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Long Range Interactions
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van der Waals’ Equation

p = nRT/V

i.g. from kinetic theory of 
gasses

Atoms can pass through 
each other

No enthalpy of interaction
Totally entropic

Modify for 
excluded volume 

“b”

p = nRT/(V-b)

Which increases 
pressure 

Modify for excluded volume 
“b”
and

Attractive enthalpic interaction 
“a”

p = nRT/(V-b) – a(n/V)2

                  -TDS    +   DH
n/V = r ~ f or c

Binary attractive interactions 
(can form a liquid)

Which decreases pressure 
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Van der Waals’ Equation

p = nRT/(V-b) – a(n/V)2      Van der Waals Equation

Compressibility Factor Z = pVmolar/RT = p/rRT = 1 + B2 r + … Virial Expansion
       B2 has units of molar volume
Solve for B2 using the van der Waals Equation 

B2 = b – a/RT for molar volume or B2 = b – a/kBT  for molecular volume

Flory and Krigbaum knew they needed an energy for an expanded chain of the van 
der Waals form

Molar Energy = pVmolar = RT (1 + B2 / Vmolar) 
 Where: B2 = Excluded Volume – Attractive Potential/RT = b – a/RT
 
   Energy = Ideal + repulsive “b” and attractive “a”

When T* = a/Rb, interactions disappear, B2 = 0, and 
system becomes “ideal”.  This is a “critical point” 

just before phase separation.



4

Van der Waals’ Equation

p = nRT/(V-b) – a(n/V)2      Van der Waals Equation

Compressibility Factor Z = pVmolar/RT = p/rRT = 1 + B2 r + … Virial Expansion
       B2 has units of molar volume
ZVdW = pVmolar/RT = V/(V-b) – ar = 1/(1-br) – ar 

Geometric series Sark = a/(1-r) sum from 0 to ∞

So, 1/(1-br) = Sark = 1 + br + (br)2 + … and for br = b/V is very small

ZVdW = 1/(1-br) – ar = 1 + (b – a/RT) r + (br)2 +…

Compare with the virial expansion

Z = pVmolar/RT = p/rRT = 1 + B2 r + B3 r2 + …

B2 = b – a/RT and B3 = b2
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Van der Waals’ Equation

p = nRT/(V-b) – a(n/V)2 + c (n/V)3   Van der Waals Equation with repulsive ternary interactions

Compressibility Factor Z = pVmolar/RT = p/rRT = 1 + B2 r + B3 r2 + … Virial Expansion
       B2 has units of molar volume
ZVdW = pVmolar/RT = V/(V-b) – ar = 1/(1-br) – ar  + cr2

Geometric series Sark = a/(1-r) sum from 0 to ∞

So, 1/(1-br) = Sark = 1 + br + (br)2 + … and for br = b/V is very small

ZVdW = 1/(1-br) – ar = 1 + (b – a/RT) r + (b2 + c/RT) r2 +…

Compare with the virial expansion

Z = pVmolar/RT = p/rRT = 1 + B2 r + B3 r2 + …

B2 = b – a/RT and B3 = b2 + c/RT

For an immiscible system B2 is negative or very small (low temperature)
B3 can be positive leading to a discrete phase transition or negative leading to a continuous transition

Red detracts from Black
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Long-Range Interactions

Boltzman Probability
For a Thermally Equilibrated System

Gaussian Probability
For a Chain of End-to-End Distance R

By Comparison, The Energy to stretch a Thermally Equilibrated Chain Can be Written

For a Chain with Long-Range Interactions There is and Additional Term

So,

Flory-Krigbaum Theory
Result is called a Self-Avoiding Walk

The Secondary Structure for Synthetic Polymers

Number of pairs

n n −1( )
2!



7



8

R2 =
R2

30

4000

∫ exp −3R2

2nlk
2 − n

2Vexcluded
2R3

⎛
⎝⎜

⎞
⎠⎟
dR

exp −3R2

2nlk
2 − n

2Vexcluded
2R3

⎛
⎝⎜

⎞
⎠⎟
dR

30

4000

∫
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Linear Polymer Chains have Two Possible Secondary Structure States:

Self-Avoiding Walk
Good Solvent
Expanded Coil

(The Normal Condition in Solution)

The Secondary Structure for Synthetic Polymers

These are statistical features. That is, a single simulation of a SAW 
and a GC could look identical.

Gaussian Chain
Random Walk

Theta-Condition
Brownian Chain

(The Normal Condition in the Melt/Solid)
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Self-Avoiding Walk
Good Solvent
Expanded Coil

(The Normal Condition in Solution)

Gaussian Chain
Random Walk

Theta-Condition
Brownian Chain

(The Normal Condition in the Melt/Solid)

Concentration driven contraction
Consider going from dilute conditions, c < c*, to the melt by increasing concentration.

The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate concentration changes 

through a scaling transition.  Primary, Secondary, Tertiary Structures.

Linear Polymer Chains have Two Possible Secondary Structure States:

The Secondary Structure for Synthetic Polymers
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Self-Avoiding Walk
Good Solvent
Expanded Coil

(The Normal Condition in Solution)

Gaussian Chain
Random Walk

Theta-Condition
Brownian Chain

(The Normal Condition in the Melt/Solid)

Thermally driven expansion
Consider going from Theta Temperature, T = q, to the expanded coil by increasing temperature.

The transition in chain size is gradual not discrete.
Synthetic polymers at thermal equilibrium accommodate thermal changes through a scaling 

transition.  Primary, Secondary, Tertiary Structures.

