Long Range Interactions

neutral polymers in
good solvent
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van der Waals’ Equation

p=nRT/V Modify for Modify for excluded volume
excluded volume “b”
1.g. from kinetic theory of “b” and
gasses Attractive enthalpic interaction
Atoms can pass through p =nRT/(V-b) “a”
each other
No enthalpy of interaction Which increases p =nRT/(V-b) — a(n/V)?
Totally entropic pressure
-TAS + AH
n/V=p~dorc
Binary attractive interactions
(can form a liquid)

Which decreases pressure



Van der Waals’ Equation

p =nRT/(V-b)—am/V)>  Van der Waals Equation
Compressibility Factor Z = pV,,,,../RT = p/oRT = 1 + B, p + ... Virial Expansion

B, has units of molar volume
Solve for B, using the van der Waals Equation

B, = b —a/RT for molar volume or B, = b — a/kzT for molecular volume

Flory and Krigbaum knew they needed an energy for an expanded chain of the van
der Waals form

Molar Energy =pV,,p1r = RT (1 + B> /V 010
Where: B, = Excluded Volume — Attractive Potential/RT = b — a/RT

Energy = Ideal + repulsive “b” and attractive “a”

When T" = a/Rb, interactions disappear, B, =0, and
system becomes “ideal”. This is a “critical point”
just before phase separation.



Van der Waals’ Equation

p =nRT/(V-b)—a(m/V)>  Van der Waals Equation

Compressibility Factor Z = pV,,,,.,/RT = p/pRT = 1 + B, p + ... Virial Expansion
B, has units of molar volume

ZVdW :meolar/RT = V/(V-b) —ap= ]/(]-bp) — CZIO/RT

Geometric series Zar® = a/(1-r) sum from 0 to oo

So, 1/(1-bp) =Zar* =1+ bp+ (bp)*> + ... and for bp= b/V is very small

Zyaw = 1/(I-bp) —ap/RT =1+ (b —a/RT) p + (bp)* +...

Compare with the virial expansion

Z=pV,/RT=p/oRT=1+B,p+B; P+ ...

B2: b—a/RTandB3:b2



Van der Waals’ Equation

p =nRT/(V-b)—am/V)?* + ¢ (n/V)® Van der Waals Equation with repulsive ternary interactions

Compressibility Factor Z = pV,,,../RT = p/pRT = 1 + B, p + B; o> + ... Virial Expansion
B, has units of molar volume
Zvaw =PVioia/RT = VI(V-b) —ap/RT = 1/(1-bp) — ap/RT + cp*/RT

Geometric series Xar® = a/(1-r) sum from 0 to oo Q_' < > @

Red detracts from Black

So, 1/(1-bp)=Zar*=1+bp+ (bp)* + ... and for bp= b/V is very small
Zyaw = 1/(1-bp) —ap/RT=1+ (b—a/RT) p + (b> + ¢/RT) p* +...
Compare with the virial expansion

Z=pVoia/RT=p/pRT=1+ B, p+ B; p> + ...

B,=b—a/RT and B;=b*> + ¢/RT

For an immiscible system B, is negative or very small (low temperature)
B; can be positive leading to a discrete phase transition or negative leading to a continuous transition
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The Secondary Structure for Synthetic Polymers
Long-Range Interactions

Boltzman Probability Gaussian Probability

For a Thermally Equilibrated System For a Chain of End-to-End Distance R
o _ER) 3 V[ 3R)Y
P,(R)= cxp[t - ] I (R)=(.2mr:) exr{l-z(u)z l

By Comparison, The Energy to stretch a Thermally Equilibrated Chain Can be Written

3R?

E=kT—
2nl;

For a Chain with Long-Range Interactions There is and Additional Term

/

2 2R’

Number of pairs x2
exp(x) =1+x+—+ -

n(n-1)
IER So, ?
E- “1 L‘Ri . ""‘“"‘.« ) Flory-Krigbaum Theory R ~1xn*®
2nly - 2R Result is called a Self-Avoiding Walk



W,(R) is the Gaussian probablhty P(R,N)4xR*dR times the total number of chain conformations
possnblc for chains of N steps, Z",

of this number the fraction which follow self-avoidance is p(R) = (1 - V/R')*™"* where V. is the
volume of one segment of the chain so (1- V.. J/R?) is the probability of the chain avondmg one
segment, and this is raised to the total numbcr of possible combinations of two segment pairs,
N(N-1)/2!. This function for p(R) can be expressed as an exponential,

p(R) = cxp[—; MN - l)ln(l - %)] - cxp(_%)

where the second equality uses the fact that for small x, In(l1-x) = -x, and that for large N,
(N-1)=>N. W(R)dR for the excluded volume chain can be estimated by W (R)p(R)dR and since
both are expressed as exponentials the powers sum leading to,

R NV
2Nb® 2R )

W(R)dR = W,(R)p(R)dR = kR’ cxp(

The derivative of W, (R) will equal 0 at R", = (2Nb*/3)"“. This is proportional to N'*b as
expected. Setting the derivative of W(R) to 0 yields,

* 3NV,
3R” — + 3—,“ +1=0
T2NB' T 4R™
Rearranging and substituting R”, yields,

(®) () -85

For large N the R ratio is large and the cubic term can be ignored with respect to the 5'th power
term. This yields,

AR
R = Ru'[é) -kN}’5

3

This critical result was first noted by Flory and Krigbaum and its development is termed Flory-
Krigbaum theory.
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The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain

Self-Avoiding Walk Random Walk
Good Solvent Theta-Condition
Expanded Coil Brownian Chain
(The Normal Condition in Solution) (The Normal Condition in the Melt/Solid)
R ~Ixn™* (R*)=nNr’
,=4=167 d =2

These are statistical features. That is, a single simulation of a SAW
and a GC could look identical.



The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain

Self-Avoiding Walk Random Walk
Good Solvent Theta-Condition
Expanded Coil Brownian Chain
(The Normal Condition in Solution) (The Normal Condition in the Melt/Solid)
R. ~ 1k n3/5 <R2> — N2

Concentration driven contraction
Consider going from dilute conditions, ¢ < c¢*, to the melt by increasing concentration.
The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate concentration changes
through a scaling transition. Primary, Secondary, Tertiary Structures.
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The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain

Self-Avoiding Walk Random Walk
Good Solvent Theta-Condition
Expanded Coil Brownian Chain
(The Normal Condition in Solution) (The Normal Condition in the Melt/Solid)
R. ~ 1k n3/5 <R2> — N2

Thermally driven expansion
Consider going from Theta Temperature, T = 6, to the expanded coil by increasing temperature.
The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate thermal changes through a scaling
transition. Primary, Secondary, Tertiary Structures.
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Problem: The transition in chain size is gradual not discrete as predicted by FK theory.
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Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].
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We have considered an athermal hard core potential VdW equation
(excluded volume, ‘b’, from VAW equation) p =nRTIV-b) — a(nlV)?
L B, =b—a/RT
LA/ . PV =RT + RT B,/V (Virial Expansion)
niy 2R Energy = Ideal + repulsive “b” and attractive “a”
Excluded
volume like “b”

E=k7‘(

\

But V. actually has an inverse temperature component associated with attractive enthalpic
interactions between monomers and solvent molecules (attractive binary interactions, ‘a’,
from VAW equation)

The interaction (attractive) energy between a monomer and the polymer/solvent system is on

average <E(R)> for a given end-to-end distance R (defining a conformational state). This

modifies the probability of a chain having an end-to-end distance R by the Boltzmann

probability, (E
_ e[ SER))

PBoltzman (R) - exp( kT j

<E(R)> 1s made up of pp, ps, ss interactions with an average change in attractive energy on

solvation of a polymer Ae = (g,,+&-2¢,,)/2

For a monomer with z sites of interaction we can define a unitless attractive energy parameter
X = zAe/kT that reflects the average enthalpy of attractive interaction per A7 per monomer

13



For a monomer with z sites of interaction we can define a unitless energy parameter
X = zAe/kT that reflects the average enthalpy of attractive interaction per kT for a monomer

The volume fraction of monomers in the polymer coil with a conformational state of end-to-
end distance R is nV./R’

And there are n monomers in the chain, attractive chain energy “ny”, so,

(E(R) _n’V,x

kT R’ pan 2 1)
\ Rty el
We can then write the energy of the chain as, (remember y ~ 1/T)
2y (1
E(R) = kT 3R’ ”Vc(é—l) PV =RT(l + B,/V)
( )_ 2nl2+ R3 Bgzb—d/RT

When T™ = a/Rb interactions disappear

This indicates that when x = Y2 the coil acts as if it were an ideal chain, excluded volume
disappears. This condition is called the theta-state and the temperature where x = Y2 is called
the theta-temperature. It is a critical point for the polymer coil in solution.

14



E=k -
2nl" R 2nll 2R

E(R)=kT i V. (% 0 ) 3R V. )

The effective excluded volume is now V., =V, (1/2-y)

AR
The Flory-Krigbaum result for coil size 1s: R = R;(‘\ V) = kN%

3

Using this approximation for conditions of large molecular weight:

2y (17 — 1/5
R* = R; k VO( / Z) where x = zAe/kT

b3

15



This Solves the Problem: The transition in chain size is gradual not discrete as predicted by FK theory.
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Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].
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Fig. 1.6 The coil-globule transition in @ solution of polystyrene in cyclohex:
ane. The radius of gyration R, and the hydrodynamic radius AR, of the poly-
mer show a dramatic change as temperature passes through the
temperature. The hydrodynamic radius A, is defined by R, = ksT/

where D is the diffusion constant of the polymer and 1 is the viscosity
the solvent. (Sun, S.T., Nishio, |, Swislow, G., and Tanaka, T. (1980}. J

Chem. Phys., 73, 5971, Fig.2.) '

Flory Krigbaum prediction (left) and experimental measurement (right)



For a single polymer coil

Average attractive

<E (R)> _ nzvc X enthalpy of interaction
kT R’ v = zAe/kT
3R> n2VC(%—){) PV =RT(l + B,/V)
E(R)=kT =+ : B, =b—a/RT
2nl R When T™ = a/Rb interactions disappear
B2 = VC/Z — Vc y4
v = zAe/KT

For a polymer mixture (polymer/polymer or polymer/solvent)
Flory-Huggins Equation
AG
kTN

cells

) ¢A ¢B PV
S, O OO
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3R nzvc(%—x)}

E(R)= kT[ +

2nl’ R’
AG _ ¢, ¢
=—2In¢, +Z1Ing, +
KN N, D N, P+ PP X

_e B
kI T

Lower-Critical Solution Temperature (LCST)

Temperature

0 Composition 1
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Polymers can order or disorder on
mixing leading to a noncombinatorial
entropy term, A in the interaction
parameter.

B
—A+—
4 T

If the polymer orders on mixing then A
is positive and the energy is lowered.

If the polymer-solvent shows a specific
interaction then B can be negative.

This Positive A and Negative B favors
mixing at low temperature and
demixing at high temperature, LCST
behavior.



2 V(15— Ae B
ERy=kT| 2% 1" (/32 ) y====
2nl R kI T

Lower-Critical Solution Temperature (LCST)

B
¥ 3 :A+_
5 T

Temperature
I \\
"

Poly vinyl methyl ether/VWater
PVME/PS

0 Composition 1

Also see Poly(N-isopropylacrylamide)/VVater
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http://www.sigmaaldrich.com/technical-documents/articles/material-matters/poly-n-isopropylacrylamide.html

AG,, = RT (x4 In(xa) + X5 In(xg)) + Q XaXg

3
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Figure 4.9 (a) Immiscibility gap of the binary solid solution VoO3-Crp0O3 as described by
the regular solution model. (b) Gibbs energy of mixing curve of the solid solution at the
temperatures marked in the phase diagram. Thermodynamic data are taken from reference

[7].



Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986

Flory-Huggins Equation
| e e
AN
~ AG q) gb PV
i A B
Ty O Bt cells A B cells
‘ A Hildebrandt Regular Solution Model
- E, AnixGm =RT[x5s Inx, +xgInxg]+Q  gxp xp
¥ one - phase region
942G _ ) Miscibility Limit
dp Binodal
: PV
5 kTN d’AG .
: Cells ' Z—2=0  Spinodal
l do
0 OL(N) ® NG
e =0 Critical Point

FIG. 1. Schematic phase diagram of a polymer solution n the space of the
temperature I and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsod chains [at &...] from a semidilute solution of
overlapping chains [at 2. ]. These two branches of the coexistence curve
merge at a critical point T.(N), @.(N). For N— the critical point merges
with the ® point of a dilute polymer solution [T.(N—=)—-0,
& (N-—+2)-0] and the unmixing transition has a tncntical character. At
T'=0, the chain conEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.
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All three equalities apply
At the critical point

http://rkt.chem.ox.ac.uk/lectures/ligsolns/regular solutions.html



http://rkt.chem.ox.ac.uk/lectures/liqsolns/regular_solutions.html

Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986

°H‘7§f """"""" T.AN)=0/(1+1/N)?=0—-20/yN, N—x, (1)
N G (N)=1/(1+yN)=1//N, N—e. (2)

T N)

¢

FIG. 1. Schematic phase diagram of a polymer solution in the space of the
temperature I and the volume fraction . The coexistence curve separates a
dilute solution of collapsed chains [at @..,] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point T'.(N), ¢.(N). For N the critical point merges
with the © pont of a dilute polymer solution [T .(N—=)—0,
& (N-—+2)-0] and the unmixing transition has a tncritical character. At
T'=0, the chain conEgurations are ideal Gaussian coils, while their struc-
ture at 7 .(N) 1s nontrivial.
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Wilding, Miller, and Binder: Polymer-solvent critical point parameters

J. Chem. Phys., Vol. 105, No. 2, 8 July 1986

B Ko s
\\'\ TC(N)=®/(1+l/@)2m0-2@/\/ﬁ,
N -N—=
\\ ¢ (N)=1/(1+N)=1N, No=x,
TNV p===— e
3 one - phase region
5 T.=06(1-20,)
5 Linear
5 Relationship
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¢

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsed chains [at @..,] from a semidilute solution of
overlapping chains [at /2. . These two branches of the coexistence curve
merge at a cnitical point T'.(N), ¢.(N). For N the critical point merges
with the
& (N-—+2)-0] and the unmixing transition has a tncritical character. At
T'=0, the chain conEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.

® point of a dilute polymer solution [T.(N—=)—0,
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Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986
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FIG. 1. Schematic phase diagram of a polymer solution n the space of the
temperature I and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsed chains [at ¢,,..,] from a semidilute solution of
overlapping chains [at 2. ]. These two branches of the coexistence curve
merge at a cntical point 7'.(N), ¢.(N). For N—= the crnitical point merges
with the ® point of a dilute polymer solution [T.(N—=)—-0,
& (N-—+2)-0] and the unmixing transition has a tncntical character. At
T'=0, the chain convEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.
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Overlap Composition

Consider also ¢" which is the coil
composition, generally below the
critical composition for normal n or N

n n

>X<:—:—
¢ V R’

5
n 7> (for good solvents)

_1
or ~n % (for theta solvents)



Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986
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FIG. 1. Schematic phase diagram of a polymer solution m the space of the
temperature 7 and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsed chains [at ¢,,..,] from a semidilute solution of
overlapping chains [at ¢2. ]. These two branches of the coexistence curve
merge at a cnitical point T'.(N), ¢.(N). For N the critical point merges
with the © pont of a dilute polymer solution [T .(N—=)—0,
& (N-—+2)-0] and the unmixing transition has a tncritical character. At
T'=0, the chain conEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.
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Overlap Composition

Both ¢" and ¢, depend
on 1/

Below ¢ the
composition is fixed
since the coil can not be

diluted!

