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An analysis is made of the distribution function and its moments for a linear combination of
three randomly chosen orthogonal components of the so-called radius of gyration of an unrestricted random-
flight chain, and certain averages of moments are obtained of the three-dimensional distribution
W (L2L2Ls?), where L1 < L»< Ls are the orthogonal components of the radius of gyration along the principal
axes of inertia of the chain. The strong departures of the chain shape from spherical symmetry indicated
by these results are confirmed and complemented by Monte Carlo studies of unrestricted random walks
on a simple cubic lattice. A surprisingly high ratio of principal components is found for chains with 50 and

100 bonds, {Ls2): {Ls?): (L2)~11.7:2.7: 1.

I. INTRODUCTION

During the last decade several papers™ have been
published dealing with the distribution functions for
the square radius of gyration S? of a random chain
and for its orthogonal components. While Fixman' in
the first paper of this kind directed attention mainly
to the statistical moments of the S? distribution for
an infinitely long chain, and investigated in detail only
certain regions of the distribution function itself, the
more recent papers contain more complete descriptions
of the distribution functions even for finite chain
lengths. In a series of papers, Forsman and Hughes?
and Hoffman and Forsman® developed and used a
multiple integration technique for numerical computa-
tion of the distribution functions of S? and its orthog-
onal components, and Forsman* showed that the two-
dimensional problem (i.e., the distribution of the sum
of two orthogonal components) can be treated exactly.
Although not quite general, their results apply even
for finite, sufficiently long chains. Finally, Coriell and
Jackson® examined in detail the properties of the dis-
tribution function of an orthogonal component of the
radius of gyration and derived a rigorous expression
for it in the form of a contour integral, valid for any
length of the random-flight chain. The distribution
functions treated so far thus describe in one way or
another the size distribution of the random coils; how-
ever, no attempt has been made to estimate their
shape distribution. The first difficulty encountered here
is obviously the very definition of the shape. Many
years ago Kuhn’ drew attention to the strong asym-
metry of the random-flight chain following from con-
sideration of the average loci of several special seg-
ments in the chain relative to its end-to-end vector.
But this estimate can hardly characterize the average
shape of the chain, which should be based on the posi-
tions of all segments rather than on those of certain
specially chosen segments. A similar objection would
apply to the definition of the shape as the envelope of
certain geometrical form (e.g., ellipsoidal) encompass-
ing all the segments of a particular chain. We therefore
chose a more democratic (and mathematically feasible)
way of characterizing the shape of a random chain by
the three specific orthogonal components of the radius

of gyration L;< L, < I; taken along its principal axes of
inertia. These will be referred to as the principal com-
ponents of S. The advantage of this choice lies also
in its close relation to the three principal moments
of inertia of the chain.

In the next section the distribution function and
its moments are derived for a linear combination of
the three orthogonal components of the radius of gyra-
tion for two cases: (1) for a random-flight chain,
(2) for an ensemble of bodies with the three-dimen-
sional shape distribution W (L2L2L;*) of the squares
of principal components of S. By comparison of the
two results in Sec. III, some average moments of the
shape distribution are found for the random-fiight
chain. Finally, Sec. IV describes some Monte Carlo
calculations of the shape distribution of two types of
random chain on simple cubic lattices, which comple-
ment the analytical results. A preliminary report of
the principal results has already appeared.®

II. DISTRIBUTION FOR THE LINEAR COMBINA-
TION OF ORTHOGONAL COMPONENTS
OF RADIUS OF GYRATION

A. Random-Flight Chain

Consider a homogeneous random-flight chain con-
sisting of N—1 segments and N beads of unit mass,
the first of which is located at the origin of the Car-
tesian coordinate system xy, x», 3 fixed in space. De-
noting the coordinates of the mth bead by x,™, k=1, 2,
3, we define the symmetrical tensor X by the relation

N N N
Xp=N"12 gy m) — N2 5 g lm) 3~ g tm) (1)

m~=1 m=1 m=1

It is noted that X is closely related to the tensor of

inertia T of our chain: the products of inertia are pro-
portional to corresponding off-diagonal terms of X,

Tkl=-‘]VXkl, k;él, (18,)
while the moments of inertia are given as
Tkk=lV(X”+Xmm>, k#El#Am=Ek. (lb)

Furthermore, the trace of X equals the square radius
of gyration® S$% As mentioned above, so far attention
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has been paid mostly to the size distribution of the
random coils; and only the distribution functions of
one orthogonal component??®38 Si2(=Xy) and of the
sum of two,*® S*(=Xyu+Xss), or three,® Sg?(=S2=
Xu-+Xp+Xss), orthogonal components of the square
radius of gyration, respectively, have been investigated.