Linear Polymer Chains have Two Possible Secondary Structure States:

The Secondary Structure for Synthetic Polymers
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Problem: The transition in chain size is gradual not discrete as predicted by FK theory.
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We have considered an athermal hard core potential 
(excluded volume, ‘b’, from VdW equation)

But Vc actually has an inverse temperature component associated with attractive enthalpic 
interactions between monomers and solvent molecules (attractive binary interactions, ‘a’, 
from VdW equation)

The interaction (attractive) energy between a monomer and the polymer/solvent system is on 
average <E(R)> for a given end-to-end distance R (defining a conformational state).  This 
modifies the probability of a chain having an end-to-end distance R by the Boltzmann 
probability,

<E(R)> is made up of pp, ps, ss interactions with an average change in attractive energy on 
solvation of a polymer Δε = (εpp+εss-2εps)/2

For a monomer with z sites of interaction we can define a unitless attractive energy parameter 
χ = zΔε/kT that reflects the average enthalpy of attractive interaction per kT per monomer

PBoltzman (R) = exp
− E(R)
kT

⎛
⎝⎜

⎞
⎠⎟

p = nRT/(V-b) – a(n/V)2

B2 = b – a/RT
      PV = RT + RT B2/V  (Virial Expansion)

Energy = Ideal + repulsive “b” and attractive “a”

VdW equation

Excluded 
volume like “b”
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E(R)
kT

= n
2Vcχ
R3

For a monomer with z sites of interaction we can define a unitless energy parameter 
χ = zΔε/kT that reflects the average enthalpy of attractive interaction per kT for a monomer

The volume fraction of monomers in the polymer coil with a conformational state of end-to-
end distance R is nVc/R3

And there are n monomers in the chain, attractive chain energy “nc”, so,

We can then write the energy of the chain as, (remember c ~ 1/T)

This indicates that when χ = ½ the coil acts as if it were an ideal chain, excluded volume 
disappears.  This condition is called the theta-state and the temperature where χ = ½ is called 
the theta-temperature.  It is a critical point for the polymer coil in solution.

PV = RT(1 + B2/V)
B2 = b – a/RT

When T* = a/Rb interactions disappear
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

The effective excluded volume is now Vex = V0 (1/2-c)

The Flory-Krigbaum result for coil size is: 

R* = R0
* n1 2V0 1 2 − χ( )

b3
⎛
⎝⎜

⎞
⎠⎟

1 5

Using this approximation for conditions of large molecular weight: 

where χ = zΔε/kT
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R* = R0
* n1 2V0 1 2 − χ( )

b3
⎛
⎝⎜

⎞
⎠⎟

1 5

This Solves the Problem: The transition in chain size is gradual not discrete as predicted by FK theory.
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R* = R0
* n1 2V0 1 2 − χ( )

b3
⎛
⎝⎜

⎞
⎠⎟

1 5
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E(R)
kT

= n
2Vcχ
R3

PV = RT(1 + B2/V)
B2 = b – a/RT

When T* = a/Rb interactions disappear

χ = zΔε/kT

Average attractive 
enthalpy of interaction

For a single polymer coil

B2 = Vc/2 – Vc c

χ = zΔε/kT

For a polymer mixture (polymer/polymer or polymer/solvent)

Flory-Huggins Equation

ΔG
kTNcells

= φA

NA

lnφA +
φB
NB

lnφB +φAφBχ
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ χ = zΔε

kT
= B
T

Lower-Critical Solution Temperature (LCST)

Polymers can order or disorder on 
mixing leading to a noncombinatorial 
entropy term, A in the interaction 
parameter.

χ = A + B
T

If the polymer orders on mixing then A 
is positive and the energy is lowered.

If the polymer-solvent shows a specific 
interaction then B can be negative.

This Positive A and Negative B favors 
mixing at low temperature and 
demixing at high temperature, LCST 
behavior.

ΔG
kTNcells

= φA

NA

lnφA +
φB
NB

lnφB +φAφBχ
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E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

χ = zΔε
kT

= B
T

Lower-Critical Solution Temperature (LCST)

χ = A + B
T

Poly vinyl methyl ether/Water
PVME/PS

Also see Poly(N-isopropylacrylamide)/Water

http://www.sigmaaldrich.com/technical-documents/articles/material-matters/poly-n-isopropylacrylamide.html


Two Phases
 at Equilibrium

One
Phase

21

DGm = RT(xA ln(xA) + xB ln(xB)) + W xAxB

dΔG
dφ

= 0 Miscibility Limit
Binodal

d 2ΔG
dφ 2

= 0 Spinodal
d3ΔG
dφ 3

= 0 Critical Point
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Flory-Huggins Equation

dΔG
dφ

= 0 Miscibility Limit
Binodal

d 2ΔG
dφ 2

= 0 Spinodal

d3ΔG
dφ 3

= 0 Critical Point

All three equalities apply
At the critical point

http://rkt.chem.ox.ac.uk/lectures/liqsolns/regular_solutions.html

Hildebrandt Regular Solution Model

𝑃𝑉
𝑘𝑇𝑁!"##$

ΔG
kTNcells

= φA

NA

lnφA +
φB
NB

lnφB +φAφBχ

http://rkt.chem.ox.ac.uk/lectures/liqsolns/regular_solutions.html


23



24

Tc = θ(1-2Φc)
Linear 

Relationship
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Consider also f* which is the coil 
composition, generally below the 
critical composition for normal n or N

φ* = n
V

= n
R3

   ~ n−4
5  (for good solvents) 

or ~ n-1
2  (for theta solvents)

Overlap Composition
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Overlap Composition

Φ*

Both f* and fc depend 
on 1/√N

Below f* the 
composition is fixed 
since the coil can not be 
diluted!
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Overlap Composition

Φ*

Both f* and fc depend 
on 1/√N

Below f* the 
composition is fixed 
since the coil can not be 
diluted!

So, there is a region 
(yellow) of coil 
collapse below the 
binodal at f* in 
composition and 
temperature

Coil
Collapse
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Φ*

Coil
Collapse Phase 

Separation

Θ
Coil

GS-Coil

Overlap Composition

Both f* and fc depend 
on 1/√N

Below f* the 
composition is fixed 
since the coil can not be 
diluted!

So, there is a regime of 
coil collapse below the 
binodal at f* in 
composition and 
temperature
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For a polymer in solution there is an inherent concentration to the chain
since the chain contains some solvent

The polymer concentration is Mass/Volume, within a chain

When the solution concentration matches c* the chains “overlap”
Then an individual chain is can not be resolved and the chains entangle

This is called semi-dilute since the solution is still of very low concentration.
The regime below c* is called dilute.  Very high concentrations, q-coil, are called concentrated.
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In concentrated solutions with chain overlap 
chain entanglements lead to a higher solution viscosity

J.R. Fried Introduction to Polymer Science

Later called ce, 
entanglement 
concentration
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of 
polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010) 

h  = h0 (1 + [h]c)
hsp= (h - h0)/h0

[h] = limc=>0 (hsp/c)

[h] = Vcoil/m = 1/c* = m3/df - 1

http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf


32

Structure and linear viscoelasticity of flexible polymer solutions: comparison of 
polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010) 