(1)
(2)



Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986
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FIG. 1. Schematic phase diagram of a polymer solution n the space of the
temperature I and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsed chains [at ¢,,..,] from a semidilute solution of
overlapping chains [at 2. ]. These two branches of the coexistence curve
merge at a cntical point 7'.(N), ¢.(N). For N—= the crnitical point merges
with the ® point of a dilute polymer solution [T.(N—=)—-0,
& (N-—+2)-0] and the unmixing transition has a tncntical character. At
T'=0, the chain convEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.
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Overlap Composition

Both ¢" and ¢, depend
on 1/

Below ¢ the
composition is fixed

since the coil can not be
diluted!

So, there is a region
(yellow) of coil
collapse below the
binodal at ¢ in
composition and
temperature

(1)
(2)



Wilding, Miller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1986
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FIG. 1. Schematic phase diagram of a polymer solution n the space of the
temperature I and the volume fraction ¢é. The coexistence curve separates a
dilute solution of collapsed chains [at ¢,,..,] from a semidilute solution of
overlapping chains [at 2. ]. These two branches of the coexistence curve
merge at a critical point T.(N), @.(N). For N— the critical point merges
with the ® point of a dilute polymer solution [T.(N—=)—-0,
& (N-—+2)-0] and the unmixing transition has a tncntical character. At
T'=0, the chain conEgurations are ideal Gaussian coils, while their struc-
ture at 7'.(.N) 1s nontrivial.
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Overlap Composition

Both ¢" and ¢, depend
on 1/

Below ¢ the
composition is fixed

since the coil can not be
diluted!

So, there is a regime of
coil collapse below the
binodal at ¢ in
composition and
temperature
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For a polymer in solution there is an inherent concentration to the chain
since the chain contains some solvent

The polymer concentration is Mass/Volume, within a chain

. d
y Mass Mass Size’
C — — —

Volume  Size’ Size’

(1-3d,)

c*~n

When the solution concentration matches c¢* the chains “overlap”
Then an individual chain is can not be resolved and the chains entangle
This 1s called semi-dilute since the solution is still of very low concentration.
The regime below c* is called dilute. Very high concentrations, 6-coil, are called concentrated.




In concentrated solutions with chain overlap
chain entanglements lead to a higher solution viscosity
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Figure 11.17. Conceniralic dependence ul the speelfic via;o:i?lr‘
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intersecion o sialzht lipes that wre drawn theough the Qa.utﬂm(“ iy
concenLated-solution ((3) duta marks the crAlical comcentrahion, &

Whis came),

J.R. Fried Introduction to Polymer Science

P

~C
n Later called c,,
P=1forc<c* entanglement

concentration
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of

polyelectrolyte and neutral polymer solutions R. Colby, Rheo.Acta 49 425-442 (2010)
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Fig. 15 Concentration dependences of specific viscosity and dif-
fusion coefficient for polyelectrolyte solutions clearly showing
the entanglement concentration. a Specific viscosity of sodium
poly(2-acrylamido-2-methylpropane sulfonate) in water: filled
circles M = 1.7 x10°, filled squares M = 9.5 x 10° (Krause
et al. 1999) and sodium poly(styrene sulfonate) in water: open
circles M = 1.2 x 10° (Boris and Colby 1998), open squares M =
3.0 x 10° (Fernandez Prini and Lagos 1964). Solid lines have
the expected slopes of 1/2 and 3/2, dotted line has slope ~1.76. b
Diffusion coefficient of sodium poly(styrene sulfonate) in water:
filled circles M = 16,000, open circles M = 31000, filled squares
M = 65000, open squares M = 88,000, filled diamonds M =
177,000, open diamonds M = 354,000 (Oostwal et al. 1993). Solid
lines have the expected slopes of 0 and ~1/2, dotted line has slope
229
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[7] =

n =n (1+[n]c)
Nsp= (17 - 170)/ 10
[77] - lil’nc=>0 (nsp/ C)

Voo/m=1/c" = m34-1


http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf

Structure and linear viscoelasticity of flexible polymer solutions: comparison of

polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010)

This can be explained if you
consider that ¢c* is on a chain
size-scale while c. is on a bulk
size scale, that is ¢, 1s for bulk
network pathways while c¢* is
for the coil pathway. c,
behaves the same in rigid rods
and coils because both make a
self-avoiding network on
large size scales, c* is
different because one chain is
a rod the other a self-avoiding
walk.
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Fig. 2 Comparison of overlap concentrations and entanglement
concentrations for neutral polymer solutions in good solvent;
red stars overlap concentrations, c*, of polystyrene in toluene
(Kulicke and Kniewske 1984); red circles entanglement concen-
trations, c., of polystyrene in toluene (Onogi et al. 1966 viscosity
data fit to power laws with slope 1.3 and 3.9, highest M point
from Kulicke and Kniewske 1984) with polyelectrolyte solutions
in water with no added salt; blue stars overlap concentrations,
c*, of sodium poly(styrene sulfonate) from SAXS (Kaji et al.
1988); stars with blue circles overlap concentrations, c*, of sodium
poly(styrene sulfonate) from viscosity (Boris and Colby 1998);
blue circles entanglement concentrations of sodium poly(styrene
sulfonate) from viscosity (Boris and Colby 1998). Lowest line has
slope —2, expected for c* of polyelectrolyte solutions with no salt;
middle line is Mark-Houwink fit with slope —0.7356 (predicted
slope is —0.76); upper line has same slope going through neutral
ce data
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Red circles neutral
good solvent ¢,
Red stars neutral
good solvent c*

Blue circles

polyelectrolyte c,
Blue stars
polyelectrolyte c*
c* ~ n(1_3/df)
di=5/3 -0.8
df =2 -0.5
df =1. -2
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Extensional Flow

Shadowgraph images from the capillary breakup of a 0.2 wt. % polyethylene oxide (PEO, Mw= 4 x 106 g/mol) in a 60/40 wt. %
glycerol/water solution. Images are taken at t = -0.05, 0.25, 0.43, and 0.65 s (cf. Fig. 4). The size of the images is 0.55 x 1.1 mm. The

horizontal lines in the second image indicate the region shown in Fig. 5. The last image shows the final instability of the viscoelastic
thread when many small droplets are formed.

Visualization of the flow profile inside a thinning filament during
capillary breakup of a polymer solution via particle image ve-
locimetry and particle tracking velocimetry

Physics of Fluids 24, 053102 (2012); https://doi.org/10.1063/1.4718675

S. Gier and C. Wagner?)
20



Extensional Flow

Ozz — 50-:1::1: T any

Ne =

T'r = e / 1. Trouton Viscosity = 3 Shear Viscosity for a Newtonian fluid

For a constant extensional strain rate, ’,, = dv,/dz = constant
So, v, = dz/dt = constant z
dz/z = constant dz
z = exp(Ky)
You need to stretch the fluid with exponentially increasing length.
That is hard to do in a lab.
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How dilute are dilute solutions in extensional flows? C. Clasen, ]. P. Plog,, W.-M. Kulicke,
M. Owens, C. Macosko, L. E. Scriven, M.Verani and G. H. McKinley, ]. Rheol. 50 849-
881 (2006);

Graessley (1980) provides a simple definition of ¢~ that is widely accepted for de-
marking the boundary separating the physical and rheological definition of dilute and
semidilute polymer solutions

- M
. 0.77 ch = w
L ¢ 4  aun
[7] gﬂ(RG) N,
o° 10'
5 —u— experiment

—o— numerical calculations

10° ko
: i 000 ppm
' Diameter from capillary thinning experiments

D(t) (GD,\'\?
#= 4—;) exp(—t/37,)
0

texp=3'3s tm=15.4s

Toum =658 Toum = 1538

i 1 i 1 A 1 i 1 i 1 " 1 i
100 150 ‘ 200 250 300 350 400
0.1ppm 1ppm 10 ppm 100 ppm en

FIG. 1. Comparison of the numerically calculated evolution in the filament diameter (open symbols) with
experimental data from capillary thinning experiments (closed symbols) for a dilution series of the Boger fluid
from sample E (M,,=8.3 X 10% g/mol) for different concentrations spanning 0.1 < ¢ < 1000 ppm. In addition the
relaxation times 7,,,, determined from fitting the elasto-capillary thinning regime [Eq. (22)] of the experiments,
and 7,,,, determined from fitting the numerical calculations [Eqs. (17)—(21)] to the experimental data, are given
for selected concentrations.
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How dilute are dilute solutions in extensional flows? C. Clasen, ]. P. Plog,, W.-M. Kulicke,
M. Owens, C. Macosko, L. E. Scriven, M.Verani and G. H. McKinley, ]. Rheol. 50 849-
881 (2006);

SAOS = small
Shear o amplitude
Measurement O .‘. .ﬁ-"r‘t oscillatory shear

8.2x10° g/mol
6.0x10° g/mol
5.7x10° g/mol
2.8x10° g/mol
1.8x10° g/mol

-4 3 2 -1 0
10 10 10 10 10
c/c*
FIG. 5. Reduced relaxation time 7,/ 7, as a function of the reduced concentration c/c", determined from SAOS

experiments and fits of the moduli to Egs. (2) and (3) for polystyrene of different molar masses dissolved in

RSB Thurston relation, Eq. (5), giving a Zimm relaxation time 7, of

1 [nlpM,,
8 1 RT

i i2+a

(31)
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How dilute are dilute solutions in extensional flows? C. Clasen, ]. P. Plog,, W.-M. Kulicke,
M. Owens, C. Macosko, L. E. Scriven, M.Verani and G. H. McKinley, ]. Rheol. 50 849-
881 (2006);

10
e capillary thinning
10’
SAOS
Extensional 10° ---"-"3‘ e
Measurement v.‘
v? = 8.3x10° g/mol
4 e 6.0x10° g/mol
10 A 57x10° g/mol
v 2.8x10° g/mol
I * 1.8x10° g/mol
10
10 10°* 10%* 10’ 10°
¥ -8

FIG. 6. Reduced relaxation time 7,/ 7. as a function of the reduced concentration ¢/c” for several dilution series
of polystyrene Boger fluids determined from capillary break thinning experiments. In addition to the data
obtained in this work. data points for the boger fluids SM1 (2 X 10° g/mol. O). SM2 (6.5 10° g/mol. []). and
SM3 (20 % 10° g/mol. © ) are shown (taken from [7] and [20]). For comparison, also a mean square fit to the
results from the SAOS experiments in Fig. 5 is shown.

Thurston relation, Eq. (5), giving a Zimm relaxation time 7, of

g [7]nM,,
. 1 RT

i i2+a

(31)
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of
polyelectrolyte and neutral polymer solutions R. Colby, Rheo.Acta 49 425-442 (2010)

neutral polymers in
good solvent

8-solvent e :"| i

Fig. 1 Conformations of polymers in dilute solution. Neutral
polymers in poor solvent collapse into dense coils with size
~bN'/? (purple). Neutral polymers in 8-solvent are random walks
with ideal end-to-end distance Ry = bN'/2 (black). Neutral poly-
mers in good solvent are self-avoiding walks with Flory end-to-
end distance Rp = bN%388 (red). Polyelectrolytes with no salt
adopt the highly extended directed random walk conformation
(blue) with length L proportional to N
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of
polyelectrolyte and neutral polymer solutions R. Colby, Rheo.Acta 49 425-442 (2010)

Wilding, Milller, and Binder: Polymer-solvent critical point parameters
J. Chem. Phys., Vol. 105, No. 2, 8 July 1996

GS-Coil neutral polymers in
S T.AN)=0/( good solvent
N e AN $(N)=141 6-solvent =

{ ‘ ,
—~ { S A NN

5 -0'0:2, =2BiN)"

N e

one - phase region Q

Coil
Collapse

"._--y_.-‘_‘._'.‘_._j&..--

A

R -

dilute polyelectrolyte with no salt

' ' | - L -

sl Ry i Fig. 1 Conformations of polymers in dilute solution. Neutral

polymers in poor solvent collapse into dense coils with size

2000} d ~bN'/3 (purple). Neutral polymers in 8-solvent are random walks

& ] R, | with ideal end-to-end distance Ry = bN'/? (black). Neutral poly-

8 0o T mers in good solvent are self-avoiding walks with Flory end-to-

‘ end distance Rp = bN%38 (red). Polyelectrolytes with no salt

T i adopt the highly extended directed random walk conformation
sl | (blue) with length L proportional to N
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”

What Happens to the left of the theta temperature?

Coil Expansion Factor o

, R2 R2

Grosberg uses: o = Rather than the normal definition used by Flory: ¢y = —
2 R’
R, 0
2500t -
20001 - 2 n2V 1 -
3 E(R)=kT 3R2 +— (Ié Z)
4 1500} .

%5 30 080

Temperature (°C)
Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”
Page 167

What Happens to the left of the theta temperature?

, R2 R2

Grosberg uses: o = Rather than the normal definition used by Flory: oy =

R? R,

Short-Range Interactions
We had Coo — RZ/RZO — nKlKZ/nolOZ — LlK/LIO — IK/IO

Long-Range Interactions
Flory o= R*/R’) = n®’I’/nl’> ~ n!?
Grosberg
CZZ: R2/R20 o~ nl/]O
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Coil Collapse

Grosberg uses:

42

-nnt Molecules”

ure?

lory: o = —


http://www.eng.uc.edu/~beaucag/Classes/Properties/Book.pdf

Fig. C9.1 A computer simulated globule of a long chain. Notice that the globule is pretty
accurately spherical, its surface consists of loops, while its interior, particularly well seen
in the zoomed part, reminds a concentrated solution of different chains (compare Figure
C12.3) — even though in reality they are all distant parts of the same chain. The chain
is a homopolymer in terms of chain flexibility and monomer-monomer interactions being
the same for all monomers. However, to help the eye, the chain is colored, smoothly going
through the rainbow colors from one end to the other (e.g., one end is red and the other
is violet, with all intermediate colors in between). What one should notice is that any
particular color is not located in a particular region of the globule; just the opposite, every
color is reasonably uniformly distributed throughout the globule, and the local surrounding
of any monomer is full of all sorts of different colors, confirming that very distant parts of
the chain form contacts in the globule. The figure is courtesy of L. Mirny.



Environment change

Fig. C9.6 A cartoon showing gel collapse and swelling upon change of environment con-
ditions, such as, e.g., solvent composition, temperature and so on. The figure is courtesy of
T. Tanaka.



Fig. C9.10 A variety of factors that
can cause gel to collapse. The figure
is courtesy of T. Tanaka.

Light

Electric field

Molecules

Heat 2= j

Biochemicals
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Flory-Krigbaum couldn’t integrate R2 P(R) so they took the derivative and found
the maximum probability for R? P(R).

