How does a polymer chain respond to external perturbation?



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
_E(R) 3(R)
R > —_
P,(R)= exp[ U ] P p( L

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

>

E = kT- R
2nl;
Force Force
Assumptions:
_ dE _ 3kT R=Fk R -Gaussian Chain
dR nzf< ST -Thermally Equilibrated

-Small Perturbation of Structure (so it 1s
still Gaussian after the deformation)



For Larger Perturbations of Structure
Tensile Blob -At small scales, small lever arm, structure remains Gaussian
-At large scales, large lever arm, structure becomes linear
Perturbation of Structure leads to a structural transition at a
size scale 5
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Application of an external stress to the ends of a chain
create a transition size where the coil goes from Gaussian
to Linear called the Tensile Blob.



Because the mechanical response of a polymer chain depends on its size or mass, n
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Mechanical deformation leads to a transition size scale, C

_ 3kT

Tensile ~
F

For sizes smaller than C the structure is not perturbed.



Because the mechanical response of a polymer chain depends on its size or mass, n
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For sizes smaller than C the structure is not perturbed.
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This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n, and will lead to a transition
size scale called a ‘blob’. There are three classic types of blobs: Thermal blob (de
Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, C
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For sizes smaller than ¢ the structure is not perturbed.



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n, and will lead to a transition
size scale called a ‘blob’. There are three classic types of blobs: Thermal blob (de
Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

A “scaling argument”

l.,2 = (n/n,,) 1> where n,, is the number of tensile blobs

—n 12/ 2
So, n,., = n 1%/l

R = nten 1ten
And 1, = 3KT/F
So, R =n 121, = n 12 F/(3kT)

R is proportional to F and decreases with kT

Thermal energy and entropy opposes the applied force



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n, and will lead to a transition
size scale called a ‘blob’. There are three classic types of blobs: Thermal blob (de
Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, &

L
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For sizes smaller than C the structure is not perturbed.

Overlap concentration depends on size so depending on sub-segment size a chain
component can be in dilute (low n, d; = 5/3) or concentrated (high n, d; = 2) regimes
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This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n, and will lead to a transition
size scale called a ‘blob’. There are three classic types of blobs: Thermal blob (de
Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

What happens when c is larger than c*?
We can’t “see” an individual coil

Below the screening length (concentration blob size) we can see the same thing as in
dilute

Above that size we see uniform structure like a fleece cloth

Interactions are screened, the structure 1s Gaussian above the blob size and
expanded coil below

As concentration ¢/c* increases the coil becomes more Gaussian and smaller



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n, and will lead to a transition
size scale called a ‘blob’. There are three classic types of blobs: Thermal blob (de
Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, C

Bl

Tensile ~
F

For sizes smaller than ¢ the structure is not perturbed.

Chain Energy depends on size so depending on sub-segment size a chain component can
have large excluded volume component and be in good solvent (high n, d;= 5/3) regime
or small excluded volume component and be in theta solvent (low n, d; = 2) regime

2y (1/ —
E(R)=kT ;ZZ+HK(£ /)
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Hierarchical Symmetry of Blob Structures

Blob Type | Mass Fractal | Dimension |

Large Scale
Tensile 1
Thermal 5/3
Concentration 2
Kuhn 2

Collapsed Coil 2

Small Scale

External Force
Internal Collapse
External Collapse

Internal Force

Internal Collapse
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Semi-Dilute Solution Chain Statistics



In dilute solution the coil contains a concentration c* ~ 1/[#]

c*=knR' =kn™ for good solvent conditions

For semi-dilute solution the coil contains a concentration ¢ > ¢*

At large sizes the coil acts as if it were in a concentrated solution (¢ >>> ¢%), d;= 2. At
small sizes the coil acts as if it were in a dilute solution, de = 5/3. There is a size scale,
&, where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil
and a tertiary structure of Gaussian Chains.

What is the value of &?

¢ is related to the coil size R since it has a limiting value of R for ¢ < ¢ and has a scaling
relationship with the reduced concentration c¢/c”*

g ~R (C/C*)P — n(3*4pfl-'5

There are no dependencies on n above ¢* so (3+4P)/5 =0 and P = -3/4

E~R (c/c*)™*
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Coil Size in terms of the concentration

€ 0. = Reo (c/c*)** (c/c*)™™ = Reo (c/e*) ™"

This is called the “Concentration Blob”
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J. Physique 43 (1982)531 - 538

Star shaped polymers :
a model for the conformation and its concentration dependence

M. Daoud and J. P. Cotton
Laboratoire Léon-Brillouin, CEN Saclay, 91191 Gif sur Yvette Cedex, France

Fig. 1. — A representation of our model : every branch is
made of a succession of blobs with a size ¢ increasing from
the centre of the star to the outside.

Abstract. — We propose a model giving the conformation of a star shaped polymer by taking into account the

radial variation of the monomer concentration ¢(r).

For an isolated star when increasing r (at the centre of the star r = 0), the variation of ¢(r) is first given by a constant
value (r < f'/2 1) then has a (r//)~" variation (for f*/*1 < r < f"?v~' 1) and finally a (r/I)”*? variation (for
r> fY2 v~ 1); where f is the number of branches, N the number of monomers in a branch and v and / are the
excluded volume and the length associated to a monomer. For all these cases, it is shown that the size of a branch

is always larger than that of a linear polymer made of N monomers.

Beyond the overlapping concentration the star conformation is obtained from two characteristic lengths essen-
tially : x(c) a radius inside which the branches of the other stars do not penetrate, this radius defines a domain
where the conformation of a star is similar to that of an isolated one. Beyond y(c) the interpenetration of branches
is characterized by a screening length &(c) very similar to that found for semi-dilute solutions of linear polymers.