Red circles neutral 
good solvent ce
Red stars neutral 
good solvent c*

Blue circles 
polyelectrolyte ce
Blue stars 
polyelectrolyte c*

-2

-0.8

This can be explained if you 
consider that c* is on a chain 
size-scale while ce is on a bulk 
size scale, that is ce is for bulk 
network pathways while c* is 
for the coil pathway.  ce 
behaves the same in rigid rods 
and coils because both make a 
self-avoiding network on 
large size scales, c* is 
different because one chain is 
a rod the other a self-avoiding 
walk.

df = 5/3  -0.8
df = 2  -0.5
df = 1.  -2

http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
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Extensional Flow
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Extensional Flow

Trouton Viscosity = 3 Shear Viscosity for a Newtonian fluid

For a constant extensional strain rate, g’zz = dvz/dz = constant
So, vz = dz/dt = constant z

dz/z = constant dt
z = exp(Kt)

You need to stretch the fluid with exponentially increasing length.
That is hard to do in a lab.
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How dilute are dilute solutions in extensional flows? C. Clasen, J. P. Plog,, W.-M. Kulicke, 
M. Owens, C. Macosko, L. E. Scriven, M. Verani and G. H. McKinley, J. Rheol. 50 849-

881 (2006); 

Diameter from capillary thinning experiments

http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
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How dilute are dilute solutions in extensional flows? C. Clasen, J. P. Plog,, W.-M. Kulicke, 
M. Owens, C. Macosko, L. E. Scriven, M. Verani and G. H. McKinley, J. Rheol. 50 849-

881 (2006); 

SAOS = small 
amplitude 

oscillatory shear
Shear 

Measurement

http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
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How dilute are dilute solutions in extensional flows? C. Clasen, J. P. Plog,, W.-M. Kulicke, 
M. Owens, C. Macosko, L. E. Scriven, M. Verani and G. H. McKinley, J. Rheol. 50 849-

881 (2006); 

Extensional 
Measurement

http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/ExtensionalFlowcevsc*.pdf
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of 
polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010) 

http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
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Structure and linear viscoelasticity of flexible polymer solutions: comparison of 
polyelectrolyte and neutral polymer solutions R. Colby, Rheo. Acta 49 425-442 (2010) 

http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”

Grosberg uses:  α 2 = R2

R0
2

Rather than the normal definition used by Flory: α = R2

R0
2

What Happens to the left of the theta temperature?

Coil Expansion Factor a

E(R) = kT 3R2

2nl2
+
n2Vc 12 − χ( )

R3
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

http://www.eng.uc.edu/~beaucag/Classes/Properties/Book.pdf
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”

Grosberg uses:  α 2 = R2

R0
2

Rather than the normal definition used by Flory: α = R2

R0
2

What Happens to the left of the theta temperature?

Short-Range Interactions
We had C∞ = R2/R20 = nKlK2/n0l02 = LlK/Ll0 = lK/l0

Long-Range Interactions
Flory a = R2/R20 = n6/5l2/nl2 ~ n1/5

Grosberg 
a2 = R2/R20  :: a ~ n1/10

http://www.eng.uc.edu/~beaucag/Classes/Properties/Book.pdf
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Coil Collapse Following A. Y. Grosberg and A. R. Khokhlov “Giant Molecules”

Grosberg uses:  α 2 = R2

R0
2

Rather than the normal definition used by Flory: α = R2

R0
2

What Happens to the left of the theta temperature?

http://www.eng.uc.edu/~beaucag/Classes/Properties/Book.pdf
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R ~ R0α = z1 2bα ~ z3 5B1 5b

Van der Waals

dF(a)/da = 0

This is an exact 
solution by 

Grosberg’s method
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Van der Waals’ Equation

p = nRT/(V-b) – a(n/V)2 + c (n/V)3   Van der Waals Equation with repulsive ternary interactions

Compressibility Factor Z = pVmolar/RT = p/rRT = 1 + B2 r + B3 r2 + … Virial Expansion
       B2 has units of molar volume
ZVdW = pVmolar/RT = V/(V-b) – ar = 1/(1-br) – ar  + cr2

Geometric series Sark = a/(1-r) sum from 0 to ∞

So, 1/(1-br) = Sark = 1 + br + (br)2 + … and for br = b/V is very small

ZVdW = 1/(1-br) – ar = 1 + (b – a/RT) r + (b2 + c/RT) r2 +…

Compare with the virial expansion

Z = pVmolar/RT = p/rRT = 1 + B2 r + B3 r2 + …

B2 = b – a/RT and B3 = b2 + c/RT

For an immiscible system B2 is negative or very small (low temperature)
B3 can be positive leading to a discrete phase transition or negative leading to a continuous transition

Red detracts from Black
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B changes sign, positive for miscible, negative for phase separation below the Boyle 
temperature TB = a/b (B = b – a/T so “a” (or c) is negative for miscibility/repulsive pp)

C is always positive, i.e., favors coil expansion.
C is important below the theta temperature to model the coil to globule transition at high 
 monomer density
For simplicity we ignore higher order terms because C is enough to give the gross features
 of this transition.  
Generally, it is known that this transition can be either first-order for 
 biopolymers such as protein folding, or second-order for synthetic polymers.
First-order means that the first derivative of the free energy is not continuous, i.e., a jump in 
 free energy at a discrete transition temperature, such as a melting point, heat of melting.
Second order, free energy, volume, entropy etc. are continuous through the transition, slope 
 changes in T (heat capacity, thermal expansion coefficient).

n ~ z/R3
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!

Blob model for coil collapse

R2 ~ g*

Gaussian
Scaling of
g* Blobs

df = 2 for coil
df = 3 for blob

-The expanded coil transitions 
to a Gaussian chain by locally 
forming Gaussian “blobs” 
called “thermal blobs” (will 
cover later).  Neutron scattering 
provides evidence.

-These blobs grow as the theta 
point is approached.

-Thermally driven structural 
changes occur from the bottom 
up.

-Propose a similar model for 
the collapse of the theta coil 
using a different kind of 
“blob”.
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!

Blob model for coil collapse

R2 ~ g*

Gaussian
Scaling of
g* Blobs

df = 2 for coil
df = 3 for blob

Number of 
Blobs = z/g* 
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R2 ~ g*
Number of Blobs (z/g*) times kT is the Confinement Entropy

Entropic Part of Collapse Free Energy

Total Collapse Free Energy

kT C n3 = kT C z3/R3

= kT C/(a6l6)
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α  > 1 for expansion
α < 1 for contraction

Free Energy Including Third Virial Coefficient
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Ratio of C/B determines behavior
The collapsed coil is 3d
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!

x ~ B; y ~ C
B ~ 1/T; a ~ V1/3

Maxwell Construction

https://en.wikipedia.org/wiki/Maxwell_construction
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Maxwell Construction

Isotherm of a Cubic Equation of State 
in the Two-Phase Region of Temperature

There are three possible roots, two points are at equilibrium, 
middle is not real.