Grosberg takes a different approach that leads to the same answer.
Write the single chain free energy in terms of the coil expansion factor, ¢, then

find the minimum free energy by taking the derivative in « of the free energy and
setting it to 0 to find the equilibrium o*
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The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by,

Vy(1-22)kT 3R*kT _

Z
F(R)= =
( ) 2R’ 2z0°

U(R)-TS(R) (1)

Equation (1) can be rewritten using the coil expansion coefficient, a,

Van der Waals P = RT _a
, R R V—-b 2
R B strdn iy el 412 4
R v " RT V V
2BET  3a*kT
F(a)=22a“l“ +=—=U(a)-15(a) 3)

p/PRT=1+B,p+ B; p> + ...
u

R

where B is the second virial coefficient,

B(T) bh —

B=Vu(1_21)

Finding the minimum in the free energy expression, equation (3), yields the most probable value
for a,

. ~[ZI_B] dF(a)/da=0 )

12 3/5 /5 This is an exact
R ~ ROOC =Z bo ~ 77" B b solution by
Grosberg’s method

47



Van der Waals’ Equation

p =nRT/(V-b)—am/V)?* + ¢ (n/V)® Van der Waals Equation with repulsive ternary interactions

Compressibility Factor Z = pV,,,../RT = p/pRT = 1 + B, p + B; o> + ... Virial Expansion
B, has units of molar volume
ZVdW :meolar/RT - V/(V_b) —ap= ]/(]_bp) —ap + sz

Geometric series Xar® = a/(1-r) sum from 0 to oo Q_' < > @

Red detracts from Black

So, 1/(1-bp)=Zar*=1+bp+ (bp)* + ... and for bp= b/V is very small
Zyaw = 1/(1-bp) —ap=1+ (b—a/RT) p+ (b> + ¢/RT) p* +...

Compare with the virial expansion

Z=pVoia/RT=p/pRT=1+ B, p+ B; p> + ...

B,=b—a/RT and B;=b*> + ¢/RT

For an immiscible system B, is negative or very small (low temperature)
B; can be positive leading to a discrete phase transition or negative leading to a continuous transition
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BT . 3R

Fla)= —+ Ula)-TS(a
( ) 2a-ll-‘ 2 ( ) ( ) \ \
R° R
The virial expansion of the enthalpic interactions is given by,
) 3 4 kTR{B ) 1',BkY‘
U(et) =V, kT [n*B+n’C +..]=V,,kTn*B ~ Ll 6) n~z/R3

Conl R!r 2a‘1 3

where n is the segmental density in the coil and V¢ is the volume of the coil. The second virial
coefficient describes binary interactions and the third virial coefficient describes ternary
interactions. In dilute conditions we can ignore the higher order interactions and use only the
second virial coefficient.

B changes sign, positive for miscible, negative for phase separation below the Boyle
temperature Tz = a/b (B=>0—a/T so “a” (or y) is negative for miscibility/repulsive pp)
C 1s always positive, i.e., favors coil expansion.
C 1s important below the theta temperature to model the coil to globule transition at high
monomer density
For simplicity we ignore higher order terms because C is enough to give the gross features
of this transition.
Generally, it 1s known that this transition can be either first-order for
biopolymers such as protein folding, or second-order for synthetic polymers.
First-order means that the first derivative of the free energy is not continuous, i.e., a jump in
free energy at a discrete transition temperature, such as a melting point, heat of melting.
Second order, free energy, volume, entropy etc. are continuous through the transition, slope
changes in T (heat capacity, thermal expansion coefficient).
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de= 2 for coil
d;= 3 for blob

-The expanded coil transitions .
to a Gaussian chain by locally Gaussian

forming Gaussian “blobs” Sc aling of
called “thermal blobs” (will "
cover later). Neutron scattering & Blobs

provides evidence. o) *
R ~g

Blob model for coil collapse

-These blobs grow as the theta
point is approached.

-Thermally driven structural
changes occur from the bottom

up.

-Propose a similar model for
the collapse of the theta coil
using a different kind of “blob”
in analogy to “thermal blobs”
but 3d blobs not 2d thermal
blobs.
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de= 2 for coil
d;= 3 for blob

Blob model for coil collapse

FIGURE 8.6

A few initial stages
of the coil-globule
transition. This looks
self-similar! (Compare

with what we write Numb er 0 f

about self-similarity in

Chapter 10). Source: B lob S — Z/g*

Courtesy of S. Nechaev.

Gaussian
Scaling of
2* Blobs

R2~g>k

(d)

Grosberg and Khokhlov’s figure 8.6 shows a model for chain collapse that explains the entropic
behavior in terms of blobs of g* chain units associated with a confined chain. We can consider

the collapsed chain as composed of z/g* collapsed blobs each with an energy kT.
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Entropic Part of Collapse Free Energy

Number of Blobs (z/g*) times kT is the Confinement Entropy o = R _R
I* kT 2 * i
Z zl°
[_TS(a)]('t.lr:;mc'mrn! . kT g *® = kT ? 2 ; R ~ g (7)
In the absence of confinement (coil collapse) the expression was,
) ZBKT  3a’kT ~
[—TS(a)]mmm ~kTa Fla)= ot T Ula)-TS(x)
and a sum of these terms (approximation),
—TS(a) = [—TS(a)](.’:.-n_fim'mcm + [—TS(a)]Lx;.:amirm e kT(a: + a—?‘) (9)
Total Collapse Free Energy
F(a)- kT (a? +a)+ kTBz'* | kTC kT C n® = kT C 22/R3

20°°  al° = kT C/(cbl)



7"*BkT 3c’kT
Fla)== o +=— —=U(a)-Ts(a) 3)

Free Energy Including Third Virial Coefficient

kTBz'* kTC
-+

F(a)~kT (o +a)+ ol o

(10).

a > 1 for expansion
a <1 for contraction
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Which works for both expansion and collapse. Finding the minimum in this free energy yields
the most probable value for a, (equivalent of equation (5)),

o —o=x+ya” (11)
where X is related to B and is given by,

x=KBZ" /I (12)
and vy is related to C and is given by,

y=K,C[I* (13).
If a 1s small you can neglect the terms on the left hand side of equation (11) and solve for R,

. (-cY" .
R~mW~PE)E“ (14)

Ratio of C/B determines behavior
The collapsed coil is 3d
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x~B;y~C
B~ UT: a~ V" (1)

Equation (11) can be understood by plotting the coil expansion factor, a, versus the reduced
temperature function x for fixed values of y as shown in Figure 8.3 from Grosberg and Khokhlov
reproduced below. In this figure, at large y the chain is flexible and the coil only slightly
collapses on cooling (smaller x). The theta temperature occurs at x = 0. For rigid chains with a
small value for y, the curve shows three values for a given x just below the 8-temperature.

o -—a=x+ya”

134 Chapter 8 Coils and Globules
FIGURE 8.3 o
The dependence a(x)
given by equation (8.7) ‘ 1:2F e =
for different values of Gk iped e o ot
1 /%‘Z—
y: from top to bottom, ' _— —
the curves correspond QL 0-8 // 7~
i |

to the following values 2 /
of y: 10, 1, 0.1, 1/60, | /\
0.01, 0.001, 0.0001. G et oy \

0. 2 ’_/r/___// P

.4 -0.
X

Maxwell Construction
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Maxwell Construction

Isotherm of a Cubic Equation of State
in the Two-Phase Region of Temperature

Lieden the Netherlands

van der Waals place o P= Peq
Vo
There are three possible roots, two points are at equilibrium, E
middle is not real.

Togyq [¥ (ems/mol)]

6 Figure 1.4 P-V-T behavior of water at the same temperatures used in Fig. 1.3. The plot
5 is prepared from the steam tables in Appendix E.
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FIGURE 8.3 o
The dependence a(x) 4
given by equation (8.7) ‘ 1::2 : =
for different values of 4__________.__—-—-*———"""""_——
y; from top to bottom, , ?”—;
the curves correspond QL 0.8 // —
to the following values /
of y: 10, 1, 0.1, 1/60, 9439 \
0.01, 0.001, 0.0001. 5% /
EOS Calculation 0.2 —f———= P

x~Bs;y~C RS o e
B~ UT; a~ V"7

Phase Diagram




Compact
globule
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B~UT: a~ V"

Expanded

/ coil
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FIGURE 8.4

The dependence F(a) in
the case where a(x) is
multivalued. As x
changes (which can be
controlled by, say,
temperature change),
the shape of the F(a)
dependence changes
such that one minimum
gets deeper at the
expense of the other.
Deeper minimum
corresponds to the
more stable state. For
this figure, we choose
the value y = 0.001.
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FIGURE 8.5

The curves a(x) in
Figure 8.3 are
multivalued at some X;
in this figure, one
solution is selected for
each x such that the
values of a(x)
correspond to the
absolute minimum free
energy for every x. The
values of y are the
same as in Figure 8.3.

Generally, it 1s known that this transition can be either first-order for

biopolymers such as protein folding, or second-order for synthetic polymers.

First order means that the first derivative of the free energy is not continuous, i.e. a jump in
Free energy at a discrete transition temperature, such as a melting point.
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FIGURE 8.5

The curves a(x) in
Figure 8.3 are
multivalued at some X;
in this figure, one
solution is selected for
each x such that the
values of a(x)
correspond to the
absolute minimum free
energy for every x. The
values of y are the
same as in Figure 8.3.

Chapter 8 Coils and Globules

T I T

| | | o
i Second—Order"'*___A:,;';__.__-——q-—-—‘ﬂ

—a is Continuous———

First-Order
+»—Discrete change in o

!

Generally, it 1s known that this transition can be either first-order for

biopolymers such as protein folding, or second-order for synthetic polymers.

First order means that the first derivative of the free energy is not continuous, i.e. a jump in
Free energy at a discrete transition temperature, such as a melting point.
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Figure 4. Temperature dependence of average radius of gyration ((Ry))
and hydrodynamic radius ((R.)) of poly(N,N-diethylacrylamide) (PDEAM)
chains in water in one heating-and-cooling cycle.
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Figure 5. Temperature dependence of ratio of average radius of gyration
to average hydrodynamic radius ((Rg)/(Ry)) of poly(V,N-diethylacry-
lamide) (PDEAM) chains in water in one heating-and-cooling cycle.

Macromolecules 2008, 41, 8927-8931
The Coil-to-Globule-to-Coil Transition of Linear Polymer Chains in
Dilute Aqueous Solutions: Effect of Intrachain Hydrogen Bonding

Kejin zm;u,' Yijie Lu,* Junfang Li,* Lei Shen,’ Guangzhao Zhang,** Zuowei Xie,"® and
Chi Wu
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isopropylacrylamide) (PNIPAM) in water can form stable individual single-chain globules, but not for polystyrene
(PS) in cyclohexane. In the current study, using poly(¥,N-diethylacrylamide) (PDEAM) (M,, = 1.7 x 107 g/mol
and M./M, = 1.06) with no hydrogen donator site, we intend to find whether the intrachain hydrogen bonding
plays a role in stabilizing individual collapsed PNIPAM single-chain globules. We found that PDEAM can also
form stable single-chain globules in water even though the transition is less sharp. The resultant individual PDEAM
single-chain globules are less compact, reflecting in a lower chain density and a higher ratio of the radius of
gyration to hydrodynamic radius, presumably due to the lack of intrachain hydrogen bonding. Our result also
shows that, unlike PNIPAM, there is no hysteresis in the transition, indirectly supporting our previous assumption
that the hysteresis observed for PNIPAM is due to the formation of some intrachain additional hydrogen bonds
formed in the collapsed state.
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Size of a Chain, “R”
(You can not directly measure the End-to-End Distance)
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S{(R-R)) =3 - ndbz_z_ > (n-mp* =262+ AZ-1)+3(2

What are the measures of Size, “R”, for a polymer coil?

Radius of Gyration, R,
B -L13R-R)F) R -~3R
¢ Nn l\ / N 1

N N

n=lmw=l -1
Z=N-1
Z Z(Z +1) (Z+ 2) N’
Y (z+1-p)p Z+l)2p 2p= =
p=1
iu” = ;:jll + n? +2 '11; for p<3 (other terms needed for higher p's)

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf
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What are the measures of Size, “R”, for a polymer coil?

§=5 :
Radius of Gyration, R, ”:6“”'-[—\- A EIET 7 U=
o3| It+as3r e
JEE
: : 2 AN
B =2 DR -R))  R-1DR JI
N& N 4~ LQ—- - l(go"/"/[))/‘)
R2=li/(&-iix 1L )Y oL SR - 1))
"N\ N&T) [T N&\aN & [ 2N &4 /
N N N N
(R In - rrdb2—2 (n-mb* =2b"(Z+2Z-1)+3(Z-2)..(Z-12+ Z
PXCEEINED B » [2+22-1)+3(2-2).{2-12+ 7]
Z=N-1
Z Z+1(Z+2) N’
Z+1-pp=(Z+1)Y p-Y p' = e
p-l( pzl 2 6
iu” = ;:jll +n? +2 '11;] for p<3 (other terms needed for higher p's)

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf
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What are the measures of Size, “R”, for a polymer coil?

Radius of Gyration, R,
1 . 1 IR SR |2 VY 2\
Rﬁ=ﬁnzl<(Rn-Ra)> RG=N;R,: R = W;Z\(R"-R")/
N N N3
/ 2\ 2
n_lmzl\(k,,-gn) )= 2b

R, is 1//6 of the RMS end-to-end distance.

2.45 R, =R

R, 1s a direct measure of the end-to-end distance for a
linear Gaussian chain

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf
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Moment of Intertia, | is <R,>> weighted by mass

. Rod about
Solid cylinder or Hoop about Solid
disc, symmetry axis symmetry axis sphere

center

ForM=1
I, R,/R
[ =—ML" Disk/Cylinder Hoop Sphere Rod
12 Sym. Axis Sym. Axis  Solid Center
; 1/N2=0.707 1 V(2/5)=0.632  1/12=0.289
- /
[ =—MIL*
3 Cylinder Hoop Sph. Shell Rod R,/L
Center Diameter End
V(1/4+(L2/R2)/12) 1N2=0.707 (2/3)=0.816  (1/3)=0.577
Solid cylinder, Hoop about Thin spherical Rod about
central diameter diameter shell end
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For a distribution of chain lengths/object sizes what moment of the distribution is R,?
Typically, low order moments are desired such as the mean (first order)
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For a polydisperse sample
what moment of R, is obtained form scattering?

/D (U) <MD >

> ~aml> <y
- i — (M*) = f »(M)M*dM

( Polydispersity Index,
M2 u D =M, /M, = <M2>/<M'>2
/ (/\/) M3 D = | is monodisperse
2 is most probable distribution
Commercial PE is D=14 and bimodal
.-
/1/[ —
MWG&’J/" -—‘ -'M;-/” ’tﬂ M). = /ﬂ é
p4)




For a polydisperse sample
what moment of R, is obtained form scattering?

—n2p2
I(q) = anVZexp( 1 Rg/g)

At low qR,?