We thought that a more general analysis might reveal
some information about the shape distribution of the
random coils and so we turned to the distribution
function P(Q) of a quantity , defined generally as a
linear combination of orthogonal components of the
square radius of gyration,

3
k=1

Sometimes, especially when comparison is made for
different chain lengths, the more convenient reduced
forms of Q and P(Q) will be used, where Q,=Q/Nd?,
P.(Q:) =No*P(Q), and o denotes the mean square
length of a segment. The correlation between P(Q)
and the shape of the coil becomes obvious when we
choose, for instance, the coefficients C; such that
>~ Cv=0; then for a spherically symmetrical cloud of
segments Q is identically equal to zero, and therefore
any nonzero distribution P(Q) found for random coils
would reflect somehow the departures of their shapes
from spherical symmetry. Assuming a Gaussian seg-
ment length distribution for our freely jointed chain,

P(xm —xm=D) < (27rg2/3) 52
X exp[— (3/2¢%) (xm —xm~-D)2]  (3)

we can write the distribution function” P(Q), using
Egs. (1)-(3), as a 3(N—1)-multiple integral:

27r0.2)—(3/2) (N=-1)

P)= (==

(2)

X/j:. . .[:watg_N—llgan(x(m))z
FNE T Cu(E )]

3
X exp|{— — Z (xk(m)_xk(m—l))2 H o™ (4)
207 km k,m

where the ranges of indices are k=1, 2, 3; m=2,3, -+,
N. After introducing the Fourier representation of the
Dirac delta function §(x), the expression can be inte-
grated® yielding

P(Q) = (2r)-12-6m -
+ w0
X [T ep(in0) (| Asl] s ] s D)ax, (5)
where | A; | is the determinant of the matrix A; defined
by
(Ak)mn = 5mn(1+l)\,C}c) —~INCpN—?

- % (6m,n+1+5m,'n~l) - %&nNanN,

(6)
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and X' is the reduced integration variable of Eq. (5),
N =A¢%/3N. @)

Finally, the application of Coriell and Jackson’s gen-
erating-function method® for the determination of
characteristic polynomials of the matrices A, gives the
following relation for P(Q):

P(Q) — (2#)—‘1\73/2
+ o
X f exp(inQ) TT Uno—2(1-HiNCoydn,  (8)

where Uy (x) is the Chebyshev polynomial of the second
kind.

The integrand in Eq. (8) has in general 3(N—1)
branch points, located on the imaginary axis in the
complex plane, with coordinates

N =iCi 1 [1—cos (mn/N) T,
k=1’2’3’.1n:1’2’---,N—-1, (9>

as follows readily from an alternative expression of
Chebyshev polynomials,!t

Un_1(14iN'C) =sin (V) /sind, (10)
where

f=arccos(1+4iN'Cy).

For each particular choice of the coefficients Cy, the
distribution function P(Q) can thus be computed by
integrating along the branch cuts as the sum of a finite
number of definite integrals, as shown by Coriell and
Jackson® for their special case C1=1, Cy=C;=0. Though
it does not seem useful to follow this procedure further
in general, the results for a special class of Q distri-
butions are probably worth mentioning. The calcula-
tion is simplified when two of the three coefficients Cy
become identical, e.g., C;=C;=C, and the third one
is either of the opposite sign or zero, respectively;
then the branch points in the complex half-plane cor-
responding to Ci=C.=C degenerate into isolated
singularities and the function P(Q), in the interval
where signQ=signC, can be calculated simply as a
sum of ¥—1 terms (see Appendix):
6]\75/2 N—-1

P Q) = -1 m+1'Um-N
Q) Tl m{:l( )
- ”ﬂ) ym(1+ym2)”2]‘/2 <6N‘*’ym2(?r> 11
X sin <N Fp—— exp C, , (11
where

Ym=(—C3/C)"? sin(Imw/N),
Un= Yt (L3m?) 12,

The analytically accessible distribution P(Sy?) of the
sum of two orthogonal components of the square radius
of gyration, investigated with a different method by
Forsman,* obviously belongs to this class (C=1, C3=0).
The results obtained from Eq. (11) for this distribution
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and its moments,

P.(S,,2)=3N23 (— 1)+ sin®(mm/N)

m

X exp[—6N2S:,2 sin?(mr/2N)], (11a)
(S2mY,=2n! (6N 3 (—1)mH
X cos?(mm/2N) sin2*(mw/2N), (11b)

deviate at finite IV from those given by Forsman [Eqs.
(16) and (27), Ref. 57]. The reason should be probably
sought in the approximation N~N--1 made in the
basic general Eq. (8), Ref. 2. On the other hand, our
relation for the first moment,

(S2),= (3N Y (—1)mH cot2(mm/2N),

m

(11¢)

is in agreement with Coriell and Jackson’s result® for
{8;?). Note that (S¢?)=2(S5:2).