Lieden the Netherlands
van der Waals place

https://en.wikipedia.org/wiki/Maxwell_construction
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!

EOS Calculation Phase Diagram

x ~ B; y ~ C
B ~ 1/T; a ~ V1/3



57

!

EOS Calculation

Phase Diagram

x ~ B; y ~ C
B ~ 1/T; a ~ V1/3
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!
x ~ B; y ~ C

B ~ 1/T; a ~ V1/3
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!
Generally, it is known that this transition can be either first-order for 
biopolymers such as protein folding, or second-order for synthetic polymers.
First order means that the first derivative of the free energy is not continuous, i.e. a jump in 
Free energy at a discrete transition temperature, such as a melting point.

x ~ B; y ~ C
B ~ 1/T; a ~ V1/3
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!
Generally, it is known that this transition can be either first-order for 
biopolymers such as protein folding, or second-order for synthetic polymers.
First order means that the first derivative of the free energy is not continuous, i.e. a jump in 
Free energy at a discrete transition temperature, such as a melting point.

x ~ B; y ~ C
B ~ 1/T; a ~ V1/3

First-Order 
Discrete change in a

Second-Order 
a is Continuous
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1.5 Theta
1.6 Expanded
0.774 Sphere

0.92 Draining Sphere
(We will Look at this 

further)



62

1.5 Theta
1.6 Expanded
0.774 Sphere

0.92 Draining Sphere
(We will Look at this 

further)
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Size of a Chain, “R”
(You can not directly measure the End-to-End Distance)
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What are the measures of Size, “R”,  for a polymer coil?

Radius of Gyration, Rg

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf
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Radius of Gyration, Rg

2.45 Rg = Reted

Rg is a direct measure of the end-to-end distance for a 
linear Gaussian chain

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf

What are the measures of Size, “R”,  for a polymer coil?
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Static Light Scattering for Rg

� 

I q( ) = IeNne
2 exp −Rg

2q2
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Guinier’s Law

Guinier Plot linearizes this function

ln I q( )
G

⎛
⎝⎜

⎞
⎠⎟
= −

Rg
2

3
q2        G = IeNne

2

The exponential can be expanded at low-q 
and linearized to make a Zimm Plot

G
I q( ) = 1+

Rg
2

3
q2

⎛

⎝⎜
⎞

⎠⎟
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Static Light Scattering for Radius of Gyration

Guinier’s Law

Beaucage G J. Appl. Cryst. 28 717-728 (1995). 

� 

γGaussian r( ) = exp −3r2
2σ 2( )

σ 2 =
xi −µ( )2

i=1

N

∑
N −1

= 2Rg
2

� 

I q( ) = IeNne
2 exp −Rg

2q2
3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Lead Term is 

� 

I(1/ r) ~ N r( )n r( )2

� 

I(0) = Nne
2

� 

γ0 r( ) =1− S
4V

r + ...

A particle with no surface

� 

r⇒ 0  then  d γGaussian r( )( )
dr⇒ 0

Consider binary interference at a distance “r” for a particle with arbitrary orientation
Rotate and translate a particle so that two points separated by r lie in the particle for all rotations

and average the structures at these different orientations

Binary Autocorrelation
Function

Scattered Intensity is the Fourier Transform of
The Binary Autocorrelation Function
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Debye Scattering Function for Gaussian Polymer Coil

gn rn( ) =
δ rn − Rm − Rn( )( )

m=1

N

∑
N

g r( ) = 1
2N 2 gn rn( )

n=1

N

∑ = 1
2N 2 δ r − Rm − Rn( )( )

m=1

N

∑
n=1

N

∑
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What are the measures of Size, “R”,  for a polymer coil?

Radius of Gyration, Rg

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapter1.pdf
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g q( ) = drg r( )exp iqir( )∫ = 1
2N 2 exp iqi Rm − Rn( )( )

m=1

N

∑
n=1

N

∑

Debye Paper Deriving this Equation 

http://www.eng.uc.edu/~beaucag/Classes/Properties/the%20collected%20papers%20of%20Peter%20J.%20W.%20Debye,%20pgs%20500-513;%20547-558%20copy.pdf
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Low-q and High-q Limits of Debye Function

At high q the last term => 0
Q-1 => Q

g(q) => 2/Q ~ q-2

Which is a mass-fractal scaling law with df = 2

At low q,  exp(-Q) => 1-Q+Q2/2-Q3/6+…
Bracketed term => Q2/2-Q3/6+…

g(q) => 1-Q/3+… ~ exp(-Q/3) = exp(-q2Rg
2/3)

Which is Guinier’s Law
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Ornstein-Zernike Function, Limits and Related Functions

The Zimm equation involves a truncated form of the Guinier Expression intended 
For use at extremely low-qRg: 

If this expression is generalized for a fixed composition and all q, Rg is no longer
the size parameter and the equation is empirical (no theoretical basis) but has a form
similar to the Debye Function for polymer coils:

I q( ) = G
1+ q2ξ 2

This function is called the Ornstein-Zernike function and ξ is called a correlation length.

The inverse Fourier transform of this function can be solved and is given by
(Benoit-Higgins Polymers and Neutron Scattering p. 233 1994):

p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟

This function is empirical and displays the odd (impossible) feature that the correlation
function for a “random” system is not symmetric about 0, that is + and – values for r
are not equivalent even though the system is random.  (Compare with the normal 
behavior of the Guinier correlation function.)

p r( ) = K exp − 3r
2

4Rg
2

⎛

⎝⎜
⎞

⎠⎟
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Π = kT
Vc

φ
N

+ 1
2
− χ⎛

⎝⎜
⎞
⎠⎟φ

2 + ...⎛
⎝⎜

⎞
⎠⎟

The Flory Expression indicates a linear dependence of 
osmotic pressure in concentration at low concentration 
and a dependence on concentration to the power 2 at 

high concentration. 