2p2
1(q) =np2R3 (l—q Rg/g)

For polydisperse R.s weighted by np*Rj

(Rg)
(Rg)

For a beach with sand, rocks, and boulders
we only measure the boulders with R,
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For a polydisperse sample
what moment of R, is obtained form scattering?

5.2.4.2 Samples Containing Nonidentical Particles
When the particles the sample contains are not all identical, the Guinier law is still
applicable, with the radius of gyration R, and the particle volume v interpreted to
represent some types of averages. If, of the N total particles, N;(j = 1,2,...) have
volume v; and radius of gyration Ry, then assuming that the particles are all of the
same average density py and that scattering from different particles is uncorrelated,

we have
15 2 1 552
1(q) = WZN"UJ [1 ~- 39°Rg; +}
J
2,240
2 . Z Novj Ry
0 2 j
=2y | [1-L fe—v s
N5 8 Z N}
J
e
= p2 (v?), exp [_? <R§>_] (5.43)
where (v?) is the number-average of v? given by
N;v?
(v), = 2l = (5.44)
and <R§> is the z-average of R defined as
Z

2 p2 W2 p2
(R2) = 2 NyjRy _ 2N Ry, (5.45)
74

YN L NW

W; being the mass of the jth size particle (proportional to v;).
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https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/%2528Topics%20in%20Polymer%20Science%2529%20Ryong-Joon%20Roe%20-%20Methods%20of%20X-Ray%20and%20Neutron%20Scattering%20in%20Polymer%20Science-Oxford%20University%20Press%252C%20USA%20%25282000%2529.pdf
https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/%2528Topics%20in%20Polymer%20Science%2529%20Ryong-Joon%20Roe%20-%20Methods%20of%20X-Ray%20and%20Neutron%20Scattering%20in%20Polymer%20Science-Oxford%20University%20Press%252C%20USA%20%25282000%2529.pdf
https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/%2528Topics%20in%20Polymer%20Science%2529%20Ryong-Joon%20Roe%20-%20Methods%20of%20X-Ray%20and%20Neutron%20Scattering%20in%20Polymer%20Science-Oxford%20University%20Press%252C%20USA%20%25282000%2529.pdf
https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/%2528Topics%20in%20Polymer%20Science%2529%20Ryong-Joon%20Roe%20-%20Methods%20of%20X-Ray%20and%20Neutron%20Scattering%20in%20Polymer%20Science-Oxford%20University%20Press%252C%20USA%20%25282000%2529.pdf

Static Light Scattering for R,

-Rq° .
_ 2 ¢4q 5
I(g)=1,Nn; exp 3 Guinier’s Law
100 ¢
Guinier Plot linearizes this function 10
2 g [
1 q R v 1
2 2 ~ E
ln(ﬁ =——£gqg G =1,Nn, z
G 3 é 0.1 3
E 3
The exponential can be expanded at low-q 0.01
and linearized to make a Zimm Plot :
0.001 2 S DU T B AU R R
0.001 0.01 0.1 1
2 q (Ang)'l

G
B 1+_gq2
1(q) 3
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Binary Interference Yields Scattering Pattern.

I(q) ~ N ne2

n, Reflects the density of a
Point generating waves

N is total number of points
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The Scattering Event

— I(q) is related to amount Nn2

q is related to size/distances

2) Rather than consider specific structures, we can consider
general scattering laws by which all scatters are governed

under the premises that 1) “Particles” have a size and
2) “Particles” have a surface.
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Binary Interference Yields Scattering Pattern.

-Consider that an in-phase
wave scattered at angle 6 was
\\ in phase with the incident

wave at the source of
scattering.

-This can occur for points
separated by r such that

Ir| = 2%/|q
) —4—ﬂsing
T

80



Binary Interference Yields Scattering Pattern.

e
P

\
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Binary Interference Yields Scattering Pattern.

-For small 6, ris large
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.
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The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’ s Law.

37’ qg'R’
— = I(q)=G -—
p(r) exu( 4R§ ] (q) exp{ - J

G = Nn’

e
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Static Light Scattering for Radius of Gyration

Consider binary interference at a distance “r” for a particle with arbitrary orientation
Rotate and translate a particle so that two points separated by r lie in the particle for all rotations
and average the structures at these different orientations

Guinier’ s Law ” (r)= exp(_3’”7 ) Binary Autocorrelation
i - 2
Gaussian 20 Function
al 2
Z ('xi - :u)
o’ =41 =2R’
N -1
25 Lead Term is
Fig. 4. Averaging of a particle ab h gin of th i logy _Rq
1. 4. Averagin, 0? article al Ol.ltlei)n anv evectorrmmtm'o 2
to random translations and rotations of the particle about the origin of —_ g 2
£ Sl oo e elon e I(q)=1.Nn, exp 3 1(0) = Nn;

in random directions leads to a Gaussian distribution of scattering )
density p(r).

2
Scattered Intensity is the Fourier Transform of A N(r)n(r)

The Binary Autocorrelation Function

S _3,,2 31’2
’}/O(I’)ZI—EI"-F... exp[4R2):1_4R§+m

ryr =0 then d(YGaMSSian (r)ydr — 0 A particle with no surface

Beaucage G J.Appl. Cryst. 28 717-728 (1995).
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Guinier’ s Law Pertains to a Particle with no Surface.

. 7) 2R2
p(r)=ex 31 = I(q) = Gexp(—q = . J

4R?

8

G = Nn’

Any “Particle” can be Approximated as a Gaussian
probability distribution in this context.
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Guinier’ s Law can be thought of as the
First Premise of Scattering:
All “Particles” have a size reflected by the radius of gyration.
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Table 3.1. Radii of Gyration of Some Homogeneous Bodies

3
Sphere of radius R R} = 3 R?
3RS — R}

Spherical shell with radii R, > R, R} =3 o
Yo AR

Ellipse with semiaxes g and b
Ellipsoid with semiaxes a, b, and ¢

Prism-with edges 4, B, and C

/

Elliptical cylinder with Semiaxes a and b
and height A

! e ————
Hollow circular cylinder with radii R, >R,
and height A
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Debye Scattering Function for Gaussian Polymer Coil

Consider a chain of length N whose average end to end distance is N'* b, where b is the effective
step length for the chain which has no long-range interactions. For the n'th chain step, g (r) is the
average density of segments at a radial position r from step n. R is here the position vector for the
scgmcnts of the chain. It is important to keep clear that r, is a radial position relative to segment

n" while R is the segmental position relative to a coordinate system based at the first segment
whcrc n=1. ncan have values from 1 to N. Then,

> (8(r,~(R,~R,)))

g, (r,) =2 7

where the del operator has a value of 1 when the position vector difference (R's) is equal to r.
g (r) will have values between 0 for r's larger than the chain to 1 forr = 0.

Since g (r) only considers a single segment, "n", it must be averaged over all segments in order to
obtain a statistical description of the spatial distribution of chain segments for the entire coil. This
averaging results in the pair correlation function, g(r) for the coil,

N WY

2N2 Egn 2]1\,2 22< ( )>

n=l1 n=1 m=1

The pair correlation function, g(r), is directly related to the intensity scattered by light,
neutrons or x-rays from a polymer coil. The scattered intensity is measured as a function of

scattcrmg angle, 0, and is usually plottcd agamst the reduced parameter, q = |q| = 4n/A sin(6/2),
which is called the scattering vector. "q" is the inverse space vector and is related to the Bragg

spacing, d, by d = 2n/q.
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What are the measures of Size,“R”, for a polymer coil?

Radius of Gyration, Rg

N N

S{(R-R)) =3 - ndbz_z_ > (n-mp* =262+ AZ-1)+3(2

nelmmel mnt=1

Z=N -

iz"l ) Z+1)2p 2p _ Z+1(Z+2)EN3

6

for p<3 (other terms needed for higher p's)

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter | .pdf
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Scattered Intensity = K g(q) where K is a constant for a given system which includes the contrast
and instrumental parameters. g(q) is the Fourier Transform of g(r),

S <exp(zq- R - R ))>

n=1 m=1

Jdrg eXp q-r

For a Gaussian polymer coil the solution to this double summation is the Debye Equation for
Polymer Coils which was first solved in 1946 by P. Debye.

-0)]

2
g(q)(mu.m'ar: = Q2

where Q = ¢'Nb*/6 = q'R

The Debye function for polymer coils describes a decay of scattered intensity following a power-
law of -2 at high-q and a constant value for intensity at low-q (below R,).
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http://www.eng.uc.edu/~beaucag/Classes/Properties/the%20collected%20papers%20of%20Peter%20J.%20W.%20Debye,%20pgs%20500-513;%20547-558%20copy.pdf

Low-q and High-q Limits of Debye Function

8(9) ansian = Z;;[£2"1+ exp(-Q)]

where Q =q'Nb*/6 = q'R,’

At high q the last term => 0
Q-1=>Q
g(q) =>2/Q ~q?
Which is a mass-fractal scaling law with d; = 2

At low q, exp(-Q) => 1-Q+Q?%2-Q3/6+...
Bracketed term => Q2%/2-Q3/6+...

g(q) => 1-Q/3+... ~ exp(-Q/3) = exp(-q*R/3)
Which is Guinier’s Law
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Ornstein-Zernike Function, Limits and Related Functions

The Zimm equation involves a truncated form of the Guinier Expression intended
For use at extremely low-qR.:

_ 9 _(L.q_0, aR,
ST <<1)_(Nﬁa(l 24)¢)(1+ - ] (6).

If this expression is generalized for a fixed composition and all q, R, is no longer

the size parameter and the equation is empirical (no theoretical basis) but has a form
similar to the Debye Function for polymer coils:

G
I(g)=——=
(q) 1 + ngz
This function is called the Ornstein-Zernike function and § is called a correlation length.

The inverse Fourier transform of this function can be solved and is given by
(Benoit-Higgins Polymers and Neutron Scattering p.233 1994):

p(r)= geXp[—%j

This function is empirical and displays the odd (impossible) feature that the correlation
function for a “random” system is not symmetric about 0, that is + and — values for r
are not equivalent even though the system is random. (Compare with the normal
behavior of the Guinier correlation function.) 32
p(r):Kexp(— 4R2]

8
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The Flory Expression indicates a linear dependence of
osmotic pressure in concentration at low concentration
and a dependence on concentration to the power 2 at
high concentration.

KT( ¢ (1 )
=—| =+ = + o
VN 2 x )0

IT

Liquid Equilibrium States

C
b >
5 = R 68 Chapter 3.
3.1 Dilute and Semi-Dilute Polymer Solutions 67 " pte
10° |-
10*E E
o - L
S L
E =
= it

T T T e

w0 -8 1%
3 - L 10
-2 _—o)"‘/ { I F
T o = £
S = 4 S 5
1% “ok -
"/lnuul P AW ¢ BN T i
0.001 0.01 0.1 1 i

-3
c, [g-cml i
10° Putul v Sl a3 inul
fig. 3.2. Osmotic pressures measured for samples of poly(a-methylstyrene) dis- 10" 10° 10’ 102
Fig. 3 I

solved in toluene (25°C). Molecular weights vary between M = T7-10* (uppermost Ml
curve) and M = 7.47 - 10° (lowest curve). Data taken from Noda et al.[9] w/Cw

Fig. 3.3. Data of Fig. 3.2, presented in a plot of the reduced osmotic pressure
versus the overlap ratio. The continuous lines correspond to the theoretical results

Egs. (3.26), (3.41)

From Gert Strobl, Polymer Physics
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Ornstein-Zernike Function, Limits and Related Functions

Ornstein-Zernike (Empirical)

G
1(q)=———
@) =172
High-q limit
G
I q)= 2 _ p2
( ) 7 2& R,
Low-q limit
I(g)~Gexp(-¢’¢’) 3E2 = R
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Debye (Exact)

2(9) oncsian = é [0 1+ exp(-Q)]

where Q = q'Nb*/6 = q'R,°




Ornstein-Zernike Function, Limits and Related Functions

Empirical Correlation Function Transformed Empirical Scattering Function
K G
p(r)= 76Xp(—éj Ornstein-Zernike Function I(q) = W
(r)=Kexp| —= Debye-Bueche Function I(q)= _G
p\r)= p g Y 1+ 4°¢
Teubner-Strey Function G
p(r)= Eexp(—ijsin(%) (F Brochard and I(q)= 1+q%, +q'c
r & d JF Lennon 1975 e
J. de Phy. 36(1 1) 1035) C, is negative to create a peak
p(r)= fd exp[_gj Sinha Function I(q)= Gsm[(df —1)arctan(q§)}
v f

qé(l n ngz )(df_l)/z

Correlation function in all of these cases is not symmetric about 0 which is
physically impossible for a random system. The resulting scattering functions can
be shown to be non-physical, that is they do not follow fundamental rules of
scattering. Fitting parameters have no physical meaning.
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Zimm Plot (Berry Plot)

0.0002
i) G
1 . I —
0.00015 (q) qugz
ex
1 p 3
0.0001 +
G 2R2 22
—— =exp il T PSP . T
Ao 1(q) 3
e e Plot is linearized by G/I(gq) versus ¢
0 0.2 04 06 08 1 1.2

sin(#/2 #0.002¢

¢ (L. ., qR;
S(qR‘, <<1)-(N+(1 2,:)¢)(1+ 3 ] (6).

At g => 0 this is 1/osmotic compressibility, d[T/d¢ = 1/N + ¢B, = (1/N + (1-2%)d)
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Zimm Plot

¢ (1 . 'R,
S(ng <<1) (N+(l 2x)¢)(1+ - ] (6).

In a GPC you have ¢ ~ 0 for each fraction

Measure light scattering at a few angles and
extrapolate g2 to 0 to find weight average MW for

each fraction. For each fraction the
polydispersity, M,/M, ~ 1 so M,, =M, =M,

Vo Vit
| |
i | A |
Yo vi Intensity | |
- Pt g - il N A\ I
Il \ I\
1 /I \ | \ |
/ \ / \
L /S \ £\ \
Exclusion Selective permeation ¢
Limit » region Time
|
Mw o
/
- ,I
. [
¥ 1’
= /
- //
/
Elution Volume
%. T BE R RE e e me b |
hesized &7

GPC Separation of Free-Radical Synt
Polystyrene; M,=24,000 g/mol, D=4.96
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Behavior of the Lead Term (isothermal compressibility)

L:(l (1—2z)¢)1+—5 (6).

Reprinted (adapted) with permission from McGlasson, A.; Rishi, K.; Beaucage, G.;
Chauby, M.; Kuppa, V.; Tlavsky, J.; Rackaitis, M. Quantification of Dispersion for
Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites.
Macromolecules 2020, 2/doi . Copyright 2020

The license of the image source clearly states that it can be used for commercial and
noncommercial purposes and there is no need to ask permission from or provide
credit to the photographer or Unsplash, although it is appreciated when possible.

American Chemical Society
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Mean-Field Interactions Specific Interactions

Reprinted (adapted) with permission from McGlasson, A.; Rishi, K.; Beaucage, G.;
Chauby, M.; Kuppa, V.; Tlavsky, J.; Rackaitis, M. Quantification of Dispersion for
Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites.
Macromolecules 2020, 2/doi . Copyright 2020

The license of the image source clearly states that it can be used for commercial and
noncommercial purposes and there is no need to ask permission from or provide
credit to the photographer or Unsplash, although it is appreciated when possible.