For all these regimes the variation of the size of a star is predicted as a function of N, f, v and c.
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Thermal Blob
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Figure 3. Radius of gyration, R, and hydrodyamic radius Rj versus temperature for
polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

E=k7{ BR; +n‘\";.) E-k 3R’ N n’V. (1-2y)
2nl; 2R 2nl; 2R’
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Thermal Blob

. 2 3.-" =" \
E=kT‘ 3R +n\‘_(l 2x)

2nl; 2R’

Energy Depends on n, a chain with a mer unit of length 1 and » = 10,000
could be re-cast (renormalized) as a chain of unit length 100 and n» = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This is the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.

As the temperature drops further the Gaussian blob becomes larger until the entire chain is
Gaussian at the theta temperature.

20



Thermal Blob

Ny is number of blobs, n; number in a blob
%
R:N%<§ :(Iy )%g _| N - =N%éf%l6/5
T 2T nT T (57) T T
[
Flory-Krigbaum Theory yields: R=V, : (1 ] )C)% N% l%

By equating these:
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Hierarchical Symmetry of Blob Structures

Blob Type | Mass Fractal | Dimension |

Large Scale
Tensile 1
Thermal 5/3
Concentration 2
Kuhn 2

Collapsed Coil 2
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Small Scale

External Force
Internal Collapse
External Collapse

Internal Force

Internal Collapse
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Osmotic Pressure

n
T = (—jkT
V
Solute molecules move with k7" and exert a pressure like a gas on the

walls of the vessel. This 1s the osmotic pressure.

We can use this to count the number of solute molecules, n (7 1s a
colligative property). For a known mass used to make the solution we
can obtain the number average molecular weight.

25



Osmotic Pressure
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H ”(V)HH Osmotic Pressure

“re For non-Ideal conditions we consider a
e power-series in number concentration, p,
called a virial expansion.

n _ Mass 1

T =—
- =Bp+B.p’ +Bp +Bypt . TV TV (w),

The first virial coefficient is trivial. The second
virial coefficient pertains to binary interactions
(if we are considering enthalpic effects).

T p 1
k_T=N+sz2+B3p3+B4p4+’” B2=<—— )

Colligative => M

For a monomer with z sites of interaction we can define a unitless energy
parameter
x = zAe/kT that reflects the average enthalpy of interaction per kT for a monomer
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Osmotic Pressure

For non-Ideal conditions we consider a
power-series in number concentration, p,

called a virial expans

—=Bp+B,p’ +Bp +B,p* +...

kT

Heimez’s B is usually
called 4,

B, = A,/M?

B, has units of effective
excluded volume per mole

By comparison with van
der Waals equation

=b —a/kT
b 1s the hard-core excluded
volume per mole
a 1s the attractive potential
between particles per mole

10N.

_ Mass 1 1)

¥, ¥, ©: Parameters
ol interest for
the solution

(MW), N
24 P o 7
B i 18Y% ()
"V;'w‘«‘- B>s T}
dl f{ “
d Virial Coefficient for Uncharged Particles 143
; Values of the nonideality correction factor B' and the second virial
wat B for three different models of nonideal colloidal soa‘unons
Vi« ‘J
Noninteracting  Noainteracting Interacung 1
spheres rods random coils Helmez
1 114 0
0. ey ) Colloidal
y g -2 B Y V"\Q(‘_)
v v, “RT\V, g 2
' ' Chemistry
i.: Length; AG: Free energy of
d: Diameter solute-solvent
interaction
oY <o 8 LYy . . L AG f"
™Y paM;  dM? pMod VIRT M)
6 4 ¢ xb_b_}
p,:-‘rR‘N,‘ pswd N, V. \M,
R : Radius of d: Diamecter ¥{1-8/ T){' v, '):
sphere of rod v, M



Osmotic Pressure

p 1
— T e— B 2 B 3 B 4 oo e -_ (__ )

For a monomer with z sites of interaction we can define a unitless energy
parameter
x = zAe/kT that reflects the average enthalpy of interaction per kT for a monomer

29



Flory’s consideration of polymer mixing

Consider the ideal mixing of gas atoms. Then entropy gained in
mixing 1s given by Boltzman interms of the volume fraction @ as:

ASmixing = ¢ln¢ + (1 o (Z))hl(l o ¢)
For a polymer, each chain acts as a unit so this function i1s modified as:

AS 1 = 09-+(1-9)In(1-9)

To account for enthalpy of mixing Flory introduce a simple binary
interaction parameter:

M =2 109-+(1-9)In(1-9)+ £9(1-9)

Where Af is the volumetric (Helmholtz) free energy change on mixing per monomer
per kT. To obtain the free energy of mixing for a chain we multiply by kT and by Q,
the number of monomer + solvent sites in the system.
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Osmotic Pressure
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At equilibrium, the chemical potentials of the solvent (and the polymer) in
the two solutions are identical.

Chemical potential is the change in free energy with respect to
concentration for a given component in a given phase (you need to
specify the component and the phase when you say chemical
potential)
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SUV
H A G=A+VP
-PG T

The chemical potential, here u, or u,, for one component of a mixture is the derivative of the
Gibbs free energy for the system with respect to the number of moles of that component. The
Gibbs free energy is related to the Helmholtz free energy by, G = F +PV. For the Flory lattice

system the volume equals the number of lattice sites time the volume of one site, V= QV,_, where

Q=n_+ n,N and N is the degree of polymerization. Changing the number of moles of one
component in the Flory lattice model, while retaining the number of moles of the other component

will result in a change in the lattice size, Q and the volume fraction ¢, and system volume, V. This
means,

u‘s. np, T, P constant (¢’ P’ T) - I‘OS(T) = (6F/69)ol(69/ 6ns)np +(6F/6¢) QT (6¢/ ans) np + PVc

Where u’ (T) is the chemical potential of the pure solvent.