From Gert Strobl, Polymer Physics
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Ornstein-Zernike Function, Limits and Related Functions

I q( ) = G
1+ q2ξ 2

Low-q limit

High-q limit

I q( ) = G
q2ξ 2

I(q) = 2G
q2Rg

2

I q( ) ~G 1−
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟
~Gexp −

q2Rg
2

3
⎛

⎝⎜
⎞

⎠⎟I q( ) ~Gexp −q2ξ 2( ) 3ξ 2 = Rg
2

2ξ 2 = Rg
2

Ornstein-Zernike (Empirical) Debye (Exact)
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Ornstein-Zernike Function, Limits and Related Functions

I q( ) = G
1+ q2ξ 2

p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟

Empirical Correlation Function Transformed Empirical Scattering Function

Ornstein-Zernike Function

Debye-Bueche Function

Teubner-Strey Function
(F Brochard and
JF Lennon 1975 

J. de Phy. 36(11) 1035)

Sinha Function

p r( ) = K exp − r
ξ

⎛
⎝⎜

⎞
⎠⎟

I q( ) = G
1+ q4ξ 4

p r( ) = K
r
exp − r

ξ
⎛
⎝⎜

⎞
⎠⎟
sin 2πr

d
⎛
⎝⎜

⎞
⎠⎟

I q( ) = G
1+ q2c2 + q

4c3
c2 is negative to create a peak

p r( ) = K
r3−d f

exp − r
ξ

⎛
⎝⎜

⎞
⎠⎟

Correlation function in all of these cases is not symmetric about 0 which is 
physically impossible for a random system.  The resulting scattering functions can 
be shown to be non-physical, that is they do not follow fundamental rules of 
scattering.  Fitting parameters have no physical meaning.

I q( ) =
Gsin d f −1( )arctan qξ( )⎡⎣ ⎤⎦

qξ 1+ q2ξ 2( ) d f −1( ) 2
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Reprinted (adapted) with permission from McGlasson, A.; Rishi, K.; Beaucage, G.; 
Chauby, M.; Kuppa, V.; Ilavsky, J.; Rackaitis, M. Quantification of Dispersion for 

Weakly and Strongly Correlated Nanofillers in Polymer Nanocomposites. 
Macromolecules 2020, https://doi.org/10.1021/acs.macromol.9b02429. Copyright 2020 

American Chemical Society

The license of the image source clearly states that it can be used for commercial and 
noncommercial purposes and there is no need to ask permission from or provide 
credit to the photographer or Unsplash, although it is appreciated when possible.

Mean-Field Interactions    Specific Interactions          

https://doi.org/10.1021/acs.macromol.9b02429
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Figure 1 – For dilute dispersions, all structural features can be observed (left).  With increasing concentration (going 
from left to right), the nano-aggregates begin to overlap and the larger features become obscured by the screening 
phenomenon (dotted line).  Above the overlap concentration, the largest observable structural feature is the mesh 
size.  At even higher concentrations, the mesh size decreases further and large-scale structural information is lost.



98 Pedersen Sommer Paper 2005

file:////Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/PedersonSommer2882_10993675_Chapter_9.pdf
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Random Phase Approximation (RPA) Equation

At high-q, I0(q) is small and 1/I0(q) is much larger than 2c. 
 
At low-q, I0(q) is large, and 2c is much larger than 1/I0(q).

Negative 2c indicates miscibility, positive, phase separation.

Concentration Temperature, c ~ B/T, high T small c

Polymer in Solution
𝜙
𝐼 𝑞 =

𝜙%
𝐼% 𝑞

− 2𝜒𝜙
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How to observe the concentration blob?

Concentration Contrast match the solvent with a mixture of 
deuterated and hydrogenous solvents

Tag one chain by deuteration (1% of chains)

𝜙
𝐼 𝑞

=
𝜙%
𝐼% 𝑞

− 2𝜒𝜙



101

I q( ) = G

exp
q2Rg

2

3
⎛
⎝⎜

⎞
⎠⎟

G
I(q)

= exp
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟
≈1+

q2Rg
2

3
+ ...

Plot is linearized by G I q( )  versus q2

q = 4π
λ
sin θ

2
⎛
⎝⎜

⎞
⎠⎟

At q => 0 this is 1/osmotic compressibility, dP/df = 1/N + fB2 = (1/N + (1-2c)f) 

Zimm Plot
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Zimm Plot

In a GPC you have f ~ 0 for each fraction
Measure light scattering at a few angles and 
extrapolate q2 to 0 to find weight average MW for 
each fraction.  For each fraction the 
polydispersity, Mw/Mn ~ 1 so Mw = Mn = Mz
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Two types of correlation: Mean Field 
and Specific Interactions are 

Experimentally Observed
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These are related to Thermodynamics:
Virial Coefficient = Mean Field = FH c

EOS like Van der Waals = Specific Interaction
(There is overlap)

Non-woven fabric
 (fleece, tissue, paper)

Woven
fabric

At large-scale (q => 0)
they appear the same.
We expect I/f(q=>0) to drop 
at higher concentrations as a 
measure of 1/(f B2) for both.
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Critical ordering concentration

Rishi, K.; Pallerla, L.; Beaucage, G.; Tang, A. Dispersion of Surface-Modified, Aggregated, Fumed Silica in Polymer Nanocomposites. J. Appl. Phys. 2020, 127 
(17), 174702.
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Go to slides 2 second half
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Measurement of the Hydrodynamic Radius, Rh

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd
f

RH = kT
6πηD

1
RH

= 1
2N 2

1
ri − rjj=1

N

∑
i=1

N

∑ Kirkwood, J. Polym. Sci. 12 1(1953).η[ ] = 4 3πRH
3

N
http://theor.jinr.ru/~kuzemsky/kirkbio.html

http://onlinelibrary.wiley.com/store/10.1002/pol.1954.120120102/asset/120120102_ftp.pdf?v=1&t=hn7imqlb&s=a762417d841e792c768f6c6cef85b4f1a904ac28
http://theor.jinr.ru/~kuzemsky/kirkbio.html
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Viscosity

Native state has the smallest volume
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Intrinsic, specific & reduced “viscosity”

τ xy =η γ xy Shear Flow (may or may not exist in a capillary/Couette geometry)

η =η0 1+φ η[ ]+ k1φ 2 η[ ]2 + k2φ 3 η[ ]3 ++ kn−1φ
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
φ

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
φ

ηr −1( ) = ηsp

φ
Limit φ=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

We can approximate (1) as:

ηr =
η
η0

=1+φ η[ ]exp KMφ η[ ]( ) Martin Equation

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1



116

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

Concentration Effect
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

Concentration Effect, c*
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

Solvent Quality
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

Molecular Weight Effect

η[ ] = KMa
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Viscosity

For the Native State Mass ~ ρ VMolecule

Einstein Equation (for Suspension of 3d Objects)

