { For "Fractal" Mass } \sim \text { Size }{ }^{\text {df } \sim \mathrm{Vdf}^{3} / 3} \\
& \mathrm{~V} \sim \text { Mass }^{3 / \mathrm{dff}} \\
& {[\eta] \sim M_{\text {Molecule }}^{\frac{3}{d_{f}}-1}}
\end{aligned}
$$

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gather*}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \tag{I}\\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c \rightarrow 0}[\eta]=\frac{V_{H}}{M}
\end{gather*}
$$

Temperature Effect

Fig. 5.5. Zero-shear viscosity η_{0} as a function of the temperature T for poly (acrylamide) (PAAm) and poly(N-iso-propyl-acrylamide) (PipAAm) in aqueous solution ($c=0.1 \mathrm{wt} \%$). The viscosity for the solvent water as a function of the temperature is plotted as well. Data from [77]

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific \& reduced "viscosity"

$$
\begin{gathered}
\eta=\eta_{0}\left(1+c[\eta]+k_{1} c^{2}[\eta]^{2}+k_{2} c^{3}[\eta]^{3}+\cdots+k_{n-1} c^{n}[\eta]^{n}\right) \\
\mathrm{n}=\text { order of interaction }(2=\text { binary, } 3=\text { ternary etc. }) \\
\qquad \frac{1}{c}\left(\frac{\eta-\eta_{0}}{\eta_{0}}\right)=\frac{1}{c}\left(\eta_{r}-1\right)=\frac{\eta_{s p}}{c} \xrightarrow{\text { Limit } c \rightarrow 0}[\eta]=\frac{V_{H}}{M}
\end{gathered}
$$

We can approximate (I) as:

$$
\begin{array}{lc}
\eta_{r}=\frac{\eta}{\eta_{0}}=1+c[\eta] \exp \left(K_{M} c[\eta]\right) & \text { Martin Equation } \\
\frac{\eta_{s p}}{c}=[\eta]+k_{1}[\eta]^{2} c & \text { Huggins Equation } \\
\frac{\ln \left(\eta_{r}\right)}{c}=[\eta]+k_{1}^{\prime}[\eta]^{2} c & \begin{array}{c}
\text { Kraemer Equation }
\end{array} \\
\text { (exponential expansion) }
\end{array}
$$

Utracki and Jamieson "Polymer Physics From Suspensions to Nanocomposites and Beyond" 2010 Chapter I

Intrinsic "viscosity" for colloids (Simha, Case Western)

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}}
\end{gathered}
$$

For a solid object with a surface v is a constant in molecular weight, depending only on shape For a symmetric object (sphere) $v=2.5$ (Einstein) $\quad[\eta]=\frac{2.5}{\rho} \mathrm{ml} / \mathrm{g}$
For ellipsoids v is larger than for a sphere,

$$
\begin{array}{cc}
v=\frac{J^{2}}{15(\ln (2 J)-3 / 2)} \quad \begin{array}{c}
\text { prolate } \\
\\
\\
\quad \mathrm{a}, \mathrm{~b}, \mathrm{~b}:: \mathrm{a}>\mathrm{a} / \mathrm{b}
\end{array} \\
v=\frac{16 J}{15 \tan ^{-1}(J)} & \quad \text { oblate }
\end{array}
$$

Intrinsic "viscosity" for colloids (Simha, Case Western)

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}}
\end{gathered}
$$

Hydrodynamic volume for "bound" solvent

$$
V_{H}=\frac{M}{N_{A}}\left(\bar{v}_{2}+\delta_{S} v_{1}^{0}\right)
$$

Partial Specific Volume	\bar{v}_{2}
Bound Solvent (g solvent/g polymer)	δ_{S}
Molar Volume of Solvent	v_{1}^{v}

Intrinsic "viscosity" for colloids (Simha, Case Western)

$$
\begin{gathered}
\eta=\eta_{0}(1+v \phi) \quad \eta=\eta_{0}(1+[\eta] c) \\
{[\eta]=\frac{v N_{A} V_{H}}{M}}
\end{gathered}
$$

Long cylinders (TMV, DNA, Nanotubes)

$$
[\eta]=\frac{2}{45} \frac{\pi N_{A} L^{3}}{M\left(\ln J+C_{\eta}\right)} \quad \mathrm{J}=\mathrm{L} / \mathrm{d}
$$

$C_{\eta} \quad$ End Effect term $\sim 2 \ln 2-25 / 12$ Yamakawa 1975

Shear Rate Dependence for Polymers

- xanthan gum
$M_{\mathrm{w}}=1.8 \cdot 10^{6} \mathrm{~g} / \mathrm{mol}, c=0,1 \%$
- poly(acrylamide)
$M_{\mathrm{w}}=7.9 \cdot 10^{6} \mathrm{~g} / \mathrm{mol}, c=0.1 \%$ $T{ }^{\mathrm{w}}=25^{\circ} \mathrm{C}$

Fig. 5.8. Dynamic viscosity η as a function of the shear rate $\dot{\gamma}$ for an aqueous xanthan gum and an aqueous poly(acrylamide) solution of a comparable degree of polymerization and the same concentration $c=0.1 \mathrm{wt} \%$ data from [92]. The viscosity depends on the shear rate above a critical shear rate $\hat{\gamma}_{\text {crit }}$

Fig. 5.10. Intrinssic viscosity $[\eta$] determined at high shear rates $\gamma \dot{\text { f }}$ with a capillary viscosimeter and at lower shear rates with a Zimm-Crothers viscosimeter for different xanthan gums in $0.1 \mathrm{~mol} / \mathrm{l}$ sodium chloride (NaCl) solution at $25^{\circ} \mathrm{C}$. Data from [93]. For strongly shear thinning polymer solutions, only low shear viscosimeters reach the shear rate independent viscosity region

Capillary Viscometer

$$
\begin{aligned}
& \frac{\text { Volume }}{\text { time }}=\frac{\pi R^{4} \Delta p}{8 \eta l} \\
& \Delta p=\rho g h \\
& \dot{\gamma}_{\text {Max }}=\frac{4 \text { Volume }}{\pi R^{3} \text { time }}
\end{aligned}
$$

Fig. 3.2. Velocity profile in a capillary viscosimeter. The fluid velocity v has a parabolic profile with a maximum in the middle of the capillary; the shear rate $\dot{\gamma}$ and the shear stress τ have a maximum at the capillary wall and are zero in the middle of the capillary

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Branching and Intrinsic Viscosity

