

Formation Mechanism(s) of Micro and Nanoplastics

Nico Mendez, Maninderjeet Singh, Michele Valsecchi, Sanat Kumar

Department of Chemical Engineering, Columbia University

Ghosh, Kumaraswamy, Kumar Soft Matter (in press) Mendez, Kumaraswamy, Kumar, Nat Comm (in press) Singh, Kumaraswamy, Kumar - submitted Vivek Sharma, Guru Kumaraswamy

14% polymers collected – 2% recycled

Coates et al., 2015

Microplastics $-1 \mu m$ - 3mm

Nanoplastics - 1 nm - 1 μm

SUSTAINABENTY Times Wirecutter Piece

Microplastics Are Everywhere. Here's How to Avoid Eating Them. BBC

Microplastics in the human body

Micro/nanoplastic formation

1. Cut back on bottled water

Bottled water is a significant source of microplastics. In fact, it's the <u>most</u> <u>concentrated source</u>, according to a <u>study</u> from 2019.

Researchers believe that bottled water contains <u>many more</u> microplastics than tap. The evidence is mounting: A <u>study</u> published in 2024 suggests that the typical plastic bottle of water contains two to three times the plastic than previously thought.

Control

21 days

PVC pipes

PVC pipe shaken

Nanoplastics From Tire Wear

MNP Formation under Quiescent Conditions

UV, O_2 , Water, leads to chain scission

Chain Microstructure: Morphology

Hypothesis: Semicrystalline vs Amorphous

Amorphous Glassy Polymers: Entanglement Spacing 3 nm– 10K

Persistence of Nanoplastics

Semicrystalline: Ties Break Embrittlement lamellae "peel" off

Amorphous -- oligomers

Quiescent Polymer Degradation

\sim 1	111
('rysta	lline
Crysta	
₹	

Amorphous

Amorphous

Polymer	<i>T_g</i> [°C]	<i>T</i> _m [°C]	Aging T [°C]
PET (hydrolysis)	78	245	100, 110
PET (glycolysis)	78	245	180
iPP	-5 ⁷⁰	161	70
aPP		-	70
sPS	100 71	247	70
aPS		-	70
Nylon 6			35

aPP B

iPP

50 um

Dynamic Light Scattering

2 days oxidative degradation

 $K_2 S_2 O_8 + 2H_2 O \to K_2 S O_4 + H_2 S O_4 + 2[OH]^{\cdot -}$

Crystal samples much higher scattering

Induction Time

 $K_2S_2O_8 + 2H_2O \rightarrow K_2SO_4 + H_2SO_4 + 2[OH]^{-}$

Role of Additives

Induction time reduced by almost 1/3 in additive-free sample

Additives (i) Stabilizers/anti-oxidants– affect fragmentation 2

28

Surface Images

PET

iPP

Temperature Dependence (PET)

Fracture Mechanics

Fracture Mechanics: PET

Random Chain Scission

1.7 cuts per chain. Each chain length ~ 105 $\phi \sim 1.7/(105 \times 0.73) \sim 0.02$

Failure creates nanoplastics

Separate NPL creation from continued degradation

- PET Film +Water 110 C
- After 7 days remove film
- 12 days further degradation

Only the crystals survive

PET glycolysis

Mechanical fragmentation of plastics

PET – 7 days

30.0 30.0 SEM Nanoparticle tracking 25.0 25.0 20.0 20.0 % particles % % particles % 10.0 10.0 5.0 5.0 0.0 0.0 100 150 200 250 300 350 400 450 0 50 500 550 300 350 0 50 100 150 200 250 400 450 500 550 Size (nm) Size (nm)

Average size from SEM: 151 nm

Average size from nanoparticle tracking : 124 nm

PET nanoplastic size, number vs time

Literature Data

Fate of All Semicrystalline Polymers

MNPL Formation successive fragmentation (Quiescent vs Shear)

Crystals persist in nature

Decoding tire wear: Power law distribution and possible aerosolization

Blower with Hepa filter ,15 litre, 1400watt 16 KPa

Camera-based particle size measurement.

Before After

Subtract

Particle counter

- Size channels: 0.3, 0.5, 1.0, 2.5, 5.0, 10.0 μm
 - Flow rate of 2.8 L/min

Mass of Aerosolized Fraction

The **Archard wear equation** is a simple model used to describe sliding wear and is based on the theory of asperity contact. The Archard equation was developed much later than **Reye's hypothesis** [it] (sometimes also known as **energy dissipative hypothesis**), though both came to the same physical conclusions, that the volume of the removed debris due to wear is proportional to the work done by friction forces. Theodor Reye's model^{[1][2]} became popular in Europe and it is still taught in university courses of

KWL

Power Law of Aerosolized Fraction

Griffith

Energy Input creates surfaces and breaks bonds

$$\frac{\Gamma(3-\alpha)}{\Gamma(4-\alpha)}$$
 is constant

Conclusion

• Plastics generated at small scales: advected by air.

• Both single and successive fragmentation occurs