From the definition of Q, (8Q/dn)), = 1; and given that ¢ = nN/(n, N + n) = n N/Q, so
(89/0Q2),, = -n N/Q*. (8¢/dn,),, = (84/0Q),, (8Q/0n,),, = -n N/Q* = -¢/Q. (8F/dQ), , = KT f (¢),
and (8F/8¢) o = QKT (8f,/8¢) o1 , SO,

p

u‘s. np, T, P constant (¢’ P’ T) = l‘-o;(T) + kT (ﬁn (¢) - ¢ (6fn/5¢) QT )+ Pv;

and through a similar approach,

u’p; ns, T, P constant (¢’ P’ T) = u’Op(T) + kT (fm (¢) - (1-¢) (6fm/6¢) QT )+ Pvc

¢ = p/d ensity
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Osmotic Pressure:

The osmotic pressure is the excess pressure needed to make a solution with a polymer have the
same chemical potential as a pure solvent phase at the same temperature,

u, (¢, P+IL T) = u (=0, P, T)
Atdp=0f, =0so u($=0, P, T) = u’ (T) + PV, and using the above expression,

u,(¢, P+IL T) = u’ (T) + KT (£, (9) - ¢ (3f,/8¢) o, )+ (P+IDV,,

S0,

PV, =KT (£, (9) - ¢ (6f,/8¢) o1 )* PV + TV,

and

IT=(T/V,) (¢ (8f./5¢) o - £, (9))

f.(¢)= ¢ In¢ /N + (1-¢) In(1- §) + % ¢ (1- ¢)

(8£./80) o+ = Ing/N + /N - (1+¢)/(1-¢) - In (1-9) + x(1 - 2¢)

S0,

¢ (8£,/8¢) o - £,,(9) = /N - In(1- ¢) - ¢ (1-¢)/(1-9) + x {®(1 - 29)- ¢ (1- )}
= ¢/N -In(1-¢) - - ¢’

for p<1, In(1-9) = -{¢p + ¢*/2 + ¢§'/3 + ¢*/4 +...} and,

I=KT/V)[O/N+(1/2-%) ¢* +¢*/3 +¢/4 +... ]
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The Flory Expression indicates a linear dependence of
osmotic pressure in concentration at low concentration
and a dependence on concentration to the power 2 at
high concentration.

kT( ¢ (1 )
=—| =+ =— + ..
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Fig. 3.2. Osmotic pressures measured for samples of poly(a-methylstyrene) dis-

2 CiDX : ¢ p e
solved in toluene (25°C). Molecular weights vary between M = 7-10" (uppermost e
curve) and M = 7.47 - 10° (lowest curve). Data taken from Noda et al.[9] w/Cw

Fig. 3.3. Data of Fig. 3.2, presented in a plot of the reduced osmotic pressure
versus the overlap ratio. The continuous lines correspond to the theoretical results

Egs. (3.26), (3.41)

From Gert Strobl, Polymer Physics
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Fig. 3.3. Data of Fig. 3.2, presented in a plot of the reduced osmotic pressure
versus the overlap ratio. The continuous lines correspond to the theoretical results

From Gert Strobl, Polymer Physics Eas. (3.26), (3.41)

Right graph shows that:

1) c/c* is the natural measure of concentration

2) Flory prediction is sufficient at low c/c* but fails at large c/c*

3) The prediction of the concentration blob model 1s correct at large c/c*
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Osmotic Pressure for
Excluded Volume Coils and Concentration Blobs.

Using the Flory-Huggins equation an expression for the osmotic pressure can be obtained.

O=KT/V) [¢/N+(1/2-%) ¢ +¢'3+¢'/4 +... ]

The Flory-Huggins equation assumes in its derivation that the spatial distribution of monomers is
random. This means that the Flory-Huggins equation is restricted to Gaussian Coils and is not
strictly appropriate for the normal condition of polymers in a good solvent, i.e. F-H is not
appropriate for self-avoiding walks. The F-H expression for osmotic pressure is also not
appropriate for concentrations above the overlap concentration in good-solvent systems. F-H is
only appropriate for theta-temperature solutions.

Resolution of good-solvent behavior for osmotic pressure resulted form the work of des Cloizeaux
and is one of the major contributions of modern polymer physics.

The approach is based on renormalization of a good-solvent coil using the blob concept. First, a
generic expression of osmotic pressure can be written, based on the F-H result,

IT= (kT ¢) f(¢ b, N)

Assuming that the low concentration limit depends linearly on concentration, ¢, and that the viral
expansion will be dependent on molecular weight, N, and the volume physically occupied by the

polymer chains, ¢ b’ = b’ n N/(n, N +n,). This expression can be renormalized to account for
concentration blobs by defining A as the number of units of persistence length b in a blob, so that
the number of blob units in a chain is N/A (replacing N), the step length is the size of a blob, b, ,
=b A", where v is 1/d, and the concentration of blobs (rather than statistical segments, ¢) is ¢,
= ¢/\. Then,

I = (KT ¢/) f($ A" b*, N/2)

and the osmotic pressure is unchanged by renormalization so the two expressions for IT are
equivalent. A can vary from 1 to N. For the limit of A = N the osmotic pressure is proportional to
/N, so the generic expression must be proportional to ¢/N. The N/A dependence already exists in
the ¢ term so the two components are redundant. At the limit of A=N the ¢ expression becomes
(N'b)*, and the generic expression becomes