For “Gaussian” Chain Mass ~ Size2 ~ V2/3

V ~ Mass3/2

For “Expanded Coil”  Mass ~ Size5/3 ~ V5/9

V ~ Mass9/5

For “Fractal”  Mass ~ Sizedf ~ Vdf/3

V ~ Mass3/df
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Viscosity

For the Native State Mass ~ ρ VMolecule

Einstein Equation (for Suspension of 3d Objects)

For “Gaussian” Chain Mass ~ Size2 ~ V2/3

V ~ Mass3/2

For “Expanded Coil”  Mass ~ Size5/3 ~ V5/9

V ~ Mass9/5

For “Fractal”  Mass ~ Sizedf ~ Vdf/3

V ~ Mass3/df

“Size” is the
“Hydrodynamic Size”
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Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

Temperature Effect

η0 = Aexp
E
kBT

⎛
⎝⎜

⎞
⎠⎟
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Intrinsic, specific & reduced “viscosity”

η =η0 1+ c η[ ]+ k1c2 η[ ]2 + k2c3 η[ ]3 ++ kn−1c
n η[ ]n( )

n = order of interaction (2 = binary, 3 = ternary etc.)

1
c

η −η0

η0

⎛
⎝⎜

⎞
⎠⎟
= 1
c
ηr −1( ) = ηsp

c
Limit c=>0⎯ →⎯⎯⎯ η[ ] = VH

M

(1)

We can approximate (1) as:

ηr =
η
η0

=1+ c η[ ]exp KMc η[ ]( ) Martin Equation

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1

ηsp

c
= η[ ]+ k1 η[ ]2 c Huggins Equation

ln ηr( )
c

= η[ ]+ k1' η[ ]2 c Kraemer Equation 
(exponential expansion)
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Intrinsic “viscosity” for colloids (Simha, Case Western)

η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

For a solid object with a surface v is a constant in molecular weight, depending only on shape

For a symmetric object (sphere) v = 2.5  (Einstein)

For ellipsoids v is larger than for a sphere,
  

η[ ] = 2.5
ρ

 ml g

J = a/b

prolate

oblate

a, b, b :: a>b

a, a, b :: a<b

v = J 2

15 ln 2J( )− 3 2( )

v = 16J
15tan−1 J( )
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Intrinsic “viscosity” for colloids (Simha, Case Western)

η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

Hydrodynamic volume for “bound” solvent

VH = M
NA

v2 +δSv1
0( )

Partial Specific Volume
Bound Solvent (g solvent/g polymer)
Molar Volume of Solvent

v2
δS
v1
0
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Intrinsic “viscosity” for colloids (Simha, Case Western)

η =η0 1+ vφ( ) η =η0 1+ η[ ]c( )

η[ ] = vNAVH
M

Long cylinders (TMV, DNA, Nanotubes)

η[ ] = 2
45

πNAL
3

M ln J +Cη( )
J=L/d

Cη End Effect term ~ 2 ln 2 – 25/12   Yamakawa 1975
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Shear Rate Dependence for Polymers

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)

Volume
time

= πR4Δp
8ηl

Δp = ρgh

γ Max =
4Volume
πR3time

Capillary Viscometer
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Branching and Intrinsic Viscosity

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Branching and Intrinsic Viscosity

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter 1

Rg,b,M
2 ≤ Rg,l,M

2

g =
Rg,b,M
2

Rg,l,M
2

g = 3 f − 2
f 2

gη =
η[ ]b,M
η[ ]l,M

= g0.58 = 3 f − 2
f 2

⎛
⎝⎜

⎞
⎠⎟

0.58
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Polyelectrolytes and Intrinsic Viscosity

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Polyelectrolytes and Intrinsic Viscosity

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Hydrodynamic Radius from 
Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pd
f

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HiemenzRajagopalanD
LS.pdf
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Consider motion of molecules 
or nanoparticles in solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the 
starting point at t = 0 is a Gaussian Function that defines the 

diffusion Coefficient, D

ρ x, t( ) = 1
4πDt( )1 2

e
−x

2

2 2Dt( )

x2 =σ 2 = 2Dt

A laser beam hitting the solution will display a fluctuating 
scattered intensity at “q” that varies with q since the 
particles or molecules move in and out of the beam

I(q,t)
This fluctuation is related to the diffusion of the particles

The Stokes-Einstein relationship states that D is related to RH,

D = kT
6πηRH
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For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
g1(q,τ)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
I(q,t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales

and consider only the fluctuations at a given size scale, r or 2π/r = q
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Dynamic Light Scattering

a = RH = Hydrodynamic Radius

The radius of an equivalent sphere following Stokes’ Law
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Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

my DLS web page

Wiki
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us
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Diffusing Wave Spectroscopy (DWS)

Will need to come back to this after introducing dynamics
And linear response theory

http://www.formulaction.com/technology-dws.html

http://www.formulaction.com/technology-dws.html
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Static Scattering for Fractal 
Scaling
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For qRg >> 1

df = 2
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Ornstein-Zernike Equation

I q( ) = G
1+ q2ξ 2

Has the correct functionality at high q
Debye Scattering Function => 

I q => ∞( ) = G
q2ξ 2

I q => ∞( ) = 2G
q2Rg

2

Rg
2 = 2ζ 2So,

I q( ) = 2
q2Rg

2 q2Rg
2 −1+ exp −q2Rg

2( )( )



144

Ornstein-Zernike Equation

I q( ) = G
1+ q2ξ 2

Has the correct functionality at low q
Debye => 

I q => 0( ) =Gexp −
q2Rg

2

3
⎛

⎝⎜
⎞

⎠⎟

I q => 0( ) =Gexp −q2ξ 2( )

The relatoinship between Rg and correlation 
length differs for the two regimes.

I q( ) = 2
q2Rg

2 q2Rg
2 −1+ exp −q2Rg

2( )( )

Rg
2 = 3ζ 2
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How does a polymer chain respond to external  perturbation?
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The Gaussian Chain

Boltzman Probability
For a Thermally Equilibrated System

Gaussian Probability
For a Chain of End to End Distance R

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

Force Force

Assumptions:
-Gaussian Chain

-Thermally Equilibrated
-Small Perturbation of Structure (so 
it is still Gaussian after the deformation)
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Tensile Blob

For weak perturbations of the chain 

Application of an external stress to the ends of a chain 
create a transition size where the coil goes from Gaussian 

to Linear called the Tensile Blob.