American Chemical Society
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log /(q)/¢
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log (q)/¢
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Progr Colloid Polym Sci (2005) 130: 70-78
DOI 10.1007/b107350

Published online: 3 June 2005

@ Springer-Verlag 2005

Jan Skov Pedersen Temperature dependence of the virial

Cornelia Sommer

coefficients and the chi parameter

in semi-dilute solutions of PEG

Fig. 1 SAXS data with fits (curves) for PEG 4600 solutions at fixed
temperature as a function of concentration. (a) 10°C (b) 50° C (c)
100° C. Signatures: 1 wt% circles, 2 wt% triangle down, 5 wt%
square, 10 wi% diamond, 20 wi% triangle up. The data have been
divided by the square of the excess electron density (Ap was in units of
¢/A”) of the PEG chains in order to eliminate the influence in the plot
of the change in contrast with temperature

(@) 1% PEO data and fits

Fig. 2 SAXS data with fits (curves) for PEG 2600 solutions at fixed
concentration as a function of temperature. (a) 1 wi% (b) 2 wt% (c)
5 wit% (d) 10 wt%. Signatures: 20°C circles, 40°C triangles down,
60°C squares, 80°C diamonds and 100°C triangles. The data have
been divided by the square of the excess electron density of the PEG
chains in order to eliminate the influence in the plot of the change in
contrast with temperature

(b) 2% PEO data and fits

5 E;
= z
q(A") q(A’)
(© 5% PEO data and fits (d) 10% PEG 4600 - DATA and FITS
10 fagakign.
eege, Lataa
b =
G g

o1

q(A")

0.0 o

q(A")
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file:////Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/PedersonSommer2882_10993675_Chapter_9.pdf

Random Phase Approximation (RPA) Equation

¢ $o . .
= -2 Polymer in Solution
[~ lo(q) K¢ Foby v

At high-q, [(q) is small and 1/I)(q) is much larger than 2y.
At low-q, Ij(q) is large, and 2y is much larger than 1/1(q).

Negative 2y indicates miscibility, positive, phase separation.

Temperature, x ~ B/T, high T small

Concentration
(a) PEG 4600 at 10°C (d) 10% PEG 4600 - DATA and FITS
100
A
- as,
.. 10 _ee* “.“..‘
M “
| )
P~ Soo < 2‘
A ._‘QM.W‘ | P
a haas PO
““‘
A“‘A AL 14
——SAtMadddaadaga L ) \
1J(ﬂ 0.1 I_.L ' ' ' Yy ' )
q(A")

q(A")
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How to observe the concentration blob?

Concentration Contrast match the solvent with a mixture of
" DG 4600 a1 10°C deuterated and hydrogenous solvents
'°° Tag one chain by deuteration (1% of chains)

¢ b0
I(q Io(q) 2xe

I{q) / (c Ap")

. _J/_’"N 13
/cj Lo Q/f <1
- e N 2
fa% _,00\7 |
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Published online: 3 June 2005
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Jan Skov Pedersen Temperature dependence of the virial
Comelia Sommer coefficients and the chi parameter
in semi-dilute solutions of PEG

(a) PEG 4600 at 10°C

1(q) / (c Ap")

q(A")

() PEG 4600 at 50°C
100

Q) / (c ap7)

q(A")

(c) PEG 4600 at 100°C

100

1)/ (c 4p%)

q(A")

Two types of correlation: Mean Field
and Specific Interactions are
Experimentally Observed

ynamic Article Links

Soft Matter

Cite this: Soft Matter, 2011, 7, 2725
www.rsc.org/softmatter PAPER

Mechanical reinforcement of polymer nanocomposites: theory and ultra-small
angle X-ray scattering (USAXS) studiest

Maura E. McEwan,” Sergei A. Egorov.” Jan Ilaysky,® David L. Green* and Yang Yang”
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qK] qn]
Fig.2 SEM micrographs of the silica cores used in this study and USAXS scattering curves of the cores grafted with 25 kg mol ' PDMS in PDMS: (a)
SEM of radius R = 100 nm nanoparticles: (b) USAXS scattering intensity /(g) of R = 100 nm nanoparticles in 2 kg mol ' PDMS at a particle core
volume fraction of ¢, = 0.02: (c) SEM of R = 600 nm silica particles: and (d) /(¢) of R = 600 nm particles in 8 kg mol ' PDMS at ¢ = 0.01. Linesin (b)
and (d) are fits of egn (12) to /(g)

111



Temperature dependence of the virial
coefficients and the chi parameter
in semi-dilute solutions of PEG

Jan Skov Pedersen
Cornelia Sommer

(a) PEG 4600 at 10°C
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Non-woven fabric
(fleece, tissue, paper)

These are related to Thermodynamics:
Virial Coefficient = Mean Field = FH y
EOS like Van der Waals = Specific Interaction

(There is overlap)

Intensity am ')
o & &

qK)

At large-scale (q => 0)

they appear the same.

We expect I/¢(qg=>0) to drop
at higher concentrations as a

measure of 1/(¢p B,) for both.
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S(q)

Rishi, K.; Pallerla, L.; Beaucage, G.; Tang, A. Dispersion of Surface-Modified, Aggregated, Fumed Silica in Polymer Nanocomposites. J. Appl. Phys. 2020, 127
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N — 2 remaining particles through the Omstein-Zernike (OZ)
relation which decomposes the total correlation function, A(r) =
g(r) — 1, mto direct and indirect contributions, ¢(r) and y(r).
respectively, through:

v(e) = ) = c(r) =y [ (e )ellr —# Dar (5)

To solve the OZ equation, an approprate closure relation is
needed to approximate how particle interactions through Ulr)
mpact the local microstructure through g(r), i(r), and ¢(r). To
this end. we chose the Percus-Yevick (PY) approximation in
eqn (6),

elr) = exp| S| 1 +-7(0)

U(r) = o=
U(r) =Us| —In (y) —?(1 -») +£(1 -y)- i(l ) 1
5 - 3 . 30 ;
U(r) =0:
ry=0
O<y=1
y>1
(7
where dimensionless separation distance y = (r—2R/2L) and
prefactor Uy = (7°/12)(ERL? /a*Nip)kgT for monomer size a,
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Fig. 4 Comparison of experimental and theoretical structure factors
A" S(g¢) for radius R = 100 nm silica nanoparticles grafted with 25 kg mol '

PDMS in 13 kg mol ' PDMS with varying core volume fractions ¢, =
0.09-047. Thin solid lines are predictions of Sg) from Percus- Yevick
closure from egn (13) for particles with a size distribution of 109 + 13 nm
obtained from analysis of USAXS intensities.

Fig. 3 USAXS scattering intensity /(¢) of radius R = 100 nm silica
nanoparticles grafted with 25 kg mol ' in 13 kg mol ' PDMS. The silica
core volume fraction range from ¢, = 0.02-0.47.
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AR

Fig. 6 Correspondence between the radial distribution function g(r)
predicted with Percus-Yevick closure (black) and Monte Carlo simula-
tions (gray) for radius R = 100 nm silica nanoparticles grafted with 25 kg
mol ' PDMS in 13 kg mol~* PDMS at ¢ = 0.20. The interactions of the
polymer-grafted nanoparticles in the melts were simulated with Mewis-
Russell potential in eqn (7).
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Measurement of the Hydrodynamic Radius, R,

5 L
R,
2500+ / -
20001 -
= R,
9 15001 -
p=]
<]
@
1000 T
500 1
1 | 1 | ] | o
20 30 40 50 60

Temperature (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

_4/37R; . kT 1

N N
[77] N = % R = 211\]2 22 ;‘ Kirkwood, |. Polym. Sci. 12 1(1953).

http://theor.jinr.ru/~kuzemsky/kirkbio.html

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd
f
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Viscosity

Displacement, D
| Velocity, V
A V = D/time

— VMolecule
[n] = - e

Moledule

Native state has the smallest volume
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Intrinsic, specific & reduced “viscosity”

(P 777",0, Shear Flow (may or may not exist in a capillary/Couette geometry)

n=n,(1+g[n]+ kg [n] + kg’ [n] ++--+k, 0" [n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

I({n- 770] 1 My Limitg=>0 Vi
(2] -1 --2 n]="

We can approximate (1) as:

n
n.= n =1+¢[n]exp(K,¢[n]) Martin Equation
0

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |
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Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] +hke [nf ++k, " [n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n- Mo 1 ) imi v
- - _ _ 1 — _lsp Limitc=>0 _ 'H
. M, . (nr ) . 7 [77] - M
i Concentration Effect

nred/ (ml 91)
w
()]
|

acetyl starch x’.
1| inH,0

Fig. 4.5. Reduced Viscosity rreq as a func-
I tion of the concentration ¢ for acetyl
12+ , . T : . starch of different molar masses in aque-
0.00 0.02 0.04 0.06  ©us solution at T=25 °C.The degree of

A substitution (DS) with acetyl groups is
c/(gml) nearly constant at DS=0.9.Due to the

-- M = 709.000 g/mol, DS =0,91 ;

— M'=517.000 g/mol, DS =0,86 compact structure of thg p.olymer. coil the

- M= 263.000 g/mol, DS =0,82 conc.entratllons of the dilution series are

- M= 152.000 g/mol, DS =0,94 relatively high to reach the required rela-
» { ' tive viscosity range of n,=1.2-2.5

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

) 2 3 3 n [ ]n
n=n0(1+c[n]+k1c In] +kn| ++k,c"[n (1)
n = order of interaction (2 = binary, 3 = ternary etc.)
l n-ny :l(n _1): Ny Limite=>0 >[77]:V_H
cl n, c c M
= Concentration Effect, c*
‘o 4000 \
3 il A M,/ (gmol™)
= 1 S 25 A v 11810°
2. 30004 A 5710° Fig. 4.2. Reduced viscosity 1.4 as a
Sl : gg:gz function of the concentration c for differ-
& Al ent molar masses of the polycation
2000 - poly(acrylamide-co-(N,N,N-trimethyl-N-
et [2-methacryloethyl]l-ammoniumchloride)
i (PTMAC) in 0.1 mol/l NaNO; solution.
. Data from [87]. All data points are mea-
sured at concentrations below the critical
o concentration c*(,ﬂ.The copolymer con-
0 . | : | ' sists of 8 mol% TMAC and 92 mol% AAm
0.000 0.002 0.004 0.006
c/(gml’)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=m,(1+c[n]+ke (0] + ke [n] +--+ ke [n])

n = order of interaction (2 = binary, 3 = ternary etc.)

(1

1 - 1 S, imit c= V
rn=-n, :_(nr_l):np Limit ¢=>0 >[n]:_H
cl n, c c M
"o 1600 Solvent Quality
€ PAAm 5.2:10° g mol
= 14001 = in water
B ® in formamide
= 1200+ A in glycol
10004
800
6001 Fig. 5.3. Reduced viscosity 1,4 as a func-
tion of the concentration ¢ for a poly(acryl-
4004 amide) (PAAm) in the solvents H,0, form-
A—b—a il e amide and ethylene glycol at 7=25 °C.
200 . ; Data from [89, 90]. The intrinsic viscosity
0.00 0.01 0.02 0'?3 (intersection with the Y-axis) rises with the
c/(gml) solvent quality

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

mo(1+c[n]+ ke [n] + ke [n] ++-+k, " [n]')
n = order of interaction (2 = binary, 3 = ternary etc.)

Y
cl n, ¢ c ’ M

1{ n-n, _1(77 _l)znsp Limit c=>0 \[77]:

Molecular Weight Effect

500
o M, /(g mol”)
E 4004 . & 17910°
~ - K= 10° .
b@ 19663 mi? g : 823186 Fig. 5.4. Reduced viscosity 7.4 as a func-
300 - : o 0'13 10° tion of the concentration ¢ for sodium
Kl =2 , . 0'04'106 poly(styrene sulfonate) (PSSNa) of different —
5023 mi"g — molar masses in aqueous solution.The TI -
200 K L= K L= second virial coefficient of the viscosimetry,
1818 i g2 2;6 7 mi g? Ky [n)% is equivalent to the slope of the
/ ' . curves and is given for each molar mass.
100 | asddddd— Kalnl'= " The Huggins constant K, is constant and
1 PREPAEPAS S 8221 =g independent of the molar mass. Data from
0 0l S i [35,91]
0.00 0.02 0.04 0.06
c/(gml™)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Viscosi
Y n, =1, (1+[n]9)

[n] ~ VMolecule

M Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Objects)

m, =1, (1+2.5¢)

For “Gaussian” Chain Mass ~ Size? ~V?2/3
V ~ Mass3?

For “Expanded Coil” Mass ~ Size*? ~V>7?
V ~ Mass?>

For “Fractal” Mass ~ Sizedf ~Vdf/3
V ~ Mass3/df

2

[n]~ My,

Molecule
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Viscosi
Y n, =1, (1+[n]9)

[n] ~ VMolecule

M Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Objects)

m, =1, (1+2.5¢)

For “Gaussian” Chain Mass ~ Size? ~V?%/3
V ~ Mass3/2
“Size” is the
“Hydrodynamic Size” For “Expanded Coil” Mass ~ Size3 ~V>/?
V ~ Mass??