IT= (KT ¢/N) f(¢/N (N"b)")
We can recognize 1/c* = (N"b)'/N and rewrite the expression in terms of ¢*,
IT= (kT ¢/N) f(¢/¢")

For ¢ > ¢ *, IT is independent of N. Then f(¢/¢") must have a linear molecular weight dependence
and since ¢/¢" = (Nb)*/N ¢ or N*""' b’ ¢, we have,

I = (KT o/N) (¢/)' ™"

For theta solvent scaling and concentrations above the overlap concentration this results in IT, = K

¢’, as predicted from the viral expansion of the F-H equation. For good solvents IT_, = K ¢”*.
This result has been experimentally verified. The F-H result is retained at low concentrations even
for good solvent coiﬂf while above the overlap concentration a stronger dependence on
concentration of the osmotic pressure is predicted by scaling arguments and renormalization.
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Concentration Blob Prediction
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Flory-Huggins Equation for a Polymer Blend

1_
Af, —¢—Aln¢+( ¢A)1n(1—¢A)+Z¢A (1-9,)

ixing ~ NA NB
ifN,=N,=N
NAfmixing =0, ln¢+(1_¢A)1n(l_¢A)+ZN¢A (1_¢A)
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The critical point is where (yN) = 2
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F-H f(phi)

0.00

-0.02

-0.04

-0.06

-0.08

-0.10

-0.12

-0.14

— N1_Chi2p25

I A B A S N A A S B B

I T T N T O M

AN T N T A T B B |

=

0.2 0.

4
Phi

0.6 0.

8

!—i
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F-H f(phi)
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Concentration Fluctuations and Linear
Response Theory (Nomenclature)

A concentration fluctuation at wave vector k is associated with a change in the Gibbs free energy
that is described by equations of the type given above. For a finite fluctuation a generic
expression in terms of linear response theory is:

0G = a,9,’/2

where a, is a modulus, i.e. the magnitude of the free energy response to a fluctuation of size ¢,.
Positive and negative fluctuations have the same effect.

A field W, can be associated with this fluctuation, i.e. if the fluctuation is viewed as being driven
by a field such as a thermal gradient field.

W, = a0,
This can also be expressed as,
L

where « is the susceptibility of the concentration to a potential, W,. o, is also called the
response coefficient. It is directly related to the scattered intensity, S(q) = kTa,. We also have
that a, = 1/a,.
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The differential expression for the change in free energy is given by,
dG =W, d¢, = a,9,d,

Fluctuations are driven by thermal energy and the distribution in space is random and follows
Boltzmann statistics,

p(¢,) ~ exp(- a,$,%/2kT)

so the mean square fluctuations are given by the variance of the distribution,

<¢p,> =kT/a, = o kT

The scattered intensity from a homogeneous system is governed by the mean square fluctuations,

v, S(q=k)=<¢,> = kT
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dG =Y, d¢, = 9.4,
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o, =¢,/(dG,/d9,)=¢(dr/dp) Inverse Osmotic Compressibility
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2) Consider scattering from a dilute solution of polymer in solvent. For a one phase system such
as a polymer in solution the deviation in concentration is caused by thermal fluctuations of the
concentration that are dampened by the increase in reduced osmotic pressure x with increasing
concentration. The fluctuations are constantly changing in space and time. Then we consider the
scattered intensity as proportional to the integral of the derivative or the average change in ¢°,

2¢<d¢/d(/kT)=
S(g=>0)= 2kT¢<%> (1)
3) We have a simple expression for dn/d¢ from the Flory-Huggins equation,
1-2y) .,
s0,
S(a = 0)" (#‘” s 2")"’) ©

4) Zimm used the approximation that equation (1) could be generalized to all q by simply
multiplying the contrast factor of equation (1) by the Debye scattering function,

2 2 2
5,(0) = o (Q-1+exp(-Q)) where Q=¢’R: (4)
We previously found that equation (4) can be reduced to Guinier’s law at low-q,
Ear ZRZ 2R2 sz
Sp(g=>0)=ex e £ and ;xﬂaqu—& «l1+ 12 (5)
3 Sy(g=>0) 3 3
Zimm arrived at the following equation,
o
s g | e o ([ =2 1+ 6).
S(qu << 1) N ( x)¢ 3 ©)

Equation (6) is based on the assumption that the chain scattering function (equation (5)) is
independent of the thermodynamics causing concentration fluctuatoins (equation(3)) so that the
two components contribute to the scattering intensity independently. This is, of course, absurd
since the chain structure is determined by thermodynamics. However, the assumption becomes
plausible in the limit of ¢ == 0 and q == 0. For this reason Zimm suggested a plot involving a

double extrapolation as shown below.
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80 3 Polymer Solutions

K¢, !X [10°molg]

q° + 500c,, [10° nm*? ]

Fig. 3.5. Light scattering experiments on solutions of PS (M = 2.8 x 10° gmol ™)
in toluene at 25 °C. Results are presented in a Zimm plot, enabling an extrapolation

to cw = 0 and g = 0. Data from Lechner et al. [11]
2
dn\
2 2
4an’|—
C

From Gert Strobl, The Physics of Polymers 3 'rd Edition. K, = N
0

and X is the

scattering intensity.

2

R
At ¢ == 0 (bottom line) the slope is proportional to yi]— while at q == 0 (left curve) the slope is

proportional to (1 — 2y) or A,. The intercept on the y-axis is proportional to 1/N, the weight
average molecular weight for the polymer.

The Zimm plot is widely used to determine the weight average molecular weight, the coil radius
of gyration and the second virial coefficient despite the approximation involved because it is
only used in extrapolation.