5.5 Branching

Branching in a polymer coil leads for polymers of the same molar mass to changes of the intrinsic viscosity. Although the chemical composition is the same, branched polymers have a higher density $\rho_{\text {equ }}$ in solution than linear polymers and therefore

Fig. 5.11. Intrinsic viscosity $[\eta]$ as a function of the molar mass M for linear poly(ethylene) (high density poly(ethylene), HDPE) and longchain branched poly(ethylene) (low density poly(ethylene), LDPE) in tetraline at $T=120^{\circ} \mathrm{C}$ (data from $[47,94]$) as well as for a dendrimer with 3,5-dioxybenzylidene units in tetrahydrofuran at $T=30^{\circ} \mathrm{C}$ (data from [47, 95])

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Branching and Intrinsic Viscosity

$$
\begin{aligned}
& R_{g, b, M}^{2} \leq R_{g, l, M}^{2} \\
& g=\frac{R_{g, b, M}^{2}}{R_{g, l, M}^{2}} \\
& g=\frac{3 f-2}{f^{2}} \\
& g_{\eta}=\frac{[\eta]_{b, M}}{[\eta]_{l, M}}=g^{0.58}=\left(\frac{3 f-2}{f^{2}}\right)^{0.58}
\end{aligned}
$$

FIGGURE 1.7 Plots of viscometric branching parameter, g_{η}, versus branch functionality, p, for
merchains on a simple cubic lattice (unfilled circles), together with experimental data for star mers in theta solvents: \bullet, polystyrene in cyclohexane; $\boldsymbol{\Delta}$, polyisoprene in dioxane. Solid dashed lines represent calculated values via Eqs. (1.70) and (1.71), respectively. (Adapted Shida et al. [2004].)

Utracki and Jamieson "Polymer Physics From Suspensions to Nanocomposites and Beyond" 2010 Chapter I

Polyelectrolytes and Intrinsic Viscosity

$\rightarrow M_{\mathrm{w}}=690000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$\checkmark-M_{\mathrm{w}}=345000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$\triangle M_{\mathrm{w}}=212000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$-\triangle M_{\mathrm{w}}=177000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$\longrightarrow M_{\mathrm{w}}=138000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$\bigcirc M_{\mathrm{w}}=88000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

- $-M_{\mathrm{w}}=31000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$
$\square-M_{\mathrm{w}}=16000 \mathrm{~g} \cdot \mathrm{ml}^{-1}$

Fig. 5.15. Reduced viscosity $\eta_{\text {red }}$ as a function of the concentration c for the polyelectrolyte sodium poly(styrene sulfonate) in nearly salt free aqueous solution ($c_{\mathrm{NaC}}=4 \times 10^{-6} \mathrm{~mol}^{-1}$) and for different molar masses. The concentration is plotted on a logarithmic scale to show the maximum behavior of the viscosity at very low concentrations of the polyelectrolyte. Data from [83,97]

Kulicke \& Clasen "Viscosimetry of Polymers and Polyelectrolytes (2004)

Polyelectrolytes and Intrinsic Viscosity

EMCLRE 1.16 Determination of the chain overlap concentration c^{*}, the entanglement concenmion c_{e}, the electrostatic blob overlap concentration $c^{* *}$ from the concentration dependence ar pecific viscosity for a 17%-quaternized P 2 VP copolymer (17PMVP-Cl) in solution in ethy$=$ glycol at $25^{\circ} \mathrm{C}$. Symbols are experimental data and solid lines represent the power laws Trificted from scaling theory. (Adapted from Dou and Colby [2006].)

Hydrodynamic Radius from Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HiemenzRajagopalanD LS.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd

Consider motion of molecules or nanoparticles in solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the starting point at $\mathrm{t}=0$ is a Gaussian Function that defines the diffusion Coefficient, D

$$
\begin{aligned}
& \rho(x, t)=\frac{1}{(4 \pi D t)^{1 / 2}} e^{-x^{2} / 2(2 D t)} \\
& \left\langle x^{2}\right\rangle=\sigma^{2}=2 D t
\end{aligned}
$$

The Stokes-Einstein relationship states that D is related to R_{H},

$$
D=\frac{k T}{6 \pi \eta R_{H}}
$$

A laser beam hitting the solution will display a fluctuating scattered intensity at " q " that varies with q since the particles or molecules move in and out of the beam

$$
I(q, t)
$$

This fluctuation is related to the diffusion of the particles

For static scattering $P(r)$ is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function

$$
g l(q, \tau)
$$

For dynamics we consider a single value of q or r and watch how the intensity changes with time I(q, t$)$

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales and consider only the fluctuations at a given size scale, ror $2 \pi / \mathbf{P}^{\boldsymbol{P}}=\mathbf{q}$

Dynamic Light Scattering

The radius of an equivalent sphere following Stokes' Law

Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

Wiki Einstein Stokes

Diffusing Wave Spectroscopy (DWS)

Will need to come back to this after introducing dynamics And linear response theory
http://www.formulaction.com/technology-dws.html

Static Scattering for Fractal Scaling

At intermediate sizes the chain is "self-similar"

$$
\begin{gathered}
\text { Mass } \sim \text { Size } e^{d_{f}} \\
z \sim\left(\frac{R_{2}}{R_{1}}\right)^{d_{f}}
\end{gathered}
$$

At intermediate sizes the chain is "self-similar"

$$
\mathrm{I}(\mathrm{q}) \sim \mathrm{N} \mathrm{n}_{\mathrm{e}}^{2}
$$

$\mathrm{N}=$ Number of Intermediate Spheres in the
Aggregate
$\mathrm{n}_{\mathrm{e}}=$ Mass of inter.
sphere

$$
N n_{e}^{2} \sim\left(\frac{r_{\mathrm{int}}}{R_{1}}\right)^{d_{f}}\left(\frac{R_{2}}{R_{1}}\right)^{d_{f}} \Rightarrow \mathrm{I}(\mathrm{q}) \sim\left(\frac{R_{2}}{R_{1}^{2}}\right)^{d_{f}} q^{-d_{f}}
$$

The Debye Scattering Function for a Polymer Coil

$$
\begin{gathered}
I(Q)=\frac{2}{Q^{2}}(Q-1+\exp (-Q)) \\
Q=q^{2} R_{g}^{2} \\
\exp (-Q)=1-Q+\frac{Q^{2}}{2!}-\frac{Q^{3}}{3!}+\frac{Q^{4}}{4!}-\ldots, q_{0} \\
I(q)=1-\frac{Q}{3}+\ldots \approx \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right) \\
\text { Guinier's Law! }
\end{gathered}
$$