For “Fractal” Mass ~ Sizedf ~Vdf/3
V ~ Mass3/df

2

[n]~ My,

Molecule

129



1,/ (mPas)

Intrinsic, specific & reduced “viscosity”

n=m,(1+c[n]+ke (0] + ke [n] +--+ ke [n])

n = order of interaction (2 = binary, 3 = ternary etc.)

l n—", :l
c\ n, c

2.0
| PipAAm in H,O |
1.5 :
1.0 S
0.5-
H,0
0.0 T T v T T ! E
0 20 40 60 80

T1(°C)

(1, -1)=

Temperature Effect

T’sp

Limit ¢=>0

c

7

>[n]=

Fig. 5.5. Zero-shear viscosity 7o as a
function of the temperature T for poly
(acrylamide) (PAAm) and poly(N-iso-
propyl-acrylamide) (PipAAm) in aqueous
solution (c=0.1 wt%).The viscosity for
the solvent water as a function of the
temperature is plotted as well. Data

from [77]

Yu
M

(1

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=n,(1+c[n]+ke[n] +hke [nf ++k, " [n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n-n, 1 Ny Limite=>0 Vi
——|=—(n.-1)= >IN |=
C( Mo J c( ' ) C [ ] M

We can approximate (1) as:

n
n.= n =1+c[n]exp(K,c[n]) Martin Equation
0
nc“"’ =[n]+k[n] ¢ Huggins Equation
In(n,) —[n]+E[fe Kraemer Equation
¢ 1 (exponential expansion)

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |
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Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=1,(1+[n]c)

For a solid object with a surface v is a constant in molecular weight, depending only on shape

For a symmetric object (sphere) v = 2.5 (Einstein) [n]= %5 ml/g

For ellipsoids v is larger than for a sphere,

72 prolate
T 15(1n(27)-32) a,b,b::a>b
J=alb
167 oblate
T 15tan_1 (J) >3 b 8 a<b Tri-axial ellipsoi with distinct semi- &)

axesa bandc
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Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=1,(1+[n]c)

Hydrodynamic volume for “bound” solvent

V= (7 + 80
A

Partial Specific Volume v,
Bound Solvent (g solvent/g polymer) O
Molar Volume of Solvent v,
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Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=1,(1+[n]c)

Long cylinders (TMV, DNA, Nanotubes)

1] =2 TNk J=Le
45 M (InJ+C,)

CT] End Effect term ~ 2 In 2 —25/12 Yamakawa 1975
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Shear Rate Dependence for Polymers

= 10°3
O] E
o ]
E 1
= 102-E S
w0l "
10" 10° 10 10° 10°

shearrate / (s”)

€ xanthan gum
M, =1.810°g/mol, c= 0,1 %
® poly(acrylamide)
M, =7.910°g/mol, c=0.1%
T=25°C

Fig. 5.8. Dynamic viscosity nj as a func-
tion of the shear rate y for an aqueous
xanthan gum and an aqueous poly(acry-
lamide) solution of a comparable de-
gree of polymerization and the same
concentration ¢=0.1 wt% data from
[92].The viscosity depends on the shear
rate above a critical shear rate

Fig. 5.9. Net diagram for the determination
of the intrinsic viscosity [n] from

measurements of the reduced viscosity at

c+0.001y

shear rates#0

—~10°
c., o
€ Zimm-Crothers Capillary
> Viscosimeter Viscosimeter
Eqot| —
10° |
10% 10" 10° 10" 10° 10° 10*
p 71"
M, /(g mol”)
A 11.710°
o 10.510°
o 11.6.10°
e 9.30.10°
& 8.50-10°

Fig. 5.10. Intrinsic viscosity [n] deter-
mined at high shear rates y with a capil-
lary viscosimeter and at lower shear rates
with a Zimm-Crothers viscosimeter for
different xanthan gums in 0.1 mol/I
sodium chloride (NaCl) solution at 25 °C.
Data from [93]. For strongly shear thin-
ning polymer solutions, only low shear
viscosimeters reach the shear rate inde-
pendent viscosity region

Capillary Viscometer

Volume TR*Ap

time

Ap =

Vinae T1 = Q

v

—

7

Gy V=0

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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8nl

_ 4Volume

Vbax = TR’time

Fig. 3.2. Velocity profile in a capillary viscosimeter. The fluid
velocity v has a parabolic profile with a maximum in the middle
of the capillary; the shear rate y and the shear stress r have a
maximum at the capillary wall and are zero in the middle of the

capillary



Branching and Intrinsic Viscosity

5.5 Branching

Branching in a polymer coil leads for polymers of the same molar mass to changes
of the intrinsic viscosity. Although the chemical composition is the same, branched
polymers have a higher density p,,in solution than linear polymers and therefore

~10*
o
E
= 10" |
= HDPE
(linear)
102 Fig. 5.11. Intrinsic viscosity [)] as a func-
E LDPE tion of the molar mass M for linear
branched poly(ethylene) (high density poly(ethyl-
( ) ene), HDPE) and longchain branched
10" . ‘ poly(ethylene) (low density poly(ethyl-
_ ene), LDPE) in tetraline at T=120 °C (data
M (dendrimer) from [47,94]) as well as for a dendrimer
5 with 3,5-dioxybenzylidene units in tetra-
10 : : . . hydrofuran at T=30 °C (data from [47, 95])
10%::-40] -10%.. 40°:.490° 40

M, /(g mol”)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Branching and Intrinsic Viscosity

R;,b,M S Rzl M i Q O Simulation
0.8 ® PS
Rgz,b,M A APl
8= ) &n -
R 8
o6F T
3f.2 . 0B T "
8= =5~ - T
f 0.4 1 1 1 | 1 | 1
0.58 2 4 6 8 10
[n]b M 0.58 3f -2 P

1.7  Plots of viscometric branching parameter, g,, versus branch functionality, p, for
ins on a simple cubic lattice (unfilled circles), together with experimental data for star
in theta solvents: e, polystyrene in cyclohexane; A , polyisoprene in dioxane. Solid
ed lines represent calculated values via Egs. (1.70) and (1.71), respectively. (Adapted
Shida et al. [2004].)

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |

137



Nog! (Ml ")

Polyelectrolytes and Intrinsic Viscosity

0.018

'Tc) A -
_E_ 0.016 4 PSSNa in HZO
< 0.014-
S 0.012-
] 0.010
] in pure H,0 Fig. 5.16. Different behavior of a polyelec- 0.008 ]
1N trolyte in aqueous solution and a salt solution. 0.006 -
i At high concentrations of the polyelectrolyte -
in aqueous solution is the concentration of 0.004
. polyelectrolyte counter ions inside the polymer coil higher 0.002 ]
than outside, leading to an expansion of the ’

] coil due to osmotic pressure. At low concen- 0.000 e —r
] trations of the polyelectrolyte in aqueous 107 10° 10° 10* 10° 107
] in 0.1 M NaCl|  solution, the polyelectrolyte is highly dissoci- cl(g m|-1)

ated, leading to an expansion of the coil due &— M = 690000 g-m!”
iy to coulomb repulsion forces. Both expansion . Mw= 345000 gml”
ffect: ensated in the salt soluti w :
LR ESRE Dt PRRER SR R PR ER =lhaanl et 1 e phbly fon —A— M = 212000 g-ml ! Fig. 5.15. Reduced viscosity 1,4 as a function of
cl (g ml 1) —A— M = 177000 g-ml” the concentration c for the polyelectrolyte sodium

—e— M = 138000 gml” poly(styrene sulfonate) in nearly salt free aqueous
e M“’= 88000 gl solution (cy,c=4%107¢ mol ') and for different molar

w . masses. The concentration is plotted on a logarithmic
—&—M,= 31000 g-ml scale to show the maximum behavior of the viscosity
—0—M, = 16000 gml’ at very low concentrations of the polyelectrolyte. Data
from [83,97]

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Polyelectrolytes and Intrinsic Viscosity

3 -
2
logng |
Or
'1 T | T | T T T T T
-4 -3 -2 -1 0 1
log ¢ (mol/l)

RE 1.16 Determination of the chain overlap concentration c*, the entanglement concen-
¢, the electrostatic blob overlap concentration ¢** from the concentration dependence
afic viscosity for a 17%-quaternized P2VP copolymer (17PMVP-CI) in solution in ethy-
weol at 25°C. Symbols are experimental data and solid lines represent the power laws
=d from scaling theory. (Adapted from Dou and Colby [2006].)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Hydrodynamic Radius from
Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HiemenzRajagopalanD
LS.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd
f
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Consider motion of molecules
or nanoparticles in solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the
starting point at t = 0 is a Gaussian Function that defines the
diffusion Coefficient, D

1 _)72(2Dz)
(47D1)"
<x2> =0’ =2Dt

plx.t)=

The Stokes-Einstein relationship states that D is related to R,
kT
67NR,

A laser beam hitting the solution will display a fluctuating
scattered intensity at “q” that varies with q since the
particles or molecules move in and out of the beam

l(q.¢)
This fluctuation is related to the diffusion of the particles
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For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
g(qv)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
l(q.t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales
and consider only the fluctuations at a given size scale, r or 2nfir = @
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Dynamic Light Scattering

I O e | e
w peworm
$00000.0

o
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- = 9 (q;7) = (I(t))2 i &1 { o

' A
«‘:""' \ [ 5 Moal wdcahan A i\ Al > \
v ',,"‘Alr.\w’,‘m\- ll-ﬁA“'\f'ﬁh" W ".'r“l""'f‘ Ry i
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D=k, T/6zna

a = RH = Hydrodynamic Radius

The radius of an equivalent sphere following Stokes’ Law
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Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

http://webcache.googleusercontent.com/search?g=cache:eY3xhiX1171J:en.wikipedia.org/wiki/Dynamic_light scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?g=cache:yZDPRbgZ1BIJ:en.wikipedia.org/wiki/Einstein_relation (kinetic _theory)+&cd=1&hl=en&ct=clnk&gl=us
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http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us

Diffusing Wave Spectroscopy (DWS)

Will need to come back to this after introducing dynamics
And linear response theory

http://www.formulaction.com/technology-dws.html
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Static Scattering for Fractal
Scaling
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At intermediate sizes the chain is “self-similar”

. d
Mass ~ Size '

R f
7~|—%
Rl
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At intermediate sizes the chain is “self-similar”

I(@) ~ N ng?

N = Number of
Intermediate
Spheres in the
Aggregate

n, = Mass of inter.
sphere > r
Nn; ~ (’

R

int
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The Debye Scattering Function for a Polymer Coil

2
1(Q) = = (0~1+exp(-0))

Q

_ . 2p2 100E

Q0=q'R, |

10 |

<< 'L ;

For gR, << 1 s

>

B QZ Q3 Q4 %. E

exp(_Q)_l-Q"'?-?*'Z—... 2 ol

:

I’R; 01 L

1(‘1)=1—Q+...=exP(—h] "o

0'0001001 ; ‘s‘a‘g‘:n i"s‘é‘é(‘)'l I
Guinier’ s Law! ‘ " q(Ang
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The Debye Scattering Function for a Polymer Coill

10) = Qz, (0-1+exp(-0))

100
— 42 P2 3
Q_q Rg i
10 |
For qRg >> | |
E 1E
2
S 01f

I(Q)zg— 2 e =
Q 2R2 q = i
95 0.01 k
dr =2
0,001 Lot gttty
0.001 0.01 0.1
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Ornstein-Zernike Equation

I(q):1+22§2 I(g=>)=—5,

Has the correct functionality at high q
Debye Scattering Function =>

2G
I(q) = qzsz (qug —1+exp(—q2R§)) I(q => oo) = 2R2
8 8

So, Rg2 = 2@2
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Ornstein-Zernike Equation

G
1+ g &’ I(q => O) = Gexp(—qzéz)

I(q)

Has the correct functionality at low q

Debye =>
2 p2
R
2 _ — q4 It
I(q)= e (quz —1+exp(—q2R;)) I(q => O) =Gexp| — 3
g
Rz _ 34«2 The relatoinship between R, and correlation
g length differs for the two regimes.
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How does a polymer chain respond to external perturbation?
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The Gaussian Chain

Boltzman Probability Gaussian Probability

For a Thermally Equilibrated System For a Chain of End to End Distance R
I ) 3 V2 3(R)
P;r(R)—CXP(- KT ] P(R)=[2:m:,) ex;{l—z((,)zl

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

E = kT2X
2nl;
Force Force
Assumptions:
F = dE — 3kT R=k R -Gaussian Chain
“dR  nl2 7 “Thermally Equilibrated

-Small Perturbation of Structure (so
it is still Gaussian after the deformation)
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Tensile Blob

t
=
—
fa)
=
=
™
0

For Larger Perturbations of Structure
-At small scales, small lever arm, structure remains Gaussian
-At large scales, large lever arm, structure becomes linear
Perturbation of Structure leads to a structural transition at a

size scale 5
3R? IE  3kT
E = kT2 ==
2nl; dR  nl;

. . 1
For weak perturbations of the chain R = nél,( =

3kT

gTensile - T

Application of an external stress to the ends of a chain
create a transition size where the coil goes from Gaussian

to Linear called the Tensile Blob.
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3kT

F=k,R=""5R
: R™? 3kT
Tensile R F
— |
I])j \\ i
> LA N

For sizes larger than the blob size the structure is linear, one
conformational state so the conformational entropy is 0. For
sizes smaller the blob has the minimum spring constant so the
weakest link governs the mechanical properties and the chains
are random below this size.
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Semi-Dilute Solution Chain Statistics



In dilute solution the coil contains a concentration c* ~ 1/[n]

c*=kn/R'=kn™ for good solvent conditions

For semi-dilute solution the coil contains a concentration ¢ > c*

At large sizes the coil acts as if it were in a concentrated solution (c>>>c*),d; = 2. At
small sizes the coil acts as if it were in a dilute solution, d; = 5/3. There is a size scale, §,
where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil
and a tertiary structure of Gaussian Chains.

What is the value of &?

¢ is related to the coil size R since it has a limiting value of R for ¢ < c* and has a scaling
relationship with the reduced concentration c/c*

g ~R (C/fC*)P — n(3*4["'l"5

There are no dependencies on n above c* so (3+4P)/5 = 0 and P = -3/4

E ~R (c/c*)™"
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Coil Size in terms of the concentration

R =En."? =Ry (c/c*)™ (c/c*)™® = Ryo (c/c*) ™™

This is called the “Concentration Blob”
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Three regimes of chain scaling in concentration.

In dilute solution the chain displays good solvent scaling in most cases, dr=5/3. When the
concentration is increased above the overlap concentration, c*, a concentration blob, &, is
introduced between Rg and l,.. For sizes larger than the blob size, screening of interactions
leads to Gaussian scaling, dr = 2. For sizes smaller than the screening length of blob size,
the chains are not screened and good solvent scaling is observed. The blob size follows

-3/4
C . : .
&~ R(—*j until a concentration where € = 1,. At that concentrations above c**,
c

4/3

Kk * R . . . P . .

c ~c | — , the chain is in a concentrated condition and all interactions are screened so
p

that the chain has a Gaussian configuration, dr = 2.
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Thermal Blob

3000 . - -—
Rk,
2500+ / -
20001 -
< Ry ¢
g 1500} -
p=]
<] d *
(/4
1000 A
soof .
0 1 | | [T | = b
20 30 40 50 60
Temperature (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius Ry versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

Eetk 3R n'V. £ 3R, mV.(1-2x)
B PYREEYS ik 2R
2nly 2
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Thermal Blob

Ae= (Erp + &g )/2 = Epg

=T

Radius (A)

‘/c enthalpic = Vc (I = 2;( )

40
Temperature (°C)

> 2 2 pV(1=-2
E=kr| 2R nVe E=k7{3R3+n ‘( 3 X))
2'11;, 2R3 ZIIIK 2R
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Thermal Blob

3R n?V (1-2x)
E=k7“'R,+” ( : x)
2nl; 2R ',

Energy Depends on n, a chain with a mer unit of length 1 and n = 10000
could be re cast (renormalized) as a chain of unit length 100 and n = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This is the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.

As the temperature drops further the Gaussian blob becomes larger until the entire chain is
Gaussian at the theta temperature.
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Thermal Blob

%

R=nfie =(V e - /(5 ] g = NS

Flory-Krigbaum Theory yields: R = VC% (1- 2;()% N75175

By equating these:

[
(1-2%)

§T =

165



166



Spray Flame Appearance | Fpactal Aggregates and Agglomerates

Air
Growth of Nanoparticles 125 Umie
Powder Morphology

Single 2

Diffusion 1
Flame L
(SDF) B S 3

O, flow rate: 2.5 I/min 4.7 l/min 22.7l/min

id N
-

Double

Diffusion
Flame .
(DDF) * 2

10-o_nm 0 Y 1on_mf
12.5 Umin _ L .. s LAS A
wi sheath O, Fig. 5: Transmission Electron Micrographs (TEM) of SiO, synthesized in SDF and DDF at different oxygen

flow rates. Particles made in flames at low oxygen flow rates stay longer at high temperatures leading to the
formation of rather big sphencal, non-agglomerated particles with diameters of about 100 nm. At high oxygen
flow rates the particles are agglomerates of small primary particles. Particles synthesized in DDF have
narrower size distributions indicated by TEM compared to those made in SDF.

g) ;
100g/h 200g/h 300 g/h } Flame Structure

1 Fig. 3: Spray flames (1.26 M HMDSO in EtOH)
. ."% producing 100, 200 and 300 g/h of sifica using 12.5
ﬂ&i £ - Vmin air (a-c) or O, as dispersion gas without (d-f}
T HAB =10 mm and with (g-i) additional 25 i/min of O, sheath flow
at 1 bar pressure drop across the nozzie tip.