A rigorous and general description of the scattering from polymer blends and solutions at all
values of q was arrived at by de Gennes using the random phase approximation (RPA). The
RPA is discussed in a separate section, the function for scattered intenstity is,

1 1 1
= + -2y (7) (RPA Blend)
S(q) NS, (q’Rgl) ¢zsto(q’Rgz)
where Ni is the weight average molecular weight and the equation is written for a polymer blend.
For a polymer solution N; = 1, ¢, ~ 1 and Sp(q.R,1) ~ I so equation (7) can be rewritten,

9, 1 )
v +¢,(1-2x) (8) (RPA Solution)
S(q) N,S, (q’R,.-z)
Equation (8) bears resemblance to equation (6). The difference is that the inverse Debye

function modifies only the first virial term in (8) while it modifies both the first and second virial
coefficients in equation (6).




The RPA equation can be generalized to include scaling transitions in the polymer coils if more
sophisticated scattering functions are used rather than the Debye function such as the unified
scattering function which can accommodate scaling changes including good solvent scaling and
blob scaling transitions,

1 1 1

S(q) ) ¢1N1S1,'(qug1) * ¢,N,S, (qu,-z)

where Su(q.R,.ds) for a chain of arbitrary fractal scaling and in the absence of blobs (simple case)
is given by,

ZRZ
SU (qaRn ’df ,dmin) = exl{—q_33'] + (% F(d%)]q *4s (10)

where d,i, = d¢ for a linear chain and 1 < d,,;,< dy for a branched chain (PRE 70, 031401 (2004))
and g* = q/ [erf (qu 6'1)] .

-2y (9) (RPA for Scaling Changes)
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Random Phase Approximation

Background for RPA:
Distance = (—\For ce
spring constant /
l)e=Jo =ao
a is the susceptibility
o, =a, ¥,

2) Change in free energy, dG, is proportional to the field (force) and to the response,
change in distance,

dG, = W do,
=a,pdp,
SO

3) For a thermally equilibrated system the average free energy is kT,

( k)'m

Mean composition is related to a mean field. If we use only these average fluctuations
then we are considering only an average or mean field.

4) (¢‘>=ZI‘—T=2(1 kT

This is lmportant since the scattering from a single phase is proportional to this
expression where k => q.

5) Slg=k)=
where K is the inverse of the contrast factor. Scattering only considers a mean field in

this context.

6) The Boltzman distribution for thermally equilibrated states (number density of
fluctuations at a wave vector k of size ¢,) is given by,

(G) ao}
P(¢,)= Pexp T =P, s exp



Two Component, Athermal System:

1) Consider a simplified 2 component system where the field only affects component A,
and the component B can not be seen, i.c. it has no scattering contrast for instance. We
write (1) above in terms of component A,

0
Oy =0 ¥,
where «,” is the collective response coefficient for A units under athermal conditions (0)
in a mixture with B units. This corresponds to the scattering from a polymer blend for

example. We what to solve for this function of k or q.

2) We understand that the system is incompressible and that there is conservation of
mass so that a fluctuation in A leads to an equal and opposite fluctuation in B,

Qis =i =9,
3) The field only effects A units, yet there must be a response to fluctuations in A by the

B units according to (2). Then we can consider an effective field that acts on B units.
This field is called the internal field.

95 = 9, =<lf"‘1_’;

where «,"" is the response coefficient for isolated B units, i.e. the scattering from isolated
B units. For polymers this is the Debye function for a single B chain.

4) Similarly we can write the flux of A units in terms of the response coefficient for

isolated A chains (these isolated coefficients are usually know and correspond to dilute
conditions of a single component.

Qs =0, =(1':'4(‘Pk +2&)
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5) We need an expression for the internal field in terms of known functions. This can
be obtained since expression 3) and 4) are related to each other, summing the two
expressions we get 0,

0 =al! (¥ + %) = " (%)
AA

«
g’&=_¥ AA
k

o el v e
6) Then we can substitute this expression for the internal field into expression 3),

5 Mo 2
¢, =, ‘I_’g =W — T
(11‘ +(1k

7) And equate expression 6) and 1) to solve for the collective response coefficient
(scattering from a blend of two polymers for instance).

aAAuBB

o) ot 8
¢k = llll:a_.u +u35 =al:)lpk
(3 k
aAAaB‘B
AA B
a+af
or
1 1 1
— + —_—

0 AA ., B8
a o a

that is similar to the Zimm equatin in that the inverse of the scattering is related to the
inverse of the Debye function. By comparison with the Zimm function an expression to
determine the interaction parameter is directly obtained.
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Two Component, Thermal System:
1) Consider units with an enthalpic interaction per average units A and B of ' =

2ykT/V.. This enthalpic interaction serves to dampen, if  is negative, or enhance, if % is
positive, the externally applied field by a factor, ¢y

P, =(’-: (lp!: + ¢*x')

2) We solve for ¢,

o a, Y,
Colealy

3) By comparison with expression 1) for the athermal system we have for the thermal
collective response coefficient,

B WO B W1
a, a x_u‘f a® v

This can be used to obtain the interaction parameter from scattering in a polymer blend.
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x(0)= [ di'exp(-k,, (1-1)/€)g(r)

The exponential term is the “response function”
response to a pulse perturbation

5.1 Response Functions 199
1.0 1.0
08 08 |
' (a) - (b)
2 r {\ 06 |-
0.0 V/\V’\VA 2k
R 04 |-
05 | i
02 |-
1o L b 1y 1oy 0.0 T I S Y U T
0.0 02 04 06 08 10 00 0.2 04 086 0.8 10
t
1.0 10
08 |-
| (c)
06 |
3k
04 |—-
02 |-
0.0 1 l j | | 11
00 02 04 06 08 1.0