The Debye Scattering Function for a Polymer Coil

$$
\begin{aligned}
& I(Q)=\frac{2}{Q^{2}}(Q-1+\exp (-Q)) \\
& Q=q^{2} R_{g}^{2} \\
& \text { For } \mathrm{qR} \gg \mathrm{l} \\
& I(Q)=\frac{2}{Q}=\frac{2}{q^{2} R_{g}^{2}} \sim q^{-d_{f}} \\
& \quad \mathrm{df}=2
\end{aligned}
$$

Ornstein-Zernike Equation

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}} \quad I(q \Rightarrow \infty)=\frac{G}{q^{2} \xi^{2}}
$$

Has the correct functionality at high q
Debye Scattering Function =>

$$
I(q)=\frac{2}{q^{2} R_{g}^{2}}\left(q^{2} R_{g}^{2}-1+\exp \left(-q^{2} R_{g}^{2}\right)\right) \quad I(q=>\infty)=\frac{2 G}{q^{2} R_{g}^{2}}
$$

So,

$$
R_{g}^{2}=2 \zeta^{2}
$$

Ornstein-Zernike Equation

$$
I(q)=\frac{G}{1+q^{2} \xi^{2}} \quad I(q=>0)=G \exp \left(-q^{2} \xi^{2}\right)
$$

Has the correct functionality at low q
Debye =>

$$
I(q)=\frac{2}{q^{2} R_{g}^{2}}\left(q^{2} R_{g}^{2}-1+\exp \left(-q^{2} R_{g}^{2}\right)\right) \quad I(q=>0)=G \exp \left(-\frac{q^{2} R_{g}^{2}}{3}\right)
$$

$$
\begin{array}{cc}
R_{g}^{2}=3 \zeta^{2} & \text { The relatoinship between } \mathrm{R}_{\mathrm{g}} \text { and correlation } \\
\text { length differs for the two regimes. }
\end{array}
$$ length differs for the two regimes.

How does a polymer chain respond to external perturbation?

The Gaussian Chain

Boltzman Probability

For a Thermally Equilibrated System

$$
P_{B}(R)=\exp \left(-\frac{E(R)}{k T}\right)
$$

Gaussian Probability
For a Chain of End to End Distance R

$$
P(R)=\left(\frac{3}{2 \pi \sigma^{2}}\right)^{3 / 2} \exp \left(-\frac{3(R)^{2}}{2(\sigma)^{2}}\right)
$$

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

$$
E=k T \frac{3 R^{2}}{2 n l_{K}^{2}}
$$

Force

$$
F=\frac{d E}{d R}=\frac{3 k T}{n l_{K}^{2}} R=k_{s p r} R
$$

Force

Assumptions:
-Gaussian Chain
-Thermally Equilibrated
-Small Perturbation of Structure (so it is still Gaussian after the deformation)

Tensile Blob

-At small scales, small lever arm, structure remains Gaussian -At large scales, large lever arm, structure becomes linear Perturbation of Structure leads to a structural transition at a size scale ξ

$$
E=k T \frac{3 R^{2}}{2 n l_{K}^{2}} \quad F=\frac{d E}{d R}=\frac{3 k T}{n l_{K}^{2}} R
$$

For weak perturbations of the chain $R \approx n^{1 / 2} l_{K} \equiv \xi_{\text {Tensile }}$

$$
\xi_{\text {Tensile }}=\frac{3 k T}{F}
$$

Application of an external stress to the ends of a chain create a transition size where the coil goes from Gaussian to Linear called the Tensile Blob.

$$
\begin{aligned}
& F=k_{\text {spr }} R=\frac{3 k T}{R^{* 2}} R \\
& \xi_{\text {Tensile }} \sim \frac{R^{* 2}}{R}=\frac{3 k T}{F}
\end{aligned}
$$

For sizes larger than the blob size the structure is linear, one conformational state so the conformational entropy is 0 . For sizes smaller the blob has the minimum spring constant so the weakest link governs the mechanical properties and the chains are random below this size.

Semi-Dilute Solution Chain Statistics

In dilute solution the coil contains a concentration $c^{*} \sim I /[\eta]$

$$
\mathrm{c}^{*}=\mathrm{kn} / \mathrm{R}^{3}=\mathrm{kn}^{-4 / 5} \text { for good solvent conditions }
$$

For semi-dilute solution the coil contains a concentration $c>c^{*}$
At large sizes the coil acts as if it were in a concentrated solution ($c \ggg c^{*}$), $d_{f}=2$. At small sizes the coil acts as if it were in a dilute solution, $d_{f}=5 / 3$. There is a size scale, ξ, where this "scaling transition" occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil and a tertiary structure of Gaussian Chains.

What is the value of ξ ?
ξ is related to the coil size R since it has a limiting value of R for $c<c^{*}$ and has a scaling relationship with the reduced concentration c / c^{*}

$$
\xi \sim \mathrm{R}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{\mathrm{P}} \sim \mathrm{n}^{(3+4 \mathrm{P} / \mathrm{s}}
$$

There are no dependencies on n above c^{*} so $(3+4 P) / 5=0$ and $P=-3 / 4$

$$
\xi \sim \mathrm{R}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-3 / 4}
$$

Coil Size in terms of the concentration

$$
\begin{gathered}
\xi=b\left(\frac{N}{n_{\xi}}\right)^{3 / 5} \sim\left(\frac{c}{c^{*}}\right)^{-3 / 4} \\
n_{\xi} \sim\left(\frac{c}{c^{*}}\right)^{(3 / 4)(5 / 3)}=\left(\frac{c}{c^{*}}\right)^{(5 / 4)} \\
R=\xi n_{\xi}^{1 / 2} \sim\left(\frac{c}{c^{*}}\right)^{-3 / 4}\left(\frac{c}{c^{*}}\right)^{(5 / 8)}=\left(\frac{c}{c^{*}}\right)^{-1 / 8} \\
\mathrm{R}=\xi \mathrm{n}_{\xi}^{1 / 2}=\mathrm{R}_{\mathrm{F} 0}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-3 / 4}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{5 / 8}=\mathrm{R}_{\mathrm{F} 0}\left(\mathrm{c} / \mathrm{c}^{*}\right)^{-1 / 8}
\end{gathered}
$$

This is called the "Concentration Blob"

Three regimes of chain scaling in concentration.