The investigation of the moments {Q”) appears to
be more rewarding than that of the distribution P(Q)
itself. They are obtained by differentiation’® of the
characteristic function K(\) of the distribution P(Q)
[see Eq. (8)], where

KM\ =N321] Uy V2(1+iINC). (12)
k
We thus get
Q)= (=No®)[d"K(\) /d(Mi)"] hh=o
= (_3)—nN—2n+<3l2) i i <n><])
=0 =0 \J/\ 1
X Cy=iCyIC, Py D Fy_yFDFy 40 (13)

where
FN(l) = dlUN—1/2 (x) /dxl]azl

and the derivatives of Chebyshev polynomials can be
expressed conveniently by means of Gegenbauer
polynomials

A'Ux (%) /dxt=211Cxy_ D (x).
Specifically, the first three moments are seen to be
2(0),=3"1(1—N-2)(C),
2{0%),=32(1—N72)

X[(1=N=2) (H(C)+3(CC))

—5 (14N (7)),
20 h=3"(1-N7)

XEI-N2)2CHH(CC)+3(CCCY)
—5(1=N72) (1—-4N72) (J{C)+(CC))

+(1/35) (1—4N72) (1—-9N=2) (C?)],

where the averages of the constants Cy are defined as
6({CvC*C*)=Cy*Co?Cs*+Cr*CyCyo 4 C1'Co*Cy

+C?CCyr+-Cr2CotCy? 4 Cr2Cy?Cy,

(14)

(14a)
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The relations (14) reduce to Coriell and Jackson’s®
moments {S1**) of the one-dimensional distribution for
Ci=1, C,=C3;=0, and the moments of two- and three-
dimensional distributions, Egs. (14b) and (14c) agree
in the limit N— with the results of Forsman* and
Fixman!:

(S2)r=(1/9) (1—=N72),
(Set)r= (1/405) (T—SN—2—2N74),
(Sf), = (1/8505) (31— 21N—4—10N~9),

(S%),=(1/6) (1—N"2),

(85%),= (1/540) (19— 20N2+N4),

(S%),= (1/68 040) (631 — 399N—2— 231 N—4— N—5),

(14¢)

As a first rough measure of the nonsphericity of
random coils we examined specifically the quantity

Q*=2Xg— X11— X, (15)

identically equal to zero for any body of spherical sym-
metry. Its first several moments for a chain with N—,
obtained from Egs. (14) and compared with the mean
square radius of gyration,

©)=0,  (0®)=(8/15)(&P,
(0*)=(128/315) (S*)’, (16)

do suggest that the departures from spherical symmetry
are far from negligible and worthy of further study. The
evaluation of P(Q*) for 0*<0, using Eq. (11) for finite
N, also shows that for physically significant negative
values of Q* [those for which P(Q*)/Puac(Q*) >10-%]
the convergence of the reduced distribution function
P,(Q/*) with increasing N to a limiting form for N—w
is quite rapid. The difference between chains with 50
and 500 bonds in this interval is always less than 0.2659,
and the trend of P,(Q.*) for Q,*—0 suggests similar
behavior in the positive region. The most probable
value of Q;* is negative; e.g., for N =500 it is (Q/*)ma
—0.016.

However, the P(Q) distributions and their moments
reflect not only the shape distribution of random coils
but also their random orientation, because of the choice
of a fixed coordinate system «i, %z, x3. In order to isolate
the shape factor alone, we will derive in the next
section the relations for the moments (¢") of an en-
semble of randomly oriented bodies with a three-
dimensional distribution W (ZL:?L,?L;?) of the squares
of their three principal components of the radius of
gyration [, < L,<L; (i.e., three orthogonal components
of the radius of gyration along the principle axes of the
ellipsoid of inertia), hoping that the comparison of the
two results might yield some information about the
shape distribution of random coils in terms of the
moments of the distribution of equivalent ellipsoids.
Here the definition of ¢ is, of course, equivalent to
that of Q for random coils [Eq. (2)].