Fig. 5.4. Primary response function of a damped harmonic oscillator (a), a perfectly
viscous body (b}, a Hookean solid (c), a simple relaxatory system (d)
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Simple exponential relaxor . ) ) ) )
P p For Brownian motion of a harmonic bead in a solvent this

response function can be used to calculate the
time correlation function <x(t)x(0)> for DLS for instance

x(t) = _t[ dt'exp(—kspr (1— t’)/cf,)g(t’)
w  x(0)x(0 Idt Jdt exp| —k,, (1=1,-1,)/ [(g(r)¢(r,))

6.2 The Rouse-Moxtel

= KT
y \N B9 <g(t1)g(t2)>— £ 8( )
3 == kT
| l/l/ (x(1)x(0)) = ~—exp(~t/7)
spr

T is a relaxation time.
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2SI

i

ur’t :
o—! — )
102 100 100 100 100 10}

G'MIcRT) (G~ on)MAcRT)

Fig. 8.5

Oscillatory shear data for solutions of
poly(2-vinyl pyridine) in 0.0023 M HCl
in water. Open symbols are the storage
modulus G’ and filled symbols are the
loss modulus G”. Squares have
¢=05gL"", triangles have
c=10gL"", and arcles have
¢=20gL ", The curves are the
predictions of the Rouse model [Fqs
(8.49) and (8.50)). Data from D F.
Hodgson and E. J. Amis, J. Chem. Phys.
94, 4581 (1991).
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Dilute Solution Chain
Dynamics of the chain

Rouse Motion

as
dat Yan,

C A
Parametars k=3kg T2, ¢ ASES3at gararas »
. K, i(R y )2 Beads 0 and N are special
= For Beads | to N-I
dR, —(dE/dRi) dR, _ Ky (R, +R_,—2R)+gt)
a o E +8:(7) dt ¢

For Bead O use R-1 = Ro and for bead N RNn+1 = RN

E=6nrn,..a This is called a closure relationship
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Dilute Solution Chain
Dynamics of the chain

Rouse Motion

Parametars A=34gTAY, ¢ Aderzeal pararmmcer »
dR _kSp}’
== R, +R_, —2R )+ g.(t
dt g ( i+1 i—1 z) gl()
The Rouse unit size is arbitrary so we can make it very small and:
dR —k,. d°R
= -+ &) With dR/dt =0 ati=0and N
dt E di
d’R

- Reflects the curvature of R in i,
di it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain

£
Gﬂ;jy : ‘%; Rouse Motion

d’R
—— Describes modes of vibration like on a guitar string

di’

For the “p’ th” mode (0’ th mode is the whole chain (string))

2p’n’k,,  6mkT _ _
Koy p = N == NI p’ S, =2N& & =N¢S

S, 2N°b*¢
Tp = = > 2
k 3n"p kT

spr,p
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New slides to augment old talk
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X, Y, Z decouple (are equivalent) so you can just deal with z

dz,
gR = bp(Z — 7))+ bp(2.,— 7))

For a chain of infinite molecular weight there are wave
solutions to this series of differential equations

7, ~ exp —% exp(ild)

04 Chapler 6. Micrascopie Dynamical Models

40, /s

4b
by CcosO R
; (2—2cosd) = 2

T =

i o o e |

Bl

Fig. 6.2. Relaxation rates of Rouse-modes s a function of the phase shift. ¢ Marks
ot the inside of tho abaessa show the mode positions for a cyclic chain with Ng =
10 beads, the marks on the outside give the mades of o linear chain with the same
ength. The lowest order Rouse-maodes of the two chaing with relaxation rates e
e especially indicated, by a filled arcie and a felfed sguure
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Chapler 6. Micrascopie Dynamical Madels

: 4b
For Ng =10  =f T =-£(2-2c0s8)=—=

C_

R

i |

o

l‘l,., 6.2, Relaxation rate
1 the inside of tho aba
l I beads, the marks
ngth. The lowest «
specially indicate 1 by & filled

Varks
s cyclic chain with Ng =
f a linear fhnm with the sam

'| 8 with relaxation rates '"'

arcie and a filfed sguare

of Rowse-modes e o function of the phase shift. ¢ 0

Cyclic Boundary Conditions: 2 = 2w,

N0 =m2r

Nk values of phase shift
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204 Chapter 6. Micrascopie Dynamical Maodels

—R(2 2¢0s6) = b gin2
G G

For Ng = 10 Tl =

i IIITLT*111:

-
A
Fi ,., - Reluxation rates of Rouse-modes e o function of the phase shift ¢ Marks
u-iu ide of t l abs ~ m tions cyclic chain with Ng =
l I heads, the marks = of a linear cha h the sams
ngth. The lowest « 1 - chal ith relaxat rates 7,
e capecially indicated, by a filled carvie and a filfed squar

Free End Boundary Conditions: 2 =% =Zy,1 ~Zn,2 =0

dz(l_o)_dz

[=N,-1)=0
dl dl( )

(Ny—1)6=mx

Nk values of phase shift

Nk Rouse Modes of order “m” 0, = mm; = 0’1’2"“’(NR - 1)
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Lowest order relaxation time dominates the response

-
- 1 \ag)
oag? gk 70

This assumes that (CR)

2
aR
is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model,
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Lowest order relaxation time dominates the response

-
- 1 \ag)
oag? gk 70

Since R’ = agN

o
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The amplitude of the Rouse modes is given by:

The amplitude is independent of temperature because the free energy of a mode
is proportional to kT and the modes are distributed by Boltzmann statistics

p(Z,) = exp(—%j

90% of the total mean-square end to end distance of the chain originates from

the lowest order Rouse-modes so the chain can be often represented as an
elastic dumbbell
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Dumbbell

au
dx dx

—— == +8(1) =—

dt 4

J' dt' exp(

T=—"2
ki,

G

Flig. 6.4. Timao de

2 The Rouse-

ampitude

Moxle)

A
|

W/

pendence

of tl

w amplitude Z,, of

time

lR-:'l m l 15¢:he

cmatic

Rouse dynamics (like a dumbell response)

I—1

er_|_

4

=10

g(t)
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6.2 The Rouse-Meoxte)

ampiitude

time

Fig. 6.4. Tima dependence of the amplitude Z,, of & Rouse mede (schematic

Rouse dynamics (like a dumbell response)

<g(tl) g(t2)> =2D4(r) where =1, —t, and &( ) is the delta function whose integral is 1

kT
Also, D=—

4

kT exp _r ¢ 2
<x(t)x(0)>: ( Tj ’L':k— For t => 0, <x >:_

k 2 spr
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Predictions of Rouse Model

6.2 The Rouse-Model

) CETeR—
10 R '\\ \\
Y
a2\
[y
¢
L \ |
'c 10° |- 4 ]
'\' |
= \ i
. |
© 1 ;
107 \’-.
'%,
10° L - —
10710 10°® 10° 10°
t [s]

Fig. 6.6. Time dependent shear modulus of PVC. Mast

65°C as the reference temperature. The dashed line indicates ks

by the Rouse-model. Data from Eisele [66]
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Dilute Solution Chain
Dynamics of the chain

Rouse Motion

Predicts that the viscosity will follow N which is true for low molecular
weights in the melt and for fully draining polymers in solution

Rouse model predicts
Relaxation time follows N? (actually follows N3/df)
Diffusion constant follows |/N (zeroth order mode is translation of the molecule) (actually
follows N-!/d)

Both failings are due to hydrodynamic interactions (incomplete draining of coil)
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I | | | | |
]
Dilute Solution Chain . A fiprimi
Dynamics of the chain /
Rouse Motion ; j‘

5.3 Specific Relaxation Processes and Flow Behavior 235 ¥
10° =
1w |- E‘ — o wel

: L :E. Palydinatbylsi uxere
10 g | e
0’ 8 Palyisobutylen:
10 Folyettyens
10° |- _’olyuuwltﬂe B
107 |- [ Povy toira-marhyin-4 gihsryurss |
1 1 siluxany
1 W' 0* — )
M
Palymaihyinsthac ylste
Fig. 5.21. Malecular weight dependence of the relaxation time of the dielectric
normal mode in ces-PIP. Data from Boese and Kromer 58 L Folyathyiere -
< glycol
e :
Predicts that the viscosity will follow N fo o
Q 1 2 3 1 13 &

Canstant + log M

’,- 364, Plots of coustaut + lug 1y, vs constsne + log M foe nine different polymers The
15t Lre dlﬁcvcnl for cach of the pelymers, and the one appearicg in the abscissa is

which is true for low molecular weights in
the melt and for fully draining polymers in
solution

ion, which & Lfur i given und:lutad polymer. For each polymer the
: *hﬁ and right erraight line regions are 1.0 and 3.4, respectively. [G. C. Barry and T, G.
de. Palyw. Sci,, 5, 261-357 (1963).]

Rouse model predicts
Relaxation time follows N? (actually follows N3/df)
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Hierarchy of Entangled Melts

73



Hierarchy of Entangled Melts

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific paramters”

Tube Diameter dt

Kuhn Length Ik
Packing Length p

dan e .
- ® b
- o .
. “a» M
& et »
-
v
F, o s®¥e )
o) ™ - \.‘-
rd_. .. P X -_"
fat a
[ ’
-
e ? a Adctizead garamacer a

FParameters A=2&g T/0¢, {

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf

6.3 Entanglement Effects 229
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Fig. 6.8, Results of o quasiclastic neutron scattering oxperiment on a melt of
poly(ethylene- co-propylene) at 199°C {L0% protonated chains dissolved in a deuter-
dled matrix: M = 5.6 10'): [otermediato seattering laws messured ot the indi-
cated scaltering vex tors (top); data representation using the dimensionkess variahle
u =g} 12kTad e/ (n) ? (bottam). Prom Richter ot al [67]

6.3 Entangloment Effects 643

O

Fig. 6.10. Modelling the Iateral constraints on the chain motion imposed by the
entanglements by & ‘tube’. The average over the rapid wriggling motion vrirhl}n the
tube defines the ‘primitive path’ (continwons dark ling)

Quasi-elastic neutron scattering data
demonstrating the existence of the tube

Unconstrained motion => §(q) goes to 0 at very long times
Each curve is for a different q = |/size
At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained

dr
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6.3 Entanglement Effects 281

&0

20 -
i T ol
< L : '_‘,. !
Big 150 LA

-
n L 3
400 500 600
T (K]

Fig. 6.9. Size d of the confinement range, as derived from the leng teem limits of
the curves shown in Fig. 6.5 [67)

There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time =Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)
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84 Chapter 6. Micrascopic [Dynamical Models

Fig. 6.11. Reptation moedel: Decomposition of the tube resulting from i replative
motion of the primitive chain. The parts which are left empty disappeat

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)
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Chapter 6. Microscopic Dynamical Models