In dilute solution the chain displays good solvent scaling in most cases, $\mathrm{d}_{\mathrm{f}}=5 / 3$. When the concentration is increased above the overlap concentration, c*, a concentration blob, ξ_{c}, is introduced between Rg_{g} and l_{p}. For sizes larger than the blob size, screening of interactions leads to Gaussian scaling, $\mathrm{d}_{\mathrm{f}}=2$. For sizes smaller than the screening length of blob size, the chains are not screened and good solvent scaling is observed. The blob size follows $\xi \sim R\left(\frac{c}{c^{*}}\right)^{-3 / 4}$ until a concentration where $\xi=\mathrm{l}_{\mathrm{p}}$. At that concentrations above c**, $c^{* * *} \sim c^{*}\left(\frac{R}{l_{p}}\right)^{4 / 3}$, the chain is in a concentrated condition and all interactions are screened so that the chain has a Gaussian configuration, $\mathrm{d}_{\mathrm{f}}=2$.

Thermal Blob

Figure 3. Radius of gyration, R_{g}, and hydrodyamic radius R_{h} versus temperature for polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From Reference [21].

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right) \quad E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
$$

Thermal Blob

$$
\begin{gathered}
\Delta \varepsilon=\left(\varepsilon_{P P}+\varepsilon_{S S}\right) / 2-\varepsilon_{P S} \\
\chi=\frac{z \Delta \varepsilon}{k T} \\
V_{c, \text { enhhalpic }}=V_{c}(1-2 \chi) \\
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}}{2 R^{3}}\right) \quad E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
\end{gathered}
$$

Thermal Blob

$$
E=k T\left(\frac{3 R^{2}}{2 n l_{K}^{2}}+\frac{n^{2} V_{c}(1-2 \chi)}{2 R^{3}}\right)
$$

Energy Depends on n , a chain with a mer unit of length 1 and $\mathrm{n}=10000$ could be re cast (renormalized) as a chain of unit length 100 and $n=100$ The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This is the opposite of the concentration blob.
Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.
As the temperature drops further the Gaussian blob becomes larger until the entire chain is
Gaussian at the theta temperature.

Thermal Blob

$$
R=N_{T}^{3 / 5} \xi_{T}=\left(N / n_{T}\right)^{3 / 5} \xi_{T}=\left(N /\left(\xi_{T} / l\right)^{2}\right)^{3 / 5} \xi_{T}=N^{3 / 5} \xi_{T}^{-1 / 5} l^{6 / 5}
$$

Flory-Krigbaum Theory yields: $R=V_{c}^{1 / 5}(1-2 \chi)^{1 / 5} N^{3 / 5} l^{2 / 5}$

By equating these:

$$
\xi_{T}=\frac{l}{(1-2 \chi)}
$$

Growth of Nanoparticles

Fig. 1: Silicica particles as collected by conventional thermophoretic sampling (TS) along the axis of a [1 2] $[1,2]$. Using aluminum foil in-stead of TEM grids and performing multiple sampling from the same location in the flame, the Al-probe was covered with a silica monolayer [1] (as indicated in Fig. 2).

Spray Flame Appearance

Fig. 3: Spray flames (1.26 M HMDSO in EtOH) producing 100, 200 and $300 \mathrm{~g} / \mathrm{h}$ of silica using 12.5 $/ / \mathrm{min}$ air (a-c) or O_{2} as dispersion gas without (d-f) and with ($\mathrm{g}-\mathrm{i}$) additional $25 \mathrm{l} / \mathrm{min}$ of O_{2} sheath flow at 1 bar pressure drop across the nozzle tip.

Fractal Aggregates and Agglomerates

Fig. 5. Transmission Electron Micrographs (TEM) of SiO_{2} synthesized in SDF and DDF at different oxygen flow rates. Particles made in flames at low oxygen flow rates stay longer at high temperatures leading to the formation of rather big spherical, non-agglomerated particles with diameters of about 100 nm . At high oxygen flow rates the particles are agglomerates of small primary particles. Particles synthesized in DDF have
narrower size distributions indicated by TEM compared to those mede in SDF.

Flame Structure

Double Diffusion Flame (SDF) Fig. 3: Effect of oxygen flow rate on flame structure of a SDF and DDF. Increasing the oxygen flow rate decreases the flame height of the HMDSOdecreases the flame height of the HMDSO-
methane-oxygen diffusion flame as turbulence accelerates the mixing of fuel and oxidant.

Polymer Chains are Mass-Fractals

RRMS $=n^{1 / 2}$ I	Mass \sim Size 2
3-d object	Mass \sim Size 3
2-d object	Mass \sim Size 2
I-d object	Mass \sim Size
df-object	Mass \sim Size $^{\text {df }}$

This leads to odd properties:
density

$$
\rho=\frac{\text { Mass }}{\text { Volume }}=\frac{\text { Mass }^{2}}{\text { Size }^{3}}=\frac{\text { Size }^{d_{f}}}{\text { Size }^{3}} \sim \text { Size }^{d_{f}-3}
$$

For a 3-d object density doesn' t depend on size, For a 2-d object density drops with Size

Larger polymers are less dense

How Complex Mass Fractal Structures
 Can be Decomposed

Tortuosity Connectivity

$z \sim\left(\frac{R}{d}\right)^{d_{f}} \sim p^{c} \sim s^{d_{\text {min }}}$
$p \sim\left(\frac{R}{d}\right)^{d_{\text {min }}}$

$$
s \sim\left(\frac{R}{d}\right)^{c}
$$

$$
d_{f}=d_{\min } c
$$

z	d_{f}	p	$d_{\min }$	s	c	R / d
27	1.36	12	1.03	22	1.28	11.2

Disk

$d_{f}=2$
$d_{\text {min }}=1$
$c=2$
Extended β-sheet (misfolded protein)

Random Coil

Unfolded Gaussian chain

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

Primary Size for Fractal Aggregates

-Particle counting from TEM
 -Gas adsorption V/S => dp
 -Static Scattering R_{g}, dp_{p}
 -Dynamic Light Scattering

Figure 2. TEM picture of titania $\left(\mathrm{TiO}_{2}\right)$ fractal aggregates with $D \simeq 1.8$ produced by pyrolysis of Titanium Isopropoxide.

Cryo Scanning Electron Microscopy
A scanning electron micrograph of a frozen sample was taken. The sizes of the particles visible on the picture were measured individually with a ruler and used to cakulate a number-mean, $D(1,0)$, a volume-mean, $D(4,3)$ and a number-distribution.