For Larger Perturbations of Structure 
-At small scales, small lever arm, structure remains Gaussian
-At large scales, large lever arm, structure becomes linear

Perturbation of Structure leads to a structural transition at a 
size scale ξ
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F = ksprR = 3kT
R*2

R

ξTensile ~
R*2

R
= 3kT

F

For sizes larger than the blob size the structure is linear, one 
conformational state so the conformational entropy is 0.  For 
sizes smaller the blob has the minimum spring constant so the 
weakest link governs the mechanical properties and the chains 
are random below this size.
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Semi-Dilute Solution Chain Statistics



151

In dilute solution the coil contains a concentration c* ~ 1/[η]

for good solvent conditions

At large sizes the coil acts as if it were in a concentrated solution (c>>>c*), df = 2.  At 
small sizes the coil acts as if it were in a dilute solution, df = 5/3.  There is a size scale, ξ, 

where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil 
and a tertiary structure of Gaussian Chains.

What is the value of ξ?

ξ is related to the coil size R since it has a limiting value of R for c < c* and has a scaling 
relationship with the reduced concentration c/c*

There are no dependencies on n above c* so (3+4P)/5 = 0 and P = -3/4

For semi-dilute solution the coil contains a concentration c > c*
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Coil Size in terms of the concentration

This is called the “Concentration Blob”

ξ = b N
nξ

⎛

⎝⎜
⎞

⎠⎟

3
5

~ c
c*

⎛
⎝⎜

⎞
⎠⎟
−3
4

nξ ~
c
c*

⎛
⎝⎜

⎞
⎠⎟
3
4( ) 53( )

= c
c*

⎛
⎝⎜

⎞
⎠⎟
5
4( )

R = ξnξ
1
2 ~ c

c*
⎛
⎝⎜

⎞
⎠⎟
−3
4 c
c*

⎛
⎝⎜

⎞
⎠⎟
5
8( )
= c

c*
⎛
⎝⎜

⎞
⎠⎟
−1
8
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Three regimes of chain scaling in concentration.



154

Thermal Blob

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).
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Thermal Blob
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Thermal Blob

Energy Depends on n,  a chain with a mer unit of length 1 and n = 10000
could be re cast (renormalized) as a chain of unit length 100 and n = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.

This is the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.
As the temperature drops further the Gaussian blob becomes larger until the entire chain is

Gaussian at the theta temperature.
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Thermal Blob

Flory-Krigbaum Theory yields:

By equating these:
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Fractal Aggregates and Agglomerates
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Polymer Chains are Mass-Fractals

RRMS = n1/2 l Mass ~ Size2

3-d object Mass ~ Size3

2-d object Mass ~ Size2

1-d object Mass ~ Size1

df-object Mass ~ Sizedf

This leads to odd properties:

density

For a 3-d object density doesn’t depend on size,
For a 2-d object density drops with Size

Larger polymers are less dense
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� 

p ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
dmin

� 

s ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
c

Tortuosity Connectivity

How Complex Mass Fractal Structures
Can be Decomposed

� 

df = dminc� 

z ~ R
d

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
d f

~ pc ~ sdmin

z df p dmin s c R/d

27 1.36 12 1.03 22 1.28 11.2
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Disk Random Coil

� 

df = 2
dmin =1
c = 2

� 

df = 2
dmin = 2
c =1

Extended β-sheet
(misfolded protein) Unfolded Gaussian chain
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

http://www.phys.ksu.edu/personal/sor/publications/2001/light.pdf

-Particle counting from TEM
-Gas adsorption V/S => dp

-Static Scattering Rg, dp

-Dynamic Light Scattering

http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf

http://www.phys.ksu.edu/personal/sor/publications/2001/light.pdf
http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp

-Static Scattering Rg, dp

-Dynamic Light Scattering

http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf

http://www.koboproductsinc.com/Downloads/PS-Measurement-Poster-V40.pdf
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For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
g1(q,τ)

For dynamics we consider a single value of q or r and watch how the intensity changes with time
I(q,t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales

and consider only the fluctuations at a given size scale, r or 2π/r = q
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Dynamic Light Scattering

a = RH = Hydrodynamic Radius
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Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

my DLS web page

Wiki
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us

Wiki Einstein Stokes

http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us

http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us
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Gas Adsorption

http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html

A + S <=> AS

Adsorption Desorption

Equilibrium
=

http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html
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Gas Adsorption

http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html

Multilayer adsorption

http://www.chem.ufl.edu/~itl/4411L_f00/ads/ads_1.html
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http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/GasAdsorptionReviews/ReviewofGasAdsorptionGOodOne.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/GasAdsorptionReviews/ReviewofGasAdsorptionGOodOne.pdf
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From gas adsorption obtain surface area by number of gas atoms 
times an area for the adsorbed gas atoms in a monolayer

Have a volume from the mass and density.

So you have S/V or V/S

Assume sphere S = 4πR2,  V = 4/3 πR3

So dp = 6V/S

Sauter Mean Diameter dp = <R3>/<R2>
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Log-Normal Distribution

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

Geometric standard deviation and geometric mean (median)

Mean

Gaussian is centered at the Mean and is symmetric.  For values that are positive (size) we 
need an asymmetric distribution function that has only values for greater than 1.  In random 
processes we have a minimum size with high probability and diminishing probability for larger 
values.

http://en.wikipedia.org/wiki/Log-normal_distribution

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
http://en.wikipedia.org/wiki/Log-normal_distribution
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Log-Normal Distribution

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

Geometric standard deviation and geometric mean (median)

Mean

Static Scattering Determination of Log Normal Parameters

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp

-Static Scattering Rg, dp

-Dynamic Light Scattering

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

-Particle counting from TEM
-Gas adsorption V/S => dp

-Static Scattering Rg, dp

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

Smaller Size = Higher S/V 
(Closed Pores or similar issues)

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

Primary Size for Fractal Aggregates

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

Fractal Aggregate Primary Particles

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
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Fractal Aggregates and Agglomerates

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/AggregateGrowth.pdf

Aggregate growth
Some Issues to Consider for Aggregation/Agglomeration

Path of Approach, Diffusive or Ballistic (Persistence of velocity for particles)
Concentration of Monomers

persistence length of velocity compared to mean separation distance
Branching and structural complexity

What happens when monomers or clusters get to a growth site:
Diffusion Limited Aggregation
Reaction Limited Aggregation

Chain Growth (Monomer-Cluster), Step Growth (Monomer-Monomer to Cluster-Cluster) 
or a Combination of Both (mass versus time plots)

Cluster-Cluster Aggregation
Monomer-Cluster Aggregation

Monomer-Monomer Aggregation

DLCA Diffusion Limited Cluster-Cluster Aggregation
RLCA Reaction Limited Cluster Aggregation

Post Growth:  Internal Rearrangement/Sintering/Coalescence/Ostwald Ripening

http://www.eng.uc.edu/~gbeaucag/Classes/Nanopowders/AggregateGrowth.pdf
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Fractal Aggregates and Agglomerates

Aggregate growth

Consider what might effect the dimension of a growing aggregate.