80
0.02
10" =
W 0.0t
Q.
v
h= S 10" k=
000
J 10'“ Ll Y
.
10*

M

Fig. 6.12. Determination of diffusion eoeffickents of deuterated PE's in a PE malsix
by infrared absorption messurements in a micrescope. Concentration profiles 4(x)
obtuined in the separated state at the begin of o diffusion run and at s laler stage
of diffusive mixing (the deshat lines wore caleulated for monodisperse components;
the deviations are due to polydispersity) (Lft). Diffusion coefficients at T = 176°C,
derived from messurements on i series of &PE's of different molecular weight {72008,
[he contérikons dine corresponds to a power law D ~ M7, Work of Klein [68]

Reptation predicts that the diffusion coefficient will follow N? (Experimentally it follows N?)
Reptation has some experimental verification
Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ |/N)

78



Reptation of DNA in a concentrated solution

G4 Hydrodvnamic Interaction in Solutions IRT
- '

Fig. 6.13. Serbes of imases n H - {
[ l s ol images of a Huorvscently stalned DNA chain embedded in % con
eobraled solution f unstained | i
JA50 0 | ) hal il | -4.“[' Ll -’ { ! ) SLA T 349 ! 3 r o .
by 8 rapidd moye of the | | - nlormation |left); partdal stretchi J
b ' a1y 1 . w e ¥ slal: y ' - ! )
ad L one end (sccond from the lefl): chain recoil by a
reptative » ] v v [ armiss § ¢ . )
] e molxon o th Vul)( Lyudsequent puctures o the r9ht). Reprinted with pa
4 - .l ! i 2181 ! )‘ g : 1) o O, ’ R y . . ; . .
wssion from L Parking, DK Smith and S.¢ hu. Science, 264819, . Copyrieht

'1-")” Ameoerican Asso iation for the .‘c.'\‘l'h- men [ Scwence
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Simulation of the tube

80

Fig. 3. Result of the primitive-path
analysis of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.



Simulation of the tube

Fig. 3. A representative amorphous polymer sample and the correspond-
ing network of primitive paths.
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Plateau Modulus

Not Dependent on N, Depends on T and concentration

10°
10°
§ 10*
e A4oRT 4RT
o 54 Go = SPM T 50
4 ¢ P
v 10°

10°% 10? 10" 10’ 10° 10°

wls']

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9-10° to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54)
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Kuhn Length- conformations of chains <R?> = [kL

Packing Length- length were polymers interpenetrate p = |/(pchain <R%>)
where pchain is the number density of monomers
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Fig. 2. Dimensionless
plateau moduli Gl @/k,T
as a function of the di-
mensionless ratio /,/p
of Kuhn length [, and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (+;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26-28)
(X); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35, 36) (C!;)and a semi-

o l + ' T
polyolefins
polydienes + . @

10° | polyacrylates  + ad

miscellaneous  +
polycarbonate  + ﬁ'
1 PS/TCP X
101 PB/IPO X il
3
0.00226 (| /p) ..........
2 ‘ x t¥+
o e _
x x
102 |
X% melts M
4 X . solutions @
el x BPAPC ¢ O T
X
o 1 . l
10°
107 10° o
Ik/p

atomistic polycarbonate melt (37) (<) under an elongational strain; and (iii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (m), bead-spring
semidilute solutions (@), and the semi-atomistic polycarbonate melt (4 ). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dT ~ p
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Fig. 1. Schematic representation of dual slip-links. (a) Chains coupled by
virtual links. (b) Dual slip-links. (c} Real space representation of the
corresponding network of primitive paths.
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

comb

star

4

linear

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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Block Copolymers

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/BCP%20Section.pdf
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Block Copolymers
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block copolymers
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Figure 9. Schematics of block, star, and graft amphiphilic block copolymers.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/Amphiphilic.pdf
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Figure I. lllustration of model I (left) and II (right) of the AB-diblock copolymer micelle in a
selective solvent (lower panel) and the volume fraction profiles of the polymer blocks (upper
panel) applied for the large core case (N, >> Np) and the small core case (N, << Np),

respectively.

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologsyofComplexMaterials/BCP%20Modeling.pdf
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Hierarchy in BCP’ s and Micellar Systems

n2 | m n2
CHj4

Pluronics (PEO/PPO block copolymers)

We consider primary structure as the block nature of the polymer chain.
This is similar to hydrophobic and hydrophilic interactions in proteins.
These cause a secondary self-organization into rods/spheres/sheets.

A tertiary organizaiton of these secondary structures occurs.

There are some similarities to proteins but BCP’ s are extremely simple systems by comparison.
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What is the size of a Block Copolymer Domain?

Masao Doi, Introduction to Polymer Physics

-For and symmetric A-B block copolymer

-Consider a lamellar structure with ® = /2

-Layer thickness D in a cube of edge length L, surface energy o

- , SO larger D means less surface and a lower Free Energy F.
Frpruee 220—01

D
-The polymer chain is stretched as D increases. The free energy of
a stretched chain as a function of the extension length D is given by

D> I’
- F = kT

stretch 2

where N is the degree of polymerization for A or B,

(4

b is the step length per N unit, vc is the excluded volume for a unit step
So the stretching free energy, F, increases with D2

oN’b*v, jm N

-To minimize the free energies we have Dz[ -
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Chain Scaling (Long-Range Interactions)

Long-range interactions are interactions of chain units separated by such a
great index difference that we have no means to determine if they are from the same chain
other than following the chain over great distances to determine the connectivity. That is,
Orientation/continuity or polarity and other short range linking properties are completely lost.

Long-range interactions occur over short spatial distances (as do all interactions).

Consider chain scaling with no long-range interactions.

The chain is composed of a series of steps with no orientational relationship to each other.
So<R>=0

<R2Z> has a value:

(R?)= 22 = Lrer+ XX

i j#i

We assume no long range interactions so that the second term can be 0.
(R*)=Nr’
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