(14b)
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B. Ensemble of Equivalent Ellipsoids

Let us first consider the quantity ¢ for a single cloud
of NV beads of unit mass. The principal components Ly
of the radius of gyration of the cloud are given by the
relation
k=123,

L=N"E (&), an

where
cosa cosy— sina cosf siny

M= | —cosa siny—sina cos@ cosy

sina sin8

and, subsequently, by means of Eqgs. (1), (2), and
(17) also the relation for ¢ (as observed in the fixed
coordinate system) of this specifically oriented cloud
of beads!?:

q:N_IZCkZ (‘Xk('"))2= ZLfZCkM“Z. (19)
k m ! k

Since g depends upon the orientation of the equivalent
ellipsoid through the matrix elements My, it turns out
that mere randomization of the orientation of the
cloud (without varying its principal components L;)
creates already a distribution function, though in a
restricted interval of ¢ (except the invariant case
C1=C2=C3) M

Py(g) = (8%~
27 27 "

X[ daf dy[ singdBs(g—3 L2 Y CeMi2). (20)
]; 01/0 (’Y/O q - I - kM g1

For instance, for ¢* defined analogously to Q* in Eq.
(15), the following distribution function is obtained:

Pi(g*) =m'Gn) K (r/n) i E-2<gr<1-2,
=r 1 (31) K (n/r) i 1—-26<g* <14,
(21)

where n=(1-§) (1+£—g¢*), 7=(2—t+¢"), ¢*=
g*/(Ls#—Ls?), the parameter 0<¢<1 is defined as
t= (L2~ L) /(Lss—L:?), and K(x) is the complete
elliptic integral of the first kind." The distribution
function has a very sharp maximum reaching infinity
at the coordinate (¢,*)max=1-—2%, which is positive if
L2— 12> L2— Ly (e.g., for an oblate ellipsoid of revo-
lution) and negative in the opposite case. The small
negative (Q7*)max observed for the random coil thus
suggests that the most probable shape of the random
coil is slightly closer to the prolate than to the oblate
ellipsoid.

Let us now turn our attention to the P(g) function
observed for an ensemble of randomly oriented clouds
of beads with the probability distribution W (L*L*Ls?)
of the squares of their principal components of .S. The
three-dimensional distribution function W (L;*L*Lg?)
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where £ are coordinates of the mth bead relative to
the principal axes of the ellipsoid of inertia of the cloud.
Denoting by «, 8, v the three Eulerian angles trans-
forming this £-coordinate system into the fixed system
x, we can write for each of the :V beads the equation

X = ME ™, (18)

sine cosy—-cosa cos@ siny  sing siny
—sina siny-+cosa cos@ cosy  sin@ cosy
— cosa sinB cosB

can be visualized conveniently as a scalar field in the
subspace cut out from a Cartesian coordinate system
Li? by three planes Li?=0, Li?=Ly2 LJ?=L; (see
Fig. 1), where each point represents a different equiv-
alent ellipsoid. The distribution function P(g) is now
given as the weighted average of the previously de-
fined Pi(g) [Eq. (20)] over all possible ellipsoids:

Plg) = (8%) /O " e f iy /0 " singds
(1]

w© Laz Lz2
X / AL / AL / ALAW (LRLRLR)
0 0 0
><5<q_2 LZZZCLMLZQ) (22)
1 k

From this relation it is seen that the contribution to
P(q) made by equivalent ellipsoids with a specified
orientation «, 8, v comes from surface integrals of
W (L2L2Ls%) over parallel planar sections of our sub-
space. Since by varying the coefficients Cp of the
examined quantity ¢, we have an unlimited possibility
of changing the orientation of this set of sampling
planes, it might seem that, on the other hand, by
analyzing a sufficient number of P(g) functions for

§010$dIT13 31v180

F16. 1. The subspace used for the representation of the shape
distribution function W (L2L2Ls).
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random-flight chain, one could obtain any informa-
tion required about its distribution W (L,2L2Ls?). Un-
fortunately, this impression is erroneous: the random
orientation of equivalent ellipsoids (and random chains)
allowed for in this treatment mixes together to a certain
degree the sampling data from planes with different
orientation even for a single triplet of coefficients

RANDOM-FLIGHT CHAIN
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Cy, [as follows from the presence of the rotation matrix
elements My, in §(x) in Eq. (22)], thus destroying a
part of the information; and, therefore, only certain
averages can be obtained analytically.