Powder Morphology

» g C) D)
e 3 ¥
wt B
- 1000m ¥ 100nm  100nm
= g 1630

Single Diffusion Flame (SDF)

s s s\ S

¥ Gt 4 iHAB=5mm
Fig. 1: Silica particles as collected by conventional Tvr'—
thermophorstic sampling (TS) along the axis of a :

premixed flame of hexamethyldisifoxane and oxygen

[1,2]. Using aluminum foil in-stead of TEM gnds and

performing multiple sampling from the same location

p .
A
~ ‘, 4 v
3 -
in the flame, the Al-probe was covered with a silica 1B e 4 B N 4

monolayer (1] (as indicated in Fig. 2). Fig. 4: Transmission electron micrographs of silica
nanoparticles at production rates of 150 (top row)
and 300 g'h (bottom row) using 12.5 Vmin air (a,b)
or O, as dispersion gas without (c,d) and with (e,f)

Double Diffusion Flame (SDF)
Fig. 3: Effect of oxygen flow rate on flame structure
of @ SDF and DDF. Increasing the oxygen flow rate
decreases the flame height of the HMDSO-
methane-oxygen diffusion flame as turbulence
additional 25 ¥min of O, sheath flow using 1.26 M accelerates the mixing of fuel and oxidant.
HMDSO in EtOH. 167 -




Polymer Chains are Mass-Fractals

Rrms = n'/2 | Mass ~ Size?
3-d object Mass ~ Size?
2-d object Mass ~ Size?
| -d object Mass ~ Size'
dr-object Mass ~ Sizef

This leads to odd properties:
_ Mass  Mass Size®

Volume  Size’ Size®

. d;-3
~ Size’

density

For a 3-d object density doesn’ t depend on size,
For a 2-d object density drops with Size
Larger polymers are less dense
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How Complex Mass Fractal Structures
Can be Decomposed

=d_.

min

C

Tortuosity

Connectivity

R

5 d min ) E c
P~d d
Z df P dmin | S C R/d
27 (136 12 |1.03| 22 |1.28|11.2
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Disk

c=2

Extended B-sheet
(misfolded protein)

i “ http:/fcmgm stanford.ed uhiochem201/Slides/
Protein%20Structyre/Pleated%20Beta-sheets.JPG

Random Coil

%

d

=2
=2

QU

min

[

Cc =

Unfolded Gaussian chain



Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering

Cryo Scanning Electron Microscopy

A scanning electron micrograph of a frozen sample was taken
The sizes of the particles visible on the picture were measured
dvidually with a ruler and used to coculate a number-meann,
001,01, & volume-mean, D(4,3) and & number-distribution

Tum

Figure 2. TEM picture of titania (Ti0,) fractal aggregates with
D = 1.8 produced by pyrolysis of Titanium Isopropoxide.

Number Mean - D{1,0) = 45,2 nm
Volume Mean - DI4,3) = 63.0 nm

http://www.phys.ksu.edu/personal/sor/publications/200 | /light.pdf

Note : due to the limited number (82) of particles measwed
this resuft Is anly Indicative.
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http://www.phys.ksu.edu/personal/sor/publications/2001/light.pdf
http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf

Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering

Dynamic Ll‘ht Scattering

To evabate repeatability and robustness, the measure was made 8 times,
using 3 different dilutions. The following graph presents ome of these
measures, expressed a8 intensity-distribution, volume-distribution and
number {length)-distribution,

Mecaure on Moamye Mode! 170 - sarepdes dVuted (o chlarofarme to JOO- 353 Arfe.
I FUNRAN WIITRD  WILEWE WERDATAD N TR (RO TG
maw 8- M-

4

n”

The following table shows the averaged results for the & measurements.
Prection & calculated 2 the Relative Standard Deviation of the mexsurements.

Menn Calculation Particle Size  Precision

Intensity Weightieg | 127.9 v 1%
Volume Weighting 71.6 rem 16%
Number Weighting 36.2 rem 5%
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http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf

For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
g(qv)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
l(q.t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales
and consider only the fluctuations at a given size scale, r or 2nfir = @
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Dynamic Light Scattering

Interaity
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Dynamic Light Scattering

my DLS web page

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Wiki

http://webcache.googleusercontent.com/search?g=cache:eY3xhiX1171J:en.wikipedia.org/wiki/Dynamic_light scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?g=cache:yZDPRbgZ1BIJ:en.wikipedia.org/wiki/Einstein_relation (kinetic _theory)+&cd=1&hl=en&ct=clnk&gl=us
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http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us

Gas Adsorption
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Fig. 2. Adsorption isotherms of the samples tested with Ar at

875K
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http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html

Multilayer adsorption
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Fig. 2. Adsorption isotherms of the samples tested with Ar at
875K
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Gas Adsorption

Coverage (Theta)

BET Isotherm

Various Values of ¢
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Fig. 2. Adsorption isotherms of the samples tested with Ar at

875K
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Fig. 1. Adsorption isotherm types defined by Brunauer [6]. ¢ ! 2 ? !

pore diameter / nm

Fig. 3. Pore-size distribution according to the BJH method.

htep://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/GasAdsorptionReviews/ReviewofGasAdsorptionGOodOne.pdf
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From gas adsorption obtain surface area by number of gas atoms
times an area for the adsorbed gas atoms in a monolayer

Have a volume from the mass and density.
So you have S/V orV/S

Assume sphere S = 4mR2, V = 4/3 R
So dp = 6V/S

Sauter Mean Diameter dp = <R3>/<R2>
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Log-Normal Distribution

1 [log(R/m )]: A
f(R) = chp! _10—:—} ‘ 1.5
<R’> =m’ exp(r262/2) = exp(ru + r262/2) A oo
(R)=mexp(c*/2) o /]
Mean
O-g = eXp(G) Xg = exp(m) 28 05 1.0 1(5 2.0 25 3.0

Geometric standard deviation and geometric mean (median)

Gaussian is centered at the Mean and is symmetric. For values that are positive (size) we
need an asymmetric distribution function that has only values for greater than I. In random

processes we have a minimum size with high probability and diminishing probability for larger
values.

(x)
|
[

s & s 2 1

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20|applcryst%20Beaucage%20PSD.pdf 7 X
http://en.wikipedia.org/wiki/Log-normal _distribution
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Log-Normal Distribution

m"—h\ ?‘{ ,‘ -
f(R) _—1 exX { ll()b(R;In)l l . 10°F ; ‘4.;«‘2, |

" Ro(2m)"? it e 4 1
£ W 1
TS \ .
N\ i) _ i) R % i
<R >— m exp(r o /2) = exp(r,u+ r'o /2) A e \, ]
g o— |.li_fk.d F_il 4 1,_.\ ,
e N\ 1
) ) 10’ \Nﬂi\ 1
—_— -3 n sl P | PRI TTT] B s sl
<R> m eXp ( o / ) "%.0001 0.001 0.01 0.1

q. A

Mean

o,=exp(o) x,=exp(m)

Geometric standard deviation and geometric mean (median)

Zirconia

m = [SR/[3exp(1407)))'”, (18)

o o o o Iﬂq
Static Scattering Determination of Log Normal Parameters |
10 F
ln[B(Ré):/(l-f’ZG)] " apDIy "2 g wh D
=i A 12 I - (T) &2 i
Z 10’ f
and g : -

Unified Fit
10 1 Power Laws
Guinier Law
-3 PEPITTITY BPEPITTITY B PITTITT RSP Tr
0.0001 0.001 0.0 0.1 1
-1
q A

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20|applcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp
-Static Scattering Rg, dp
-Dynamic Light Scattering

10’ 10’
10° .
0 E 10
10* .
5
. a6 (R S L
s <
4 1 =
. - 10
£ 1 %
s 2 8
.'é‘ 1) 7 = |
= 10 | 10 Zirconia
" S i Unified Fit g
mtensity H
10 —— Unifsed Fit w'k Power Laws -
1w' - Guinier Functions q 2 Guinier Law 2
Power Laws N
10':“ - S BT BRI EEPSPTTTIT B SPw e
10 PPTTH BT TTY BRI TUTTY B || e 0.0001 0.001 0.01 0.1 1
0. 000| 0.001 0.01 0.1 1 2 -1
q, A

g A"
i (a) (5)

Figure 2

USAXS data from aggregated nanoparticles (circles) showing unified fits (bold grey lines). primary particle Guinier and Porod functions at high g. the
intermediate mass fractal scaling regime and the aggregate Guinier regime (dashed lines). (@) Fumed titania sample with multi-grain particles and low- q
excess scattering duc to soft agglomerates. dy;s = 16.7 nm (corrected to 18.0 nm), PDI =3.01 (o, = 1.35), R, = 112 nm. d, =199, 7, =175, 25, =226, R, =
171 nm. From gas adsorption, d;, = 16.2 nm. (b) Fumed zircoma sample (Mucller er al., 2004) with single-grain particles, as shown in the mscl "The primary
particles for this sample have hlbh polydispersity leading to the observed hump near the primary particle scattering regime. dy, = 20.3 nm, PDI = 10.8
(o, = 1.56), R, = 26.5 nm, d; = 2.90. From gas adsorption. d,, = 19.7 nm.

http://www.eng uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp

SAXS SV, m¥/em’

dvss, saxs, nm

40 !
450 . . A
wp || & VesauredSV -Static Scattering Rg, dp
Equwvalent SV . £ @ Kammier et al (2002)
350 ® SV-27m2iem3 A . . c 30 & Kammier et al (2003a)
- . Smaller Size = Higher S/V &
>
=0 Closed P imilar i g ’ i
0S€d Fores or similar Issues B 2 | sl
200 (h) ° :
L c
150 40.00 8
100 35.00 ® dViSSAXS 3 10
Equvakntd
50 30.00
= . vl
° < 25.00 .
e 0« L L
w
0 S50 100 150 200 250 300 350 400 450 x L
= g 20.00 S 0 10 20 30 40
J! i ]
BET SiV, m/c ¢ 15.00 > dg (TEM), nm
(@) © ° (a)
Soo 10.00 p
-
200 | | & SAxsavs a 5.00 50 7
® Corecled dV/'S - 0.00
600 | = G32TEM -
X Wegner (2003} 0.00 10.00 20.00 30.00 40.00 40 -
¢ et d i . £ @ Kammier et al {2002) ’
50.0 quvd S dp, geT, NM c & Kammier et al {2003a) 0
L0 (c) F~ D &
400 <é5n, @30 O
. s /
300 st Figure 3 n / A .
(a) SV from SAXS for utania particles produced by vapor-phase 2 / Le
200 *' pyrolysis of titania tetraisopropoxide by Kammler er al. (2002, 2003). The ©20 o
v, % SAXS S$/V can be made to agree with the BET value by subtraction of ﬁ
100 % 27m* em ™. (b) dyx from USAXS [and corrected from (a)] versus d, 2
% ) f =
from BET analysis of gas adsorption data for a series of titania samples 10 F
0.0 2 produced by Kammler (tnangles and filled circles), and samples made in a 7
00 100 200 300 400 500 €00 70O 800 quenched-spray flame from Wegner & Pratsinis (2003) (crosses. single-
dp nm grain particles). The calculated d5; from TEM micrographs for the A X 3 3 .
» BETS Kammler samples is also shown (filled squares). (¢) dy¢ from USAXS 0
versus dy, from BET for fumed zirconia samples of Mueller er all (2004) 0 10 20 30 40 50

http://www.eng uc.edu/~gbeaucag/PDFPapers/ks5024%20]applcryst%20Beaucage%20PSD.pdf

Figure 4

() Companison of the median particle size from expsn, with in defined by equation (18), and the median partice size calculated from an analysis of TEM
data on TiO:. (b) Mean particle size, (R) from USAXS, equation (2) with r = 1, and from TEM (Kammler ez al, 2003) for the same samples as Figs. 3(a)

and 3(b)
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

(@)

T
L e e T e aat e
10* .
i 5.5 wh No Field
10 - 08 TEM 4
Al g = Log-Nermal
. k-] POI, Rg
= 4 M @ w— Maximum Entrepy
d 0 E 0'6 ximu "
£ 1 g
- ] —
5 10 =
= B S
L o| @ Nom-Aggregated Titania | - 04 -1
10 <= Repeat on Same Titanin 3
= = Unified Function 7 =
10’ Guinier Component ] % 02k 4
Porod Component
port bt i T \
0.0001 0.001 0.01 0.1 1 L et ,7347.,:%.1\-’_..:4,:.?
A-l 1 2 3 4
9. 10 10 10 10
(a) Particle Diameter, A
20 —r—r '
3.1 &% No Field
= TEM

First Measurement
PDI and Rg
L= Maximum Estropy
Second Measurment
PDI and Ry
Maximum Estropy

Fractal Aggregate Primary Particles

n

=3
=
4
§
i: 1.0 v T e —
E ok i L1 ph LERViem
% - . . TEM
> W= Lag-Normal
- = 08 PDI, Rg n
3 .s w— Maximum Entropy
= 3
PAIS = =
l = 0.6 4
l :
1 -
% LS
0.0 N RED l‘ T P RV I = 04 7
10' 1w’ 10’ 10* %
Particle Diameter, A &
2 —~
® 0.2
Figure 5
3.1 gh ™’ titania. (@) Repeat USAXS runs on a non-aggregated titania 0.0 Spt=ieaead A—ti-Liges -
powder (Fig. 1). (b) Particle size distributions from TEM (circles; Il]' mz B I0" “)l
Kammler er al.. 2003), equations (1), (2), (17) and (18) using PDI and R,
and using the maximum-entropy program of Jemian (Jemian ef ol 1991). Particle Diameter, A

Distrnibution curves are shifted vertically for clarity. dy, g = 34.9 nm, PDI =
144 (0, = 1.60), Ry = 442 nm.
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Fractal Aggregates and Agglomerates
Aggregate growth

Some Issues to Consider for Aggregation/Agglomeration

Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)
Concentration of Monomers
persistence length of velocity compared to mean separation distance
Branching and structural complexity

What happens when monomers or clusters get to a growth site:
Diffusion Limited Aggregation
Reaction Limited Aggregation

Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster)
or a Combination of Both (mass versus time plots)

Cluster-Cluster Aggregation
Monomer-Cluster Aggregation
Monomer-Monomer Aggregation

DLCA Diffusion Limited Cluster-Cluster Aggregation
RLCA Reaction Limited Cluster Aggregation

Post Growth: Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/Aggregate Growth.pdf
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Fractal Aggregates and Agglomerates

Aggregate growth

Consider what might effect the dimension of a growing aggregate.

