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Dilute Solution Chain
Dynamics of the chain 

The exponential term is the 
“response function”
response to a pulse perturbation
g(t) is random ± pulses due to kT

F = ma = zV

Integrate

Position is the integral of velocity dt

For Viscous Motion (a relaxatory system)
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Simple exponential relaxor

For Brownian motion
of a harmonic bead in a solvent
this response function can be used to 
calculate the
time correlation function <x(t)x(0)>
for DLS for instance

τ is a relaxation time.

Dilute Solution Chain
Dynamics of the chain 



Draining vs Non-Draining
Rouse vs Zimm

Consider Diffusion of a Chain

D = kT/z

For Non-Draining  
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Dilute Solution Chain
Dynamics of the chain 

Rouse Motion

Beads 0 and N are special

For Beads 1 to N-1

For Bead 0 use R-1 = R0 and for bead N RN+1 = RN

This is called a closure relationship
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

The Rouse unit size is arbitrary so we can make it very small and:

With dR/dt = 0 at i = 0 and N

Reflects the curvature of R in i, 
it describes modes of vibration like on a guitar string
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Describes modes of vibration like on a guitar string

For the “p’th” mode (0’th mode is the whole chain (string))
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x, y, z decouple (are equivalent) so you can just deal with z

For a chain of infinite molecular weight there are wave 
solutions to this series of differential equations

ς R
dzl
dt

= bR (zl+1 − zl )+ bR (zl−1 − zl )

zl ~ exp − t
τ

⎛
⎝⎜

⎞
⎠⎟ exp ilδ( )

τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Cyclic Boundary Conditions: zl = zl+NR

NRδ = m2π

NR values of phase shift

δm = 2π
NR

m;    m = − NR

2
−1⎛

⎝⎜
⎞
⎠⎟ ,..., NR

2

For NR = 10
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τ −1 = bR
ζ R

2 − 2cosδ( ) = 4bR
ζ R

sin2 δ
2

Free End Boundary Conditions: zl − z0 = zNR−1
− zNR−2

= 0

NR −1( )δ = mπ

NR values of phase shift

δm = π
NR −1( )m;    m = 0,1, 2,..., NR −1( )

For NR = 10

dz
dl

l = 0( ) = dz
dl

l = NR −1( ) = 0

NR Rouse Modes of order “m”



11

τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

This assumes that ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

is constant, friction coefficient is proportional to number of monomer units in a Rouse segment

This is the basic assumption of the Rouse model, 

ζR ~ aR
2 ~ N

NR

= nR
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τ R =
1
3π 2

ζR

aR
2

⎛
⎝⎜

⎞
⎠⎟

kT
R0
4

Lowest order relaxation time dominates the response

Since R0
2 = a0

2N

τ R ~
N 2

kT
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The amplitude of the Rouse modes is given by:

Zm
2 = 2

3π 2
R0
2

m2

The amplitude is independent of temperature because the free energy of a 
mode is proportional to kT and the modes are distributed by Boltzmann 
statistics

p Zm( ) = exp −
F
kT

⎛
⎝⎜

⎞
⎠⎟

90% of the total mean-square end to end distance of the chain originates from 
the lowest order Rouse-modes so the chain can be often represented as an 
elastic dumbbell
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Rouse dynamics (like a dumbell response)

dx
dt

= −

dU
dx

⎛
⎝⎜

⎞
⎠⎟

ζ
+ g(t) = −

ksprx
ζ

+ g(t)

x t( ) = dt 'exp − t − t '
τ

⎛
⎝⎜

⎞
⎠⎟

−∞

t

∫ g t( )

τ = ζ
kspr

Dumbbell Rouse

τ R =
ζR

4bR sin2 δ
2

δ = π
NR −1

m ,   m=0,1,2,...,NR -1
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Rouse dynamics (like a dumbell response)

g t1( )g t2( ) = 2Dδ t( )    where t = t1 − t2    and δ ( )  is the delta function whose integral is 1

Also, D = kT
ζ

x t( )x 0( ) =
kT exp − t

τ
⎛
⎝⎜

⎞
⎠⎟

kspr
τ = ζ

kspr
For t => 0, x2 = kT

kspr
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Predictions of Rouse Model

G t( ) ~ t−
1
2

G ' ω( ) ~ ωη0( )
1
2

η0 = kTρpτ R
π 2

12
~ N
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2 (actually follows N3/df)
Diffusion constant follows 1/N (zeroth order mode is translation of the molecule)  (actually follows N-1/df)
Both failings are due to hydrodynamic interactions (incomplete draining of coil)

Predicts that the viscosity will follow N which is true for low molecular 
weights in the melt and for fully draining polymers in solution
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Dilute Solution Chain

Dynamics of the chain 

Rouse Motion

Rouse model predicts 
Relaxation time follows N2 (actually follows N3/df)

Predicts that the viscosity will follow N 
which is true for low molecular weights in 
the melt and for fully draining polymers in 
solution