Number Mean - $\mathrm{D}(1,0)=45.2 \mathrm{~nm}$
Volume Nean - D(4,3) $=68.0 \mathrm{~mm}$
Note : dee to the limited number (82) of particies measured this resuft is aniy indicative.

Primary Size for Fractal Aggregates

> -Particle counting from TEM
> -Gas adsorption V/S => dp
> -Static Scattering Rg, dp
> -Dynamic Light Scattering

Dynamic Light Scattering

To evaluate repeatabitity and robustness, the measure was made 8 times using 3 different dilutions. The following graph presents one of these measures, expressed as intensity-distribution, volume-distribution and number (length)-distribution.

The following table shows the averaged results for the 8 measurements. Precikion is calculated is the Felative Standard Deviation of the measurements.

Mean Calculation	Partikle Size	Precision
Intensity Weighting	127.9 nm	2%
Volume Weighting	71.6 mm	16%
Number Weighting	36.2 mm	25%

For static scattering $P(r)$ is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function

$$
g l(q, \tau)
$$

For dynamics we consider a single value of q or r and watch how the intensity changes with time I(q, t$)$

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales and consider only the fluctuations at a given size scale, ror $2 \pi / \mathbf{P}^{\boldsymbol{P}}=\mathbf{q}$

Dynamic Light Scattering

Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

Wiki Einstein Stokes

Gas Adsorption

$$
\begin{gathered}
\theta=\frac{\text { adsorbed sites }}{\text { total sites }(\mathrm{N})} \\
\mathrm{A}+\mathrm{S}<=>\mathrm{AS}
\end{gathered}
$$

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .

Adsorption
Desorption
Equilibrium

$$
=
$$

$$
\frac{d \theta}{d t}=k_{d} N \theta
$$

$$
\theta=\frac{K p}{1+K p} \quad K=k_{a} / k_{d} \quad \frac{\partial \ln K}{\partial T}=\frac{\Delta H_{a b s}}{R T^{2}}
$$

Gas Adsorption

Multilayer adsorption

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .
BET Isotherm
Various Values of c

$$
\frac{n}{n_{\text {mono }}}=\frac{c z}{(1-z)[1-z(1-c)]}=(\theta)
$$

$$
c \approx \frac{e^{-\Delta H_{\text {acs }} / R T}}{e^{\Delta H_{\mathrm{vap}} / R T}}
$$

S. Storck et aL./Applied Catalysis A: General 174 (1998) 137-146

Fig. 1. Adsorption isotherm types defined by Brunauer [6].

Fig. 2. Adsorption isotherms of the samples tested with Ar at 87.5 K .

Fig. 3. Pore-size distribution according to the BJH method

From gas adsorption obtain surface area by number of gas atoms times an area for the adsorbed gas atoms in a monolayer

Have a volume from the mass and density.
So you have S/V orV/S
Assume sphere $S=4 \pi \mathbf{R}^{2}, V=4 / 3 \pi \mathbf{R}^{3}$
So $d_{p}=6 \mathrm{~V} / \mathrm{S}$
Sauter Mean Diameter $d_{p}=\left\langle R^{3}\right\rangle \mid\left\langle R^{2}\right\rangle$

Log-Normal Distribution

$$
\begin{gathered}
f(R)=\frac{1}{R \sigma(2 \pi)^{1 / 2}} \exp \left\{-\frac{[\log (R / m)]^{2}}{2 \sigma^{2}}\right\}, \\
\left\langle R^{r}\right\rangle=m^{r} \exp \left(r^{2} \sigma^{2} / 2\right)=\exp \left(r \mu+r^{2} \sigma^{2} / 2\right) \\
\langle R\rangle=m \exp \left(\sigma^{2} / 2\right) \\
\text { Mean } \\
\sigma_{g}=\exp (\sigma) \quad \mathrm{x}_{g}=\exp (m)
\end{gathered}
$$

Geometric standard deviation and geometric mean (median)
Gaussian is centered at the Mean and is symmetric. For values that are positive (size) we need an asymmetric distribution function that has only values for greater than I. In random processes we have a minimum size with high probability and diminishing probability for larger values.

Log-Normal Distribution

$$
\begin{gathered}
f(R)=\frac{1}{R \sigma(2 \pi)^{1 / 2}} \exp \left\{-\frac{[\log (R / m)]^{2}}{2 \sigma^{2}}\right\} \\
\left\langle R^{r}\right\rangle=m^{r} \exp \left(r^{2} \sigma^{2} / 2\right)=\exp \left(r \mu+r^{2} \sigma^{2} / 2\right) \\
\langle R\rangle=m \exp \left(\sigma^{2} / 2\right) \\
M \operatorname{ean} \\
\sigma_{g}=\exp (\sigma) \quad \mathbf{x}_{g}=\exp (m)
\end{gathered}
$$

Geometric standard deviation and geometric mean (median)

Static Scattering Determination of Log Normal Parameters

$$
\begin{equation*}
\ln \sigma_{g}=\sigma=\left\{\frac{\ln \left[B\left(R_{\mathrm{g}}^{2}\right)^{2} /(1.62 G)\right]}{12}\right\}^{1 / 2}=\left(\frac{\ln \mathrm{PDI}}{12}\right)^{1 / 2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
m=\left\{5 R_{\xi}^{2} /\left[3 \exp \left(14 \sigma^{2}\right)\right]\right\}^{1 / 2}, \tag{18}
\end{equation*}
$$

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
 -Gas adsorption V/S => dp
 -Static Scattering Rg, dp
 -Dynamic Light Scattering

Figure 2
USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines), primary particle Guinier and Porod functions at high q, the intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (a) Fumed titania sample with multi-grain particles and low-q excess scattering due to soft agglomerates. $d_{v / s}=16.7 \mathrm{~nm}$ (corrected to 18.0 nm$), \mathrm{PDI}=3.01\left(\sigma_{\mathrm{g}}=1.35\right), R_{\mathrm{g}}=11.2 \mathrm{~nm}, d_{1}=1.99, z_{21}=175, z_{R_{\mathrm{t}}}=226, R_{\mathrm{g} 2}=$ 171 nm . From gas adsorption, $d_{\mathrm{p}}=16.2 \mathrm{~nm}$. (b) Fumed zirconia sample (Mueller et al., 2004) with single-grain particles, as shown in the inset. The primary particles for this sample have high polydispersity leading to the observed hump near the primary particle scattering regime. $d_{V / S}=20.3 \mathrm{~nm}, \mathrm{PDI}=10.8$ $\left(\sigma_{\mathrm{s}}=1.56\right), R_{\mathrm{R}}=26.5 \mathrm{~nm}, d_{\mathrm{t}}=2.90$. From gas adsorption, $d_{\mathrm{p}}=19.7 \mathrm{~nm}$.