The moments {¢") of the distribution P(g) are cal-
culated from Eq. (22). Using integral properties of the
Dirac delta function, we get

NG B n m — . . 27 g i 21
=@ = (0)(7) waemriomnz [ da [Csingds [ i

0
X (§ CeMin®)™ (2 CeMi)™ (3 CiM?)?,  (23)
k k

where the multidimensional moments are defined in the usual way:

© L3’ Ly?
<Ll2uL22vL32w>=/ L32de32/ L22vdL22/ Ll2uI,I/(Ll2L22L32)dLIZ, (24)
[i] 0 0
or, after expressing the integrals in terms of beta functions,
n\/m n—m\fa\/m—I\fc\/ I\ g Co\oteto (Cy\b+arh
S Y G o o o 0 L
{grr=(2m) %<m><l><1 M2 U N e Al & (G C
L [2(n—m—a)\[2(a—b)\[2(m—I—c)\/2(c—d
T ) ) G CLosl) PP
ijkp 1 J k P
XBn—h~—r+3%, r—b—d+5]Blh+5(i+j+k+p+1), b+d+I—h+1], (25)

where

f=d—m+3 (et p—i—j),
r=a-+lto— g+ Hi+k—j—p).

In the last equation, the summation limits follow from the properties of the combinatorial terms, and the integers
1,7, k, p are such that their sum is an even number. From Eq. (25) it is observed that the coefficient of (L,2*Ls?*Ls**)
is invariant to the permutation of the exponents in the product; i.e., it is identical to those of (L2*LL?),
(L L2 L), etc. This simplifies considerably the numerical evaluation of (g"), since the average moments
(L] * 2} can be introduced analogously to the relation (14a). The number of average moments is then restricted
by the condition

0<uLv<wln, utvt+w=n; (26)

however, this small convenience is overbalanced by the impossibility of separating the average moments into
their components.

III. AVERAGE MOMENTS OF PRINCIPAL COMPONENTS OF RADIUS OF GYRATION
FOR RANDOM-FLIGHT CHAIN

By equating the expression for {¢"), Eq. (25), to that for {Q"), Eq. (13), it is possible now to find relations for
the average moments {(L*[?*L*) of a random-flight chain. These relations must be independent of a specific
choice of the coefficients Ci; therefore, after rearrangement of the order of summation in the rhs of Eq. (25)
into a form analogous to rhs of Eq. (13), each pair of corresponding terms in the summations over C*Co?Cy?
on both sides of equation can be put equal each other, yielding thus finally

>4 e z, <Z>(Z>(:><;><y+zﬁd—6>(yjj;fgc)

wow nlolw!
% z%:p (—1)é (Z(wi—a))(2(0;—17))(2(1),:6))(Z(C;d))

X Blo+w-s+3, u—s—s-+31BLwtt43, o—1431Bla—b—d+3 i+ h+ptit1), ut2b+2d—z+1]
2

= (—1)n2p2N3/2 (g) (xlyla) " Fy s @Fy @WFy 4, (27)
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TasLE 1. The moments of the principal components distribution for the random-flight chains.
Tive-choice walk Six-choice walk
Monte Carlo Monte Carlo
Analytical
N—-1 i=1 i=2 =3 Average N—1 i=1 =2 =3 Average average
(L&) X10? 100 1.555 4.225 18.80 8.195 50 1.075 2.906 12.70 5.562 5.553
200 1.549 4.219 18.79 8.185 100 1.077 2.916 12.56 5.517 5.555
{L:*) X 10! 100 2.848 22.16 486.1 170.4 50 1.347 10.41 226.3 79.37 80.27
200 2.845 22.19 497.1 174.1 100 1.361 10.70 223.5 78.53 80.25
(L2Li?) X 10 100 6.954 82.33 29.52 39.60 50 3.313 38.68 13.76 18.58 18.48
200 6.988 82.46 29.44 39.63 100 3.342 38.96 13.98 18.76 18.51
(L8, X108 100  6.188 143.8 16 470 5540 50 1.975 45.24 5371 1806 1858
200 6.274 143.0 17 738 5962 100 2.018 49.87 5331 1801 1857
(LifLiga? ) X108 100 13.65 449.5 763.5 ~ 50 4.442 145.8 245. I\
200 13.95 457.0 783.2—><577.6 100 4.523 154.3 255.4><187.0 190.8
(LALia?), X 10° 100 54.95 36.91 2147 /599.5 50 17.29 12.41 697.0 /193.7 191.0
200 54.99 38.97 2249 100 18.25 12.95 717.0
(L3L2Le2 ), X 108 100 136.5 136.5 50 44.24 44.24 43.85
200 138.3 138.3 100 46.05 46.05 44.03
where strong departures of random coils from spherical sym-
A=1 if u=v=m, metry, as follows from the great differences among
various average moments of the same order, e.g.,
=6 if uAvFwu,
. (LA L2y =[134T75(N?—4)1]:3,
=3 otherwise,

s=y+b+d—2a—2c+%(j+p—k—i),
t=d—b+3(k+p—i—j).
Here u, v, w are subject to the condition (26) and
i, 7, k, p are restricted similarly as in Eq. (25).