Transport Diffusion/Ballistic
Growth Early/Late (0-d point => Linear 1-d => Convoluted 

2-d => Branched 2+d)
Speed of Transport Cluster, Monomer

Shielding of Interior 
Rearrangement

Sintering
Primary Particle Shape

DLA df = 2.5  Monomer-Cluster (Meakin 1980 Low 
Concentration)

DLCA df = 1.8 (Higher Concentration Meakin 1985)

Ballistic Monomer-Cluster (low concentration)  df = 3
Ballistic Cluster-Cluster (high concentration) df = 1.95
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes

Reaction Limited, 
Short persistence of velocity
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/MeakinVoldSunderlandEdenWittenSanders.
pdf

Vold-Sutherland Model particles 
with random linear trajectories 
are added to a growing cluster of 
particles at the position where 
they first contact the cluster

Eden Model particles are added 
at random with equal probability 
to any unoccupied site adjacent 
to one or more occupied sites
(Surface Fractals are Produced)

Witten-Sander Model particles 
with random Brownian 
trajectories are added to a 

growing cluster of particles at 
the position where they first 

contact the cluster

Sutherland Model pairs of 
particles are assembled into 
randomly oriented dimers.  

Dimers are coupled at random 
to construct tetramers, then 
octoamers etc.  This is a step-
growth process except that all 
reactions occur synchronously 

(monodisperse system).

In RLCA a “sticking 
probability is introduced 
in the random growth 

process of clusters.  This 
increases the dimension.

In DLCA the 
“sticking probability 
is 1.  Clusters follow 

random walk.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/MeakinVoldSunderlandEdenWittenSanders.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/MeakinVoldSunderlandEdenWittenSanders.pdf
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

Aggregate growth

From DW Schaefer Class Notes
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Fractal Aggregates and Agglomerates

From DW Schaefer Class Notes

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf

Primary: Primary Particles
Secondary: Aggregates
Tertiary: Agglomerates

Primary: Primary Particles

Tertiary: Agglomerates

http://www.eng.uc.edu/~gbeaucag/PDFPapers/ks5024%20Japplcryst%20Beaucage%20PSD.pdf
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Hierarchy of Polymer Chain Dynamics
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Dilute Solution Chain

Dynamics of the chain 

The exponential term is the “response function”
response to a pulse perturbation
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Dilute Solution Chain

Dynamics of the chain 

Damped Harmonic
Oscillator

For Brownian motion
of a harmonic bead in a solvent

this response function can be used to calculate the
time correlation function <x(t)x(0)>

for DLS for instance

τ is a relaxation time.
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Beads 0 and N are special

For Beads 1 to N-1

For Bead 0 use R-1 = R0 and for bead N RN+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

The Rouse unit size is arbitrary so we can make it very small and:

With dR/dt = 0 at i = 0 and N

Reflects the curvature of R in i, 
it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Describes modes of vibration like on a guitar string

For the “p’th” mode (0’th mode is the whole chain (string))
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Diffusion constant follows 1/N (zeroth order mode is translation of the molecule)  (actually 
follows N-1/df)

Both failings are due to hydrodynamic interactions (incomplete draining of coil)

Predicts that the viscosity will follow N which is true for low molecular 
weights in the melt and for fully draining polymers in solution
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Predicts that the viscosity will follow N 
which is true for low molecular weights in 
the melt and for fully draining polymers in 

solution
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Hierarchy of Entangled Melts
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf

Chain dynamics in the melt can be described by a small set of “physically motivated, 
material-specific paramters” 

Tube Diameter dT

Kuhn Length lK
Packing Length p

Hierarchy of Entangled Melts

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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Quasi-elastic neutron scattering data 
demonstrating the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = 1/size

At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times 
a size for the tube can be obtained

dT
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There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior

Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time  = Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Reptation predicts that the diffusion coefficient will follow N2 (Experimentally it follows N2)
Reptation has some experimental verification

Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ 1/N)
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Reptation of DNA in a concentrated solution
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Simulation of the tube
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Simulation of the tube
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Plateau Modulus

Not Dependent on N, Depends on T and concentration
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Kuhn Length- conformations of chains  <R2> = lKL

Packing Length- length were polymers interpenetrate  p = 1/(ρchain <R2>)
where ρchain is the number density of monomers
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this implies that dT ~ p
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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Block Copolymers
http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf


216

Block Copolymers

SBR Rubber
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Modeling.pdf
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Hierarchy in BCP’s and Micellar Systems

We consider primary structure as the block nature of the polymer chain.

This is similar to hydrophobic and hydrophilic interactions in proteins.

These cause a secondary self-organization into rods/spheres/sheets.

A tertiary organizaiton of these secondary structures occurs.

There are some similarities to proteins but BCP’s are extremely simple systems by comparison.

Pluronics (PEO/PPO block copolymers)
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What is the size of a Block Copolymer Domain?

-For and symmetric A-B block copolymer
-Consider a lamellar structure with Φ = 1/2
-Layer thickness D in a cube of edge length L, surface energy σ
-                         so larger D means less surface and a lower Free Energy F.

-The polymer chain is stretched as D increases.  The free energy of 
a stretched chain as a function of the extension length D is given by

-                         where N is the degree of polymerization for A or B,

b is the step length per N unit, νc is the excluded volume for a unit step
So the stretching free energy, F, increases with D2. 
 
-To minimize the free energies we have

Masao Doi, Introduction to Polymer Physics
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Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a
great index difference that we have no means to determine if they are from the same chain
other than following the chain over great distances to determine the connectivity.  That is,

Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.

The chain is composed of a series of steps with no orientational relationship to each other.

So <R> = 0

<R2> has a value:

We assume no long range interactions so that the second term can be 0.


