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Polymer Dynamics and Rheology
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Polymer Dynamics and Rheology

Brownian motion
Harmonic Oscillator

Damped harmonic oscillator
Elastic dumbbell model

Boltzmann superposition principle
Rubber elasticity and viscous drag

Temporary network model (Green & Tobolsky 1946)
Rouse model (1953)

Cox-Merz rule and dynamic viscoelasticity
Reptation

The gel point
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The Gaussian Chain

Boltzman Probability
For a Thermally Equilibrated System

Gaussian Probability
For a Chain of End to End Distance R

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

Force Force

Assumptions:
-Gaussian Chain

-Thermally Equilibrated
-Small Perturbation of Structure (so 
it is still Gaussian after the deformation)
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Stoke’s Law

F = vς
ς = 6πηsR

F
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Cox-Merz Rule

Creep Experiment
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Boltzmann Superposition



9

Stress Relaxation (liquids)

Creep (solids) J t( ) = ε t( )
σ

Dynamic Measurement

Harmonic Oscillator:       = 90° for all     except   = 1/    where   = 0°δ δω ω τ

Hookean Elastic 

Newtonian Fluid 
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Brownian Motion

For short times

For long times 0

E = kT = ½ mV2

F = ma = zV

Integrate
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dE = F dx
F = zV
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http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

F = kdx
Fdx = dU

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
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The response to any force field
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Both loss and storage are based on the primary response function, so it 
should be possible to express a relationship between the two.

The response function is not defined at t =∞ or at ω = 0
This leads to a singularity where you can’t do the integrals

Cauchy
Integral
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W energy = Force * distance
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Parallel Analytic Technique to Dynamic Mechanical
(Most of the math was originally worked out for dielectric relaxation)

Simple types of relaxation can be considered, water molecules for instance.

Creep:

Instantaneous
Response

Time-lag
Response

Dynamic:

ε0   Free Space

ε   Material

εu   Dynamic material

D = ε0E + P = ε0εE Dielectric Displacement
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Rotational Motion
 at Equilibrium

A single relaxation mode, τ   relaxation
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Creep Measurement

Response

K = 1τ

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
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Apply to a dynamic mechanical measurement

dγ 12 t( )
dt

= iωσ12
0 J * ω( )exp iωt( )

Single mode
Debye Relaxation

Multiply by iωτ −1( )
iωτ −1( )
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Single mode
Debye Relaxation

Symmetric on a log-log plot
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Single mode
Debye Relaxation

More complex processes have a broader peak

Shows a broader peak but much narrower than a Debye relaxation

The width of the loss peak indicates the difference 
between a vibration and a relaxation process

Oscillating system displays a moment of inertia
Relaxing system only dissipates energy
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Equation for a circle in J’-J” space
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dγ
dt

= −
γ t( )
τ

+ ΔJσ 0

Equilibrium
Value

Time
Dependent

Value

Lodge Liquid
Boltzmann Superposition
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Boltzmann Superposition
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Rouse Dynamics
Flow
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ω 1ω 2

ω
1
2

ω
5
7

Newtonian
Flow

Entanglement
Reptation

Rouse
Behavior
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ω 1ω 2

ω
1
2

ω
5
7

Newtonian
Flow

Entanglement
Reptation

Rouse
Behavior
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Lodge Liquid and Transient Network Model

Simple Shear
Finger Tensor

Simple Shear
Stress

First Normal 
Stress

Second Normal 
Stress
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For a Hookean Elastic
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For Newtonian Fluid



54



55



56

Dumbbell Model

x t( ) = dt 'exp −k t − t '( )
ξ

⎛
⎝⎜

⎞
⎠⎟
g t( )

−∞

t

∫
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Beads 0 and N are special

For Beads 1 to N-1

For Bead 0 use R-1 = R0 and for bead N RN+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

The Rouse unit size is arbitrary so we can make it very small and:

With dR/dt = 0 at i = 0 and N

Reflects the curvature of R in i, 
it describes modes of vibration like on a guitar string
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x, y, z decouple (are equivalent) so you can just deal with z

For a chain of infinite molecular weight there are wave 
solutions to this series of differential equations

ς R
dzl
dt

= bR (zl+1 − zl )+ bR (zl−1 − zl )

zl ~ exp − t
τ

⎛
⎝⎜

⎞
⎠⎟ exp ilδ( )

τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Phase shift between adjacent beads

Use the proposed solution in the 
differential equation results in:
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Cyclic Boundary Conditions: zl = zl+NR

NRδ = m2π

NR values of phase shift

δm = 2π
NR

m;    m = − NR

2
−1⎛

⎝⎜
⎞
⎠⎟ ,..., NR

2

For NR = 10
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Free End Boundary Conditions: zl − z0 = zNR−1
− zNR−2

= 0

NR −1( )δ = mπ

NR values of phase shift

δm = π
NR −1( )m;    m = 0,1, 2,..., NR −1( )

dz
dl

l = 0( ) = dz
dl

l = NR −1( ) = 0

NR Rouse Modes of order “m”

For NR = 10
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τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

This assumes that ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model, 

ζR ~ aR
2 ~ N

NR

= nR
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τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

Since R0
2 = a0

2N

τ R ~
N 2

kT
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The amplitude of the Rouse modes is given by:

Zm
2 = 2

3π 2
R0
2

m2

The amplitude is independent of temperature because the free energy of a mode 
is proportional to kT and the modes are distributed by Boltzmann statistics

p Zm( ) = exp −
F
kT

⎛
⎝⎜

⎞
⎠⎟

90% of the total mean-square end to end distance of the chain originates from 
the lowest order Rouse-modes so the chain can be often represented as an 
elastic dumbbell
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Rouse dynamics (like a dumbell response)

dx
dt

= −

dU
dx

⎛
⎝⎜

⎞
⎠⎟

ζ
+ g(t) = −

ksprx
ζ

+ g(t)

x t( ) = dt 'exp − t − t '
τ

⎛
⎝⎜

⎞
⎠⎟

−∞

t

∫ g t( )

τ = ζ
kspr

Dumbbell Rouse

τ R =
ζR

4bR sin2 δ
2

δ = π
NR −1

m ,   m=0,1,2,...,NR -1
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Rouse dynamics (like a dumbell response)

g t1( )g t2( ) = 2Dδ t( )    where t = t1 − t2    and δ ( )  is the delta function whose integral is 1

Also, D = kT
ζ

x t( )x 0( ) =
kT exp − t

τ
⎛
⎝⎜

⎞
⎠⎟

kspr
τ = ζ

kspr
For t => 0, x2 = kT

kspr
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Predictions of Rouse Model

G t( ) ~ t−
1
2

G ' ω( ) ~ ωη0( )
1
2

η0 = kTρpτ R
π 2

12
~ N
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ω
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2

ω
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7

Newtonian
Flow

Entanglement
Reptation

Rouse
Behavior
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Diffusion constant follows 1/N (zeroth order mode is translation of the molecule)  (actually 
follows N-1/df)

Both failings are due to hydrodynamic interactions (incomplete draining of coil)

Predicts that the viscosity will follow N which is true for low molecular 
weights in the melt and for fully draining polymers in solution
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2  (actually follows N3/df)

Predicts that the viscosity will follow N 
which is true for low molecular weights in 
the melt and for fully draining polymers in 

solution
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http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf

Chain dynamics in the melt can be described by a small set of “physically motivated, 
material-specific paramters” 

Tube Diameter dT
Kuhn Length lK

Packing Length p

Hierarchy of Entangled Melts

http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
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Quasi-elastic neutron scattering data demonstrating 
the existence of the tube

Unconstrained motion => S(q) goes to 0 at very long times

Each curve is for a different q = 1/size

At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times 
a size for the tube can be obtained

dT
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There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior

Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time  = Tube relaxation or Tube Renewal

Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N3.4)
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Reptation predicts that the diffusion coefficient will follow N2 (Experimentally it follows N2)
Reptation has some experimental verification

Where it is not verified, we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ 1/N)
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Reptation of DNA in a concentrated solution
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Simulation of the tube
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Simulation of the tube
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Plateau Modulus

Not Dependent on N, Depends on T and concentration
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Kuhn Length- conformations of chains  <R2> = lKL

Packing Length- length, were polymers interpenetrate  p = 1/(ρchain <R2>)
where ρchain is the number density of monomers
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this implies that dT ~ p
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McLeish/Milner/Read/Larsen Hierarchical Relaxation Model

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf

http://www.engin.umich.edu/dept/che/research/larson/downloads/Hierarchical-3.0-manual.pdf
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