Primary Size for Fractal Aggregates

-Particle counting from TEM -Gas adsorption V/S => dp
 (a)

-Static Scattering Rg, $\mathbf{d p}_{\mathbf{p}}$
Smaller Size = Higher S/V (Closed Pores or similar issues)

Figure 3
(a) S/V from SAXS for titania particles produced by vapor-phase (a) SSV from SAXS for titania particles produced by vapor-phase
pyrolysis of titania tetraisopropoxide by Kammler er al. $(2002,2003)$. The pyrolysis of titania tetraisopropoxide by Kammler et al. (2002,2003). The
$\mathrm{SAXS} S / V$ can be made to agree with the BET value by subtraction of SAXS SIV can be made to agree with the BET value by subtraction of
$27 \mathrm{~m}^{2} \mathrm{~cm}^{-3}$. (b) $d_{V>1}$ from USAXS [and corrected from (a)] versus d_{p} $27 \mathrm{~m}^{2} \mathrm{~cm}^{-3}$. (b) $d_{V s}$ from USAXS [and corrected from (a)] versus d_{p}
from BET analysis of gas adsorption data for a series of titania samples from BET analysis of gas adsorption data for a series of titania samples
produced by Kammler (triangles and filled circles), and samples made in a quenched-spray flame from Wegner \& Pratsinis (2003) (crosses, singlegrain particles). The calculated d_{32} from TEM micrographs for the Kammler samples is also shown (filled squares). (c) $d_{\text {vs }}$ from USAXS versus d_{p} from BET for fumed zirconia samples of Mueller et al. (2004).

(a)

Figure 4
(a) Comparison of the median particle size from exp m, with m defined by equation (18), and the median particle size calculated from an analysis of TEM data on TiO_{2}. (b) Mean particle size, (R) from USAXS, equation (2) with $r=1$, and from TEM (Kammler er al, 2003) for the same samples as Figs. $3(a)$ and $3(b)$.

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

Figure 5
$3.1 \mathrm{~g} \mathrm{~h}^{-1}$ titania. (a) Repeat USAXS runs on a non-aggregated titania powder (Fig. 1). (b) Particle size distributions from TEM (circles; Kammler et al., 2003), equations (1), (2), (17) and (18) using PDI and R_{8}, and using the maximum-entropy program of Jemian (Jemian et al, 1991). Distribution curves are shifted vertically for clarity. $d_{V / S}=34.9 \mathrm{~nm}, \mathrm{PDI}=$ $14.4\left(\sigma_{\mathrm{g}}=1.60\right), R_{\mathrm{g}}=44.2 \mathrm{~nm}$.

Fractal Aggregate Primary Particles

Fractal Aggregates and Agglomerates Aggregate growth

Some Issues to Consider for Aggregation/Agglomeration

Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)
Concentration of Monomers
persistence length of velocity compared to mean separation distance
Branching and structural complexity
What happens when monomers or clusters get to a growth site:
Diffusion Limited Aggregation
Reaction Limited Aggregation
Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster) or a Combination of Both (mass versus time plots)

Cluster-Cluster Aggregation
Monomer-Cluster Aggregation Monomer-Monomer Aggregation

DLCA Diffusion Limited Cluster-Cluster Aggregation
RLCA Reaction Limited Cluster Aggregation
Post Growth: Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening
http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/AggregateGrowth.pdf

Fractal Aggregates and Agglomerates

Aggregate growth

Consider what might effect the dimension of a growing aggregate.
Transport Diffusion/Ballistic
Growth Early/Late (0-d point => Linear I-d => Convoluted
2-d => Branched 2+d)
Speed of Transport Cluster, Monomer
Shielding of Interior
Rearrangement
Sintering
Primary Particle Shape

DLA df = 2.5 Monomer-Cluster (Meakin 1980 Low
Concentration)

DLCA df = 1.8 (Higher Concentration Meakin 1985)
Ballistic Monomer-Cluster (low concentration) df = 3
Ballistic Cluster-Cluster (high concentration) df = I.95

Fractal Aggregates and Agglomerates

Aggregate growth

Colloids with Strongly attractive forces

Fractal Aggregates and Agglomerates

Aggregate growth

Sticking Law

Particle-Cluster Growth

Cluster-Cluster Growth

Fractal Aggregates and Agglomerates

Aggregate growth

Transport

Reaction-Limited
(Independent of transport)

Fractal Aggregates and Agglomerates

Aggregate growth

Aggregation Models

Sutherland Model pairs of particles are assembled into

In RLCA a "sticking probability is introduced in the random growth process of clusters. This increases the dimension.
randomly oriented dimers. Dimers are coupled at random to construct tetramers, then octoamers etc. This is a stepgrowth process except that all reactions occur synchronously (monodisperse system).

Eden Model particles are added at random with equal probability to any unoccupied site adjacent to one or more occupied sites (Surface Fractals are Produced)

Vold-Sutherland Model particles with random linear trajectories are added to a growing cluster of particles at the position where they first contact the cluster

Witten-Sander Model particles with random Brownian
trajectories are added to a growing cluster of particles at the position where they first contact the cluster

2
PAUL MEAKIN

Fig. 8. Dependence of $\ln (N(l))$ on $\ln (l)$ for eight clusters grown using the WS model of diffusionlimited cluster formation on a three-dimensional cubic lattice.

In DLCA the
"sticking probability
is I. Clusters follow random walk.