The relation (27) represents actually an infinite
number of sets of equations: for any particular # re-
quired, by choosing the integers 0<x<y<z<x satisfy-
ing also the relation x+y-+z=n, a set of » linear in-
dependent equations is obtained for » sought average
moments of the #nth order, and this set of equations
can be solved. We calculated the moments up to the
third order; their reduced values, (L[> [).=
(L2212 (No?)™, are given as follows:

(L2),=(1/18) (1—N72),
(L= (1/1620) (13- 10N—2—23N—),
(I2L2),= (1/540) (1—SN-2-H4N4),
(L8),= (1/204 120)
X (3794609 N—2+421N—4— 1009N %),
(I*L2),= (1/68 040)
X (13— 42N-2— 63N~4+-92N ),
(I2L2L2),= (1/22 680)
X (1— 14N-24+49N——36N-5). (28)

The moments of the principal components confirm

(L8): ([AL2): (TRI2LR)
=[379+35(169N*—361) (N2—4) = (N2—9)~1]:

:3[134-140(N2—9)~1]:3%  (29)
All the moments given in Eqgs. (28) show monotonous
dependence on N in physically relevant regions. The
first moment (L?),, depicting the size of the random
coil, increases steadily with increasing V. However, the
higher moments do not exhibit unique behavior: The
homogeneous moments (L), most sensitive to the

_ WG kB

0.5

0

2 G

0 05 | 1.5

Fi16. 2. The approximate one-dimensional distributions of the
three principal components of the radius of gyration. The sub-
script % is indicated at each curve.
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longest axis Ls, decrease with increasing .V, while the
inhomogeneous ones show an increase, thus indicating
that the shape of random coil becomes more sym-
metrical with increasing chain length N (although it
never attains spherical symmetry).

As mentioned before, the average moments of the
principle components of the radius of gyration cannot
be separated because of the allowed random orienta-
tion of the random coil. However, the separate moments
can be evaluated numerically by the Monte Carlo
method,® and the average moments can then be used
to test the precision and consistency of this numerical
method.

IV. MONTE CARLO METHOD

Two types of random walks were generated on a
simple cubic lattice, using the Dartmouth GE-635
Computer: 100-step random walk with six choices at
each step yielding a completely unrestricted random
chain, and 200-step random walk with five choices at
each step, where the return to the nearest neighbor
site occupied by the preceding bead was forbidden.
We chose a longer walk for the five-choice chain be-
cause of the larger effective step length. Comparison
of the results obtained in the two cases offers a check
of randomness of the random numbers generated by
the computer, since the correspondence between the
random integers and the direction of the step is dif-
ferent in the two cases: in the six-choice walk, the
six integers are firmly associated with six directions
of the fixed coordinate system, while in the other case
the five integers determine the direction of the step
relative to that of the preceding step. In both cases,
1000 walks were generated.

For each walk, the elements of the tensor X were
computed from Eq. (1), and then the principal com-
ponents L;? appearing in the diagonalized form of X
were determined: The smallest root (L;2), of the reduced
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F16. 3. The shape distribution in the ensemble of 1000 random
cubic-lattice chains of 100 bonds each, expressed hy square
ratios of principal components of each chain.
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Fic. 4. The distribution of the principal component ratios for
a random cubic-lattice chain of 50 bonds. The probability density
is indicated at each contour line. The coordinates of two special
points are: circle, ((L2)V2/ (L2025 (L2)V2/ (L2 )V?); cross,

({Li/ L) {La/Ls)).

secular equation
Li+a; L+ a1 L a,=0, (30)
Gy=N"3 Z Z Z [ka(sz2— %Xmszz) — %kaszsz:],
k

I<m
m#Ek#AL

=N3> (XuXu—Xid),

k<l
ap=—N"13" X,

was found by trial to a precision better than 5X10-7
(corresponding to a relative error smaller than 1072 9,
in most cases), while the other two roots (Lg?), and
(L?), were determined by solving the quadratic
equation

Lr4+Lr2[(12+ <L12> r]_ @y (L12) =0,

The squares of the principal components of the radius
of gyration thus obtained were stored for further sta-
tistical treatment. To save computer time when in-
vestigating the chain-length dependence, the longest
random chain generated can serve as the source of
data for shorter chains. For instance, in our case 1000
walks of 100 steps each were used to yield data for
2000 walks of 50 steps each. The calculation of the
first 50-step walk in each 100-step walk is trivial,
while for the computation of the second walk the
only additional data needed to be stored are the co-
ordinates of the 51st bead x:®" and the sums