Transport Diffusion/Ballistic
Growth Early/Late (0-d point => Linear |-d => Convoluted
2-d => Branched 2+d)
Speed of Transport Cluster, Monomer ‘
Shielding of Interior
‘ Rearrangement

Sintering

‘ Primary Particle Shape

‘ DLA df = 2.5 Monomer-Cluster (Meakin 1980 Low
Concentration)
‘ DLCA df = 1.8 (Higher Concentration Meakin |985)

Ballistic Monomer-Cluster (low concentration) df =3
Ballistic Cluster-Cluster (high concentration) df = 1.95
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Fractal Aggregates and Agglomerates

Aggregate growth

Colloids with Strongly attractive forces

NEAR EQUILIBRIUM: Ostwald Ripening

Kinetic Growth: DIFFUSION LIMITED

E Kinetic Growth: CHEMICALLY LIMITED

'y
s
wr é Precipitated Silica
5
&

Reaction Limited,
Short persistence of velocity

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Sticking Law

Particle-Cluster Growth

Cluster-Cluster Growth

o A
IR

¥ ‘,.,'
= ..'

P.;‘.
5

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates
Aggregate growth

Transport

Diffusion-Limited

Ballistic

Reaction-Limited
(Independent of transport)

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

Vold-Sutherland Model particles
with random linear trajectories

. Eden Model lparticles GG adc!gd are added to a growing cluster of
Aggreg athn MOdels at random with equal probability particles at the position where
to any unoccupied site adjacent they first contact the cluster

to one or more occupied sites

(Surface Fractals are Produced)
Witten-Sander Model particles

Transport with random Brownian

Reaction-Limited Ballistic Diffusion-Limited trajectories are added to a
growing cluster of particles at
5 EDEN vOLD WITTEN-SANDER the position where they first
§ : contact the cluster
?3 2 PAUL MEAKIN
2| § o e
(-1 5 8t ?
-] = k 1
= D =3.00 D =3.00 ; = & 1
= RLCA SUTHERLAND DLCA z ‘: *\
Q <
. T - i
& s ot 1
§ L 5.0 20.0 «i
o o] —_— L‘.—_l_L_Lk 1 Lk 1
‘? o 1 2 3 q
;3 In(1)
g FiG. 8. Dependence of 1n (N(/)) on In (/) for eight clusters grown using the WS model of diffusion-
G limited cluster formation on a three-dimensional cubic Iattice.
D=209 D=195 D=180
Sutherland Model pairs of
particles are assembled into
In RLCA a “sticking randomly oriented dimers. . .In .DLCA the. .
probability is introduced Dimers are coupled at random - SthkIng PI‘Obablht)’ http://www.eng.ucAedu/~gbeaucag/CIasses/MorphoIogyofC;)L;fﬁp\exMaterm\s/MeakinVoIdSunderIandEdenWittenSanders.
in the random growth to construct tetramers, then is 1. Clusters follow
process of clusters. This ~ octoamers etc. This is a step- random walk.
increases the dimension. growth process except that all

reactions occur synchronously From DW Schaefer Class Notes
(monodisperse system). 194
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Fractal Aggregates and Agglomerates

Aggregate growth

Analysis of Fractals
Log(N)=DLog(R)

Log Number

From DW Schaefer Class Notes

195



Fractal Aggregates and Agglomerates

Aggregate growth

Self Similarity

Euclidian Objects

00000000
0000000000
0000000000
0000000000
0000000000
9000000000
000000000
0000000000
0000000000
0000000000

#

-

Fractal Objects

)
c
=]
©
=

Course Grain

From DW Schaefer Class Notes
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Intensity, a. u.

Fractal Aggregates and Agglomerates

10’ T TYT T T
1w+ . o~ -
7 S
1w ?*{ R 1
A By
10* M 1
L & -
10~ S 2 ;‘"2 1 2
E 100 om bl "
0 4 &
1 1 g
2 % —
1 - ‘x, B =
' % o
o Intensity % —
10 = Unified Fit %
w' - Guinier Functions % ’ .
2 Power Laws
0 g e
I"‘ " " | " " | RN | o N ey
0.0001 0.001 0.01 0.1 1
-1
q A

Primary: Primary Particles
Secondary: Aggregates
Tertiary: Agglomerates

From DW Schaefer Class Notes
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Zirconia
Unified Fit

Power Laws
Guinier Law

| R T e R ) [ R R L P S

PEETIT BT BRI B e

0.0001 0.001 0.0 0.1 1
q A"

Primary: Primary Particles

Tertiary: Agglomerates
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Hierarchy of Polymer Chain Dynamics
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Dilute Solution Chain

Dynamics of the chain

5.1 Response Functions 199

1.0 1.0

05§ 08 =

' (a) - (b)
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PO M I T NS I N 0.0 [ TR U I A
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t t

¥ = [ drexp(~k, (1-)/2) (1)

The exponential term is the “response function”

response to a pulse perturbation
199

Fig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly
viscous body (b}, a Hookean solid (c), a simple relaxatory system (d)



Dilute Solution Chain

Dynamics of the chain

Step Response

o
0.5 15 3

Damped Harmonic . . Time
) For Brownian motion
Oscillator

of a harmonic bead in a solvent
. this response function can be used to calculate the
x(t)= | dt’exp(—k,, (t—1")/&)g(t) time correlation function <x(t)x(0)>
J ( ’ / ) for DLS for instance

6.2 The Rouse-Mode) 294

(x(r)x(0 de Idf exp| k., (t—1,—1,)/&](s(1) (1))
DN

(a(e)(t,)) =2 0(r, - 1,)

g
(4(1)x(0)) = —exp(-1/7)

spr
T is a relaxation time.

ampitude
1
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Dilute Solution Chain

Dynamics of the chain

Rouse Motion

Parameters A=34gT, AT parames
- Beads 0 and N are special
E="2%(R-R.)
2 Z‘( k) For Beads | to N-1
dR. —k
dR, —\dE/dR, L= (R, +R_ —2R)+glt
— ( / )+gl(t) dt g ( i+1 i—1 z) gl()

g - 6ﬂnsolventa

For Bead O use R-i = Ro and for bead N Rn+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain

Rouse Motion

as

.

v "..

oy -

- -

. . .
et

Parameters A=24gTA <L AdTnrzeal gararmmcer
dR _kspr
- = R, +R_,—2R )+ g.(t
df 6 ( i+1 i—1 z) g,( )
The Rouse unit size is arbitrary so we can make it very small and:
dR —k, d’R | |
= -+ &) With dR/dt=0ati=0and N
dt E di
d’R

- Reflects the curvature of R in i,
di it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain

O,w‘% o 9
o - O
‘_ /Q%é% d%o__og ' ‘%; Rouse Motion

d’R
——  Describes modes of vibration like on a guitar string

di’

For the “p’ th” mode (0’ th mode is the whole chain (string))

2p°n’k,.  6m*kT _ _
Ky = v 2= Ve p’ &, =2N¢& S =N¢&

S,  2N°b*E
Tp = = > 5
k 3n"p kT

spr,p
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Dilute Solution Chain

Dynamics of the chain

Rouse Motion

as
-
-n
" .,
- .
L e

..Q.

-

-
v
DL
-
.

St

»>
.
>

.

at

Predicts that the viscosity will follow N which is true for low molecular
weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N2 (actually follows N3/df)
Diffusion constant follows I/N (zeroth order mode is translation of the molecule) (actually

follows N-!/df)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)
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I I [ [ [ I
Dilute Solution Chain - frod
Dynamics of the chain /
Rouse Motion 5
5.3 Specific Pelaxation Processes and Flow Behavior 235
'I)" e
1w' - E = o el
3 ‘E Palydinathyls oxere
10 i o
1w 8 Palyisobutylen:
104 Folyettw ena
108 - _’owuuwnm ]
107 |- { 3 —l;avwa-mg'nvt-p-‘ohmvk-- &
3 = o 3 siluxany 2
M
[ Polymathyinsthac ylste
Fig. 5.21. Molecular weight dependence of the relaxation time of the dielectric
normal mode in ces-PIP. Data from Boese and Kromer 58 | Folyxthyiere
‘ glycal ]
Predicts that the viscosity will follow N R L
a 1 2 3 a L ]

Canstant + log M

f 364, Plots of wustaul + lug 17; vs consane + log M foe nine different polymers The
omsk are different for cach of the pelymers, and the one appearicg in the abscissa s

which is true for low molecular weights in
the melt and for fully draining polymers in
solution

A: nal to ion, which i fur u given undilutad polymer. For each polymer the
of th left and right srraight line regions are 1.0 and 3.4, respectively. [G. C. Barry and T, G.
de. Palyw: Sci,, 5, 261-357 (1963).]

Rouse model predicts
Relaxation time follows N2 (actually follows N3/df)
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Hierarchy of Entangled Melts
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Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific paramters”

Tube Diameter dr
Kuhn Length Ik
Packing Length p

.
" :.l - -
- ) .‘
. *
st er >

-

v

£ PLAPY
.":,/ : 2 w LR
rd. > .' Ve
. a8
| 4
-
T™he ~ AdTizead gararmacer a

Parameters A=3kg T%, ¢

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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6.3 Entanglement Effects 229

10

S(1/8(q.0)
o

S(qy/Sq0)

Fig. 6.8. Resulis of o quasicdastic neutron scattering experiment on a melt of
pety(ethylene- co-propylene) at 199°C (105 protonated chains disselved in a deuter
ated matrix; M = 86 - 10'): [ntermediate scattering laws mwssured ot the indi-
cated scaltering yectors (top); data representation using the dimensionkess variable
& =g 12670 t/Cn)' ™ (bottam). Prom Richter ot al|67]

6.3 Entangioment Effects FUS]

A

Fig. 6.10. Modelling the lateral constraints on the chain motion imposed by the
entanglements by a ‘tube’. The average over the rapid wriggling motion wirhlln the
tube defines the ‘primitive path’ (continuons dark line)

Quasi-elastic neutron scattering data
demonstrating the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = I/size
At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained
dr
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.3 Entanglement Effects 281

60
20 -
2 wrl e
= 1
v wl _r-“"i
-
0 - 1 N
400 500 600
T [K]
Fig. 6.9. Size d of the confinement range, as derived from the long teem limits of
the curves shown In Fig. 6.5 [67)

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time =Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3)
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84 Chapter . Micrescopic DDynamical Models

Fig. 6.11. Reptation moedel: Decomposition of the tube resulting from i replative
motion of the primitive chain. The parts which are loft empty disappeat

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3)
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786 Chapter 6. Microscopic Dynamical Models

0.0z

¢ (d PE)

¥ IO'“ Ll i el

10*
M

Fig. 6.12. Determination of diffusion eoeffickents of denterated PE's in a PE maleix
by infrared absorplion messurements in a micrescope. Concentration profiles ()
obtained in the separated state at the begin of a diffusion run and at » laler stage
of diffusive mixing (the deshad lines wore caleulated for monodisperse components;
the deviations are due to polydispersity) (lft). Diffusion coefficients at 7' = 176°C,
derived from measurements on a series of & PE's of different molecular weight {-0he),
[he contéricons dine corresponds to a power law D ~ M7, Work of Klein (68

Reptation predicts that the diffusion coefficient will follow N2 (Experimentally it follows N2)
Reptation has some experimental verification
Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ I/N)
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Reptation of DNA in a concentrated solution

6.4 Hydrodynamic Interaction in Solutions IRT
- '

F 0. 13, Serkes of imaees n H -l "
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Simulation of the tube

213

Fig. 3. Result of the primitive-path
analysis of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.



Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the correspond-
ing network of primitive paths.



Plateau Modulus

Not Dependent on N, Depends on T and concentration
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? T 4RT
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[
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@ [s"]

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9-10° to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54]
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Kuhn Length- conformations of chains <R2> = IkL

Packing Length- length were polymers interpenetrate p = |/(pchain <R?>)
where pchain is the number density of monomers
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Fig. 2. Dimensionless
plateau moduli G 3/kgT
as a function of the di-
mensionless ratio //p
of Kuhn length [, and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (+;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26-28)
(X); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35, 36) (Elrand a semi-

10 , | |
polyolefins  +
polydienes + . <&

10° |- polyacrylates  + ad

miscellaneous  +
polycarbonate  + d'
1 PSTCP X
10 PB/PO X |
0.00226 (I /p)3 ..........
2 - X ¥+
102 | o |
x x7
10-3 i _..."" |
X" melts W []
4 X solutions @
ol x BPAPC ¢ O
X
-5 1 | |
10
107! 100 e
IK/p

atomistic polycarbonate melt (37) (<) under an elongational strain; and (jii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (m), bead-spring
semidilute solutions (®), and the semi-atomistic polycarbonate melt (). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dt ~ p
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Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by
virtual links. (b} Dual slip-links. (c) Real space representation of the
corresponding network of primitive paths.
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

comb

star

4

linear

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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Block Copolymers

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf
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Block Copolymers
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block copolymers

diblock (OO
triblock LVi2oN
end-capped (\LN

star copolymers ‘ , Q ‘?
] o

graft copolymers ) , ‘
"
© sz /\9

; hydrophobe
(water-insoluble)

Figure 9. Schematics of block, star, and graft amphiphilic block copolymers.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf
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16

' dacore gshell dacore "
¢
0

Figure I. Tllustration of model I (left) and II (right) of the AB-diblock copolymer micelle in a
selective solvent (lower panel) and the volume fraction profiles of the polymer blocks (upper
panel) applied for the large core case (N, >> Ny) and the small core case (N, << Np),

respectively.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf

226


http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf

Hierarchy in BCP’ s and Micellar Systems

HO 4<CH;JCHPO >—<CH; CHO >—< CH, CH,0 >—H
n2 | m n2
CH4

Pluronics (PEO/PPO block copolymers)

We consider primary structure as the block nature of the polymer chain.
This is similar to hydrophobic and hydrophilic interactions in proteins.
These cause a secondary self-organization into rods/spheres/sheets.

A tertiary organizaiton of these secondary structures occurs.

There are some similarities to proteins but BCP’ s are extremely simple systems by comparison.
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What is the size of a Block Copolymer Domain?

Masao Doi, Introduction to Polymer Physics

-For and symmetric A-B block copolymer

-Consider a lamellar structure with ® = 1/2

-Layer thickness D in a cube of edge length L, surface energy o

- so larger D means less surface and a lower Free Energy F
Fsurface =20—L

-The polymer chain is stretched as D increases. The free energy of

a stretched chain as a function of the extension length D is given by

D’ I

= kT~ where N is the degree of polymerization for A or B,

c

stretch

b is the step length per N unit, vc is the excluded volume for a unit step
So the stretching free energy, F, increases with D2,

/3
oN’b*v, j N
kT

-To minimize the free energies we have DE(
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Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a
great index difference that we have no means to determine if they are from the same chain
other than following the chain over great distances to determine the connectivity. That is,
Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.

The chain is composed of a series of steps with no orientational relationship to each other.
So<R>=0

<R2> has a value:

(R?)= XX rory = e + X 3

i j#

We assume no long range interactions so that the second term can be 0.
(R*)=Nr’
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