From DW Schaefer Class Notes

Fractal Aggregates and Agglomerates

Aggregate growth

Analysis of Fractals

$\log (N)=\log (R)$

Fractal Aggregates and Agglomerates

Aggregate growth

Self Similarity

Fractal Objects

rom DW Schaefer Class Note

Fractal Aggregates and Agglomerates

Hierarchy of Polymer Chain Dynamics

Dilute Solution Chain

Dynamics of the chain

5.1 Response Functions

$$
x(t)=\int_{-\infty}^{t} d t^{\prime} \exp \left(-k_{s p r}\left(t-t^{\prime}\right) / \xi\right) g\left(t^{\prime}\right)
$$

Fig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly viscous body (b), a Hookean solid (c), a simple relaxatory system (d)

The exponential term is the "response function" response to a pulse perturbation

Damped Harmonic
Oscillator
$x(t)=\int_{-\infty}^{t} d t^{\prime} \exp \left(-k_{s p r}\left(t-t^{\prime}\right) / \xi\right) g\left(t^{\prime}\right)$

269

Fig. 6.4. Time dependence of the amplitude $Z_{r u}$ of a Rouse mode (schematic)

Dilute Solution Chain

Dynamics of the chain

For Brownian motion of a harmonic bead in a solvent this response function can be used to calculate the time correlation function $\langle x(t) x(0)\rangle$ for DLS for instance

$$
\begin{gathered}
\langle x(t) x(0)\rangle=\int_{-\infty}^{t} d t_{1} \int_{-\infty}^{0} d t_{2} \exp \left[-k_{s p r}\left(t-t_{1}-t_{2}\right) / \xi\right]\left\langle g\left(t_{1}\right) g\left(t_{2}\right)\right\rangle \\
\left\langle g\left(t_{1}\right) g\left(t_{2}\right)\right\rangle=\frac{2 k T}{\xi} \partial\left(t_{1}-t_{2}\right) \\
\langle x(t) x(0)\rangle=\frac{k T}{k_{s p r}} \exp (-t / \tau)
\end{gathered}
$$

τ is a relaxation time.

$$
\tau=\frac{\xi}{k_{s p r}}
$$

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

$$
\begin{aligned}
& E=\frac{k_{s p r}}{2} \sum_{i=1}^{N}\left(R_{i}-R_{i-1}\right)^{2} \\
& \frac{d R_{i}}{d t}=\frac{-\left(d E / d R_{i}\right)}{\xi}+g_{i}(t) \\
& \xi=6 \pi \eta_{\text {solvent }} a
\end{aligned}
$$

Beads 0 and N are special

For Beads I to N-I

$$
\frac{d R_{i}}{d t}=\frac{-k_{s p r}}{\xi}\left(R_{i+1}+R_{i-1}-2 R_{i}\right)+g_{i}(t)
$$

For Bead 0 use $R_{-1}=R_{0}$ and for bead $N_{N+1}=R_{N}$
This is called a closure relationship

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

shat chams lirenescifat|

fong ctaiss (entinglad)

REPTATON MODEL

Parameters $k=3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}^{2}, 0^{2}, \zeta$

Adtionnol garampor a

$$
\frac{d R_{i}}{d t}=\frac{-k_{s p r}}{\xi}\left(R_{i+1}+R_{i-1}-2 R_{i}\right)+g_{i}(t)
$$

The Rouse unit size is arbitrary so we can make it very small and:

$$
\begin{array}{rr}
\frac{d R}{d t}=\frac{-k_{s p r}}{\xi} \frac{d^{2} R}{d i^{2}}+g_{i}(t) \quad \text { With } \mathrm{dR} / \mathrm{dt}=0 \text { at } \mathrm{i}=0 \text { and } \mathrm{N} \\
\frac{d^{2} R}{d i^{2}} & \text { it describes modes of vibration like on a guitar string }
\end{array}
$$

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

$\frac{d^{2} R}{d i^{2}} \quad$ Describes modes of vibration like on a guitar string
For the " p ' th" mode (0 ' th mode is the whole chain (string))

$$
k_{s p r, p}=\frac{2 p^{2} \pi^{2} k_{s p r}}{N}=\frac{6 \pi^{2} k T}{N b^{2}} p^{2} \quad \xi_{p}=2 N \xi \quad \xi_{0}=N \xi
$$

$$
\tau_{p}=\frac{\xi_{p}}{k_{s p r, p}}=\frac{2 N^{2} b^{2} \xi}{3 \pi^{2} p^{2} k T}
$$

Dilute Solution Chain

Dynamics of the chain

Rouse Motion

Parameters $\mathrm{d}=3 \mathrm{~K}_{\mathrm{B}} \mathrm{T}^{2}, 0^{2}, \zeta$

Adttignol garampor a

Predicts that the viscosity will follow N which is true for low molecular weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N^{2} (actually follows $\mathrm{N}^{3} / \mathrm{df}$)
Diffusion constant follows I/N (zeroth order mode is translation of the molecule) (actually follows $\mathrm{N}^{-1 / d f}$)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)

> Dilute Solution Chain Dynamics of the chain Rouse Motion

Fig. 5.21. Molecular weight dependence of the relaxation time of the dielectric normal mode in cis-PIP. Data from Boese and Kremer [58]

Predicts that the viscosity will follow N which is true for low molecular weights in the melt and for fully draining polymers in solution

FGGLRE 3.6-4. Plots of couslaut $+\log \pi_{c}$ vs Lxinstarnt $+\log \mathrm{M}$ for nine different polymers The two onnstanss are different for each of the polymers, and the one appearing in the abscissa is popartiomal to concentration, which is constant for a given und:lutsd polymer. For each polymer the dryes of the left and right straight line regions are 1.0 and 3.4, respectively. [G. C. Berry and T. G Fax, Adz. Podyw. Sci., 5, 261-357 (963).]

Rouse model predicts
Relaxation time follows N^{2} (actually follows $\mathrm{N}^{3} / \mathrm{df}$)

Hierarchy of Entangled Melts

Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of "physically motivated, material-specific paramters"

Tube Diameter dT
Kuhn Length Ik
Packing Length P

Pig. 6.10. Modelling the lateral constraints on the chain motion imposed by the entanglements by a 'tabe'. The average over the rapid wriggling motion within the tube defines the 'primitive path' (continuoses dark line)
6.3 Entanglement Effects

279

Quasi-elastic neutron scattering data demonstrating the existence of the tube

Unconstrained motion $=>\mathrm{S}(\mathrm{q})$ goes to 0 at very long times
Each curve is for a different $\mathrm{q}=\mathrm{I} /$ size
At small size there are less constraints (within the tube)
At large sizes there is substantial constraint (the tube)
By extrapolation to high times a size for the tube can be obtained dT

Fig. 6.8. Results of a quasiclastic neutron scattering experiment on a melt of poly(ethyleno-co-propylene) at $199^{\circ} \mathrm{C}(10 \%$ protonated chains dissolved in a deuterated matrix; $M=8.6 \cdot 10^{4}$): Intermediate scattering laws measured at the indicated scattering vectors (top); data representation using the dimensionless variable $s=q^{2}\left(12 \mathrm{kTa} a_{\mathrm{h}}^{2} t / \mathrm{CB}^{1 / 2}\right.$ (bottom). Prom Richter ef al. $[67]$