51
Z xk(m)7

m=1

(31)

51
E xk(m)xl(m)

m=1

(which are being continuously evaluated anyway). The
corresponding sums y_ ¥, 3 y:™ 3™ related to the
S1st bead as the origin, which are needed for the
evaluation of the tensor elements for the second chain,
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¥i16. 5. The representative points contained in the four
sections of the reduced subspace L, by vertical planes Lj,=
const for the random cubic lattice chain of 50 bonds. The positive
directions of the axes L;, and L, are denoted by arrows. The
number at each triangle indicates L;,.

can then be calculated as

101 101 51
> o™= 3w — 3w —50x,00,  (32)
m=>51 m=1 m=1
101 101
> oy m = 3 g lmy )
m=>51 m=1
51
— Z ap, g, (m) — 501, 6D, O
m=1
101 101
— x50 3 Y0 — 55,60 > ™. (33)
m=51 m==51

Analogous procedures were used to obtain data for 2000
walks of 100 steps each on the five-choice lattice.
Table I shows the reduced moments of the principal
components distribution up to the third order for all
cases examined.® The good agreement between the
average values for the six-choice walk obtained by
Monte Carlo method and the analytical values cal-
culated from Egs. (28) attests to fairly good random-
ness of the generated random numbers and the con-
sistency of the results (e.g., the deviations of (I2) for
N=350 and N=100 are only +0.169, and —0.689%,
respectively). Although the analytical random-flight
model and Monte Carlo lattice model are basically
different as regards the number of allowed orienta-
tions in each step as well as the type of the bond-length
distribution assumed, the first moments {L?) turn out
to be identical for both models even for very low chain
lengths (e.g., N=2 and 3), and the differences ob-
served for higher moments at low N decrease rapidly
with its growing value. Chains with N =351 and ¥ =101
are obviously too long to show any significant dif-
ference, and both models yield equivalent results. Sur-
prising is the high ratio among the principal compo-
nents found to be {Ls®): (L,*): (I,2)=11.82:2.704:1 for
N=51and 11.66:2.706: 1 for N =101, which corresponds
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to the square-root ratios (L;2)V2: (L,2)V2: (L2)V?=3.438:
1.644:1 and 3.414:1.645:1, respectively. Though the
observed difference between the two chains is probably
insignificant, it is nevertheless in accord with the ex-
pected decrease of asymmetry with increasing chain
length. As expected, these ratios of the average squares
of the principal components of the radius of gyration
taking into account the positions of all beads in the
chain, differ from the ellipsoid axis ratio 2.8:2.2:1
obtained by Kuhn’ from the most probable positions
of some specifically selected beads; however, they still
indicate very strong average departures of the random
coils from spherical symmetry. As a matter of fact,
none of the 1000 chains generated for ¥ =101 showed
even approximate spherical symmetry; the closest one
was a chain with the ratio Lj%: L,%: L>~~1.60:1.20:1.

For the five-choice chain with {cos#)=1, the only
quantity available analytically so far*® is (L?),. Its
calculated values 8.231X107% for X' =101 and 8.282X
10~% for N =201 are again in reasonable agreement with
Monte Carlo results (the deviations being —0.449%,
and —1.179, respectively) . However, both these figures
and the average higher moments seem to indicate that
in this case the dispersion of the Monte Carlo results
is broader than that found for the symmetrical six-
choice walk, and more walks would be needed in order
to obtain results of comparable quality. The principal-
component ratios found here for the chains N =101 and
N=201, {Ls?):{L2):{L?)=12.09:2.717:1 and 12.13:
2.723:1, respectively, are only slightly higher than
those for the symmetrical six-choice walk and confirm
the previously found high asymmetry of the random
coil. The figures in Table I suggest that for long enough
chains, the ratio of the principal-axis moments of the
nth order of two chains with different short-range
restrictions is roughly equal to the nth power of the
constant K= {I2)y/(L*).