Fig. 6.9. Size d of the confinement range, as derived from the leng term limits of the curves shown in Fig. 6.8 [67]

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior
We say that the tube follows a "primitive path"
This path can "relax" in time = Tube relaxation or Tube Renewal
Without tube renewal the Reptation model predicts that viscosity follows N^{3} (observed is $\mathrm{N}^{3.4}$)

Fig. 6.11. Reptation model: Decomposition of the tube resulting from a reptative motion of the primitive chain. The parts which are left empty disappear

Without tube renewal the Reptation model predicts that viscosity follows N^{3} (observed is $\mathrm{N}^{3.4}$)

Fig. 6.12. Determination of diffusion coefficients of deuterated PE's in a PE matrix by infrased absorption measurements in a micrescope. Concentration profiles $\phi(x)$ obtained in the seperated state at the begin of a diffusion run and at a later stage of diffusive mixing (the doshed lines were calculated for monodisperse components; the deviations are due to polydispersity) (Left). Diffusion coefficients at $T=176^{\circ} \mathrm{C}$, derived from measurements on a serics of d-PE's of different molecular weight (right). The continwous dinc corresponds to a power law $D \sim M^{2}$. Work of Klein [68]

Reptation predicts that the diffusion coefficient will follow N^{2} (Experimentally it follows N^{2}) Reptation has some experimental verification Where it is not verified we understand that tube renewal is the main issue.
(Rouse Model predicts D ~ I/N)

Reptation of DNA in a concentrated solution

6.4 Hydrodynamic Interaction in Solutions

Fig. 6.13. Series of images of a fluoreacently stained DNA chain embedded in a concentrated solution of unstained chains: Initial conformation (lefl); partial stretching by a rapid move of the bead at one end (sccond from the leff); chain recoil by a reptative motion in the tube (subscouent pictures to the right). Reprinted with permission from T.Perkins, D.E.Smith and S.Chu. Science, 264-819, 1994. Copyright (1994) American Association for the Advancement of Science

Simulation of the tube

Fig. 3. Result of the primitive-path analysis of a melt of 200 chains of $N+1=350$ beads. We show the primitive path of one chain (red) together with all of those it is entangled with (blue). The primitive paths of all other chains in the system are shown as thin lines.

Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the corresponding network of primitive paths.

Plateau Modulus

Not Dependent on N, Depends on T and concentration

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with different molecular weights in the range $M=8.9 \cdot 10^{3}$ to $M=5.81 \cdot 10^{5}$. The dashed line in the upper right corner indicates the slope corresponding to the power law Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et al.[54]

Kuhn Length- conformations of chains $\left\langle\mathrm{R}^{2}\right\rangle=\mathrm{I}_{\mathrm{k} L}$

Packing Length- length were polymers interpenetrate $\left.p=I /\left(\rho_{\text {chain }}<R^{2}\right\rangle\right)$ where ρ chain is the number density of monomers

Fig. 2. Dimensionless plateau moduli $\mathrm{Gl}{ }_{\mathrm{K}}^{3} / k_{\mathrm{B}} T$ as a function of the dimensionless ratio I_{K} / p of Kuhn length I_{K} and packing length p. The figure contains (i) experimentally measured plateau moduli for polymer melts (25) (+; colors mark different groups of polymers as indicated) and semidilute solutions (26-28) $(\times$); (ii) plateau moduli inferred from the normal tensions measured in computer simulation of bead-spring melts $(35,36)(\square)$ and a semi-
 atomistic polycarbonate melt $(37)(\diamond)$ under an elongational strain; and (iii) predictions of the tube model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (\square), bead-spring semidilute solutions (\bullet), and the semi-atomistic polycarbonate melt (\bullet). The line indicates the best fit to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are smaller than the symbol size.

$$
\text { this implies that } d T \sim P
$$

Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by virtual links. (b) Dual slip-links. (c) Real space representation of the corresponding network of primitive paths.

McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf

Block Copolymers

Block Copolymers

SBR Rubber

Figure 9. Schematics of block, star, and graft amphiphilic block copolymers.

Figure I. Illustration of model I (left) and II (right) of the AB-diblock copolymer micelle in a selective solvent (lower panel) and the volume fraction profiles of the polymer blocks (upper panel) applied for the large core case $\left(\mathrm{N}_{\mathrm{A}} \gg \mathrm{N}_{\mathrm{B}}\right)$ and the small core case $\left(\mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{B}}\right)$, respectively.

Hierarchy in BCP's and Micellar Systems

Pluronics (PEO/PPO block copolymers)

We consider primary structure as the block nature of the polymer chain.
This is similar to hydrophobic and hydrophilic interactions in proteins.
These cause a secondary self-organization into rods/spheres/sheets.
A tertiary organizaiton of these secondary structures occurs.
There are some similarities to proteins but BCP's are extremely simple systems by comparison.

What is the size of a Block Copolymer Domain?

Masao Doi, Introduction to Polymer Physics

-For and symmetric A-B block copolymer
-Consider a lamellar structure with $\Phi=1 / 2$
-Layer thickness D in a cube of edge length L, surface energy σ
so larger D means less surface and a lower Free Energy F.

$$
F_{\text {surface }} \cong 2 \sigma \frac{L}{D} L^{2}
$$

-The polymer chain is stretched as D increases. The free energy of a stretched chain as a function of the extension length D is given by

- $F_{\text {strecth }} \cong k T \frac{D^{2}}{N b^{2}} \frac{L^{3}}{N v_{c}}$ where N is the degree of polymerization for A or B ,
b is the step length per N unit, vc is the excluded volume for a unit step So the stretching free energy, F, increases with D^{2}.
-To minimize the free energies we have $\quad D \cong\left(\frac{\sigma N^{2} b^{2} v_{c}}{k T}\right)^{1 / 3} \sim N^{2 / 3}$

Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a great index difference that we have no means to determine if they are from the same chain other than following the chain over great distances to determine the connectivity. That is, Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.
The chain is composed of a series of steps with no orientational relationship to each other.

$$
\begin{gathered}
\text { So }<\mathrm{R}>=0 \\
<\mathrm{R}^{2}>\text { has a value: } \\
\left\langle R^{2}\right\rangle=\sum_{i} \sum_{j} r_{i} \bullet r_{j}=\sum_{i} r_{i} \cdot r_{i}+\sum_{i} \sum_{j \neq i} r_{i} \bullet r_{j}
\end{gathered}
$$

We assume no long range interactions so that the second term can be 0 .

$$
\left\langle R^{2}\right\rangle=N r^{2}
$$