The more reliable data on six-choice chains, especially
the larger ensemble for N=51, were submitted to a
closer examination. The one-dimensional distributions
of the three square principal components L;* (always
considered regardless of the other two) show marked
differences. Their approximate distribution functions
reduced by (Li?) for the purpose of comparison, shown
in Fig. 2 for N=51, indicate that the relative distri-
bution of the shortest axis W (L:2/{L;?)) is narrower,
with its peak higher and closer to unity, than that of
the longest axis W(Ls*/{Ls?)). The shape distribution
alone (irrespective of the size of coils) is illustrated
in Figs. 3 and 4 by means of the diagrams of the square
principal-component ratios Ls?/Ls® vs L;?/Ls? and their
square roots, respectively. As apparent from Fig. 3,
where each point represents one of 1000 random chains
generated for N=101, coils with square axis ratios
L2/ L2<0.04 and L,2< L,2<0.1 occur extremely rarely,
as do coils with symmetrical shapes (spheres and
ellipsoids of revolution). The vast majority of points
occupies the left lower quarter of the diagram, with
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rather sharp boundaries on the left and bottom sides
and diffuse diagonal boundary when moving up right.
In the square-root plot in Fig. 4, contour lines of con-
stant probability density are approximately drawn for
the larger population of chains with V=351. The lines
are roughly elliptical, with the most probable values
(L1/ L) max=>0.60, (Ly/L3)max=0.50, which are quite
close to the averages (L.2)%/(L2)V2=0.608, (L?)?/
(L)V2=0.478 and (L1/L:)=0.635, (L./L;)=0.524,
(The corresponding averages found for N=101 are
0.608, 0.482, 0.636, and 0.525, respectively.)

We have examined also to some degree the correla-
tions among the distributions of different principal
components. Figure 5 shows the individual representa-
tive points for the chain length N =351 contained in the
volume elements of constant thickness AL; ,=0.02, cut
out from the subspace L » (analogous to that in Fig. 1)
by two vertical planes, as functions of L; . Examina-
tion of the number of points in each section would
yield the one-dimensional distribution W (Ls,); how-
ever, here we are rather interested in the distribution
of the points within the section as a function of Ls,.
It is surprising to see that the distribution of the
shortest axis L; »1s to a considerable extent independent
of the longest axis L;,, unless L3, becomes so small
that it efficiently imposes an upper limit on L;,» due to
the condition I,<L,<L;. However, even then, the
population of points does not shift to lower values of
L, (its sharp lower boundary at I;,~0.07 rather
slightly increases than decreases with diminishing Ls -)
and is only cut away by the previously mentioned
condition in the region of L; comparable with L;. A
similar conclusion can be drawn about the relation

TasLE II. The dependence of the average moments (L, ), and
{Ly)» on the length of the third principal component Ls, for the
random chain of 50 bonds. The interval width is AL; ,=0.03.

Number
L; X102 of chains (L) X102 (L), X102
12 1 7.1 10.9
15 13 9.6 12.8
18 54 9.6 13.8
21 153 10.1 14.6
24 212 10.2 15.7
27 232 10.2 16.4
30 230 10.3 16.8
33 207 10.3 18.0
36 189 10.3 17.3
39 196 10.4 17.3
42 138 10.4 17.6
45 116 10.0 17.2
48 80 10.5 17.9
51 54 10.5 17.3
54 35 10.5 17.8
57 32 10.5 17.5
60 23 10.3 17.2
66 8 10.4 17.4
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between L, and L, distributions, though here the in-
equality appears to be much more restrictive. The
average values (L;), and {L,). given in Table II as
functions of Lz, comprising 98.6%, of the 2000 chains
generated, confirm these qualitative considerations:
Following the 4409, increase of Ls, from 0.15 to 0.66,
it is seen that the average value (L;?). is increased
only by ~99%, while that of (L), by ~37%. A weak
correlation is suggested also by the ratios of the average
moments from Table I:

<L12L22 > <L12 >_1 <L22 >_Ql 06,

(L2L2Y L2y L2y1~1.01,
and
{LRL2)Y (Lo )y 1{Ly?)1~1.05.

The results obtained can be interpreted also in terms
of the moments of inertia 7% of the random coils,
using Eq. (1b) for the transcription. For instance, for
the unrestricted six-choice random chain with ¥ =51,
there is obtained from Table I: (T11)=0.159, (Ty),=
0.141, (T53),=0.0406, (T112),=0.0327, (Ts?)»=0.0266,
<T332>r=0.00191, etc.

It thus seems that the deviations of the random-coil
shape from spherical symmetry are of such extent that
they could distort significantly the theoretical relations
derived for some experimental properties of dilute
polymer solutions on the assumption of a spherically
symmetrical segment distribution. In an improved ver-
sion, the random coils should be replaced either by the
average ellipsoids with average parameters following
from the present treatment, or more elaborately by an
ensemble of ellipsoids with mutually independent dis-
tributions of their three axes; however, the proposal
of a specific form of such distributions would require
much more computer data than we have in hand thus
far.
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APPENDIX

If we choose, for instance, C;=C,=C>0 and (C;<0,
then the integrand in Eq. (8) shows [see Eq. (9)]
N—1 isolated singular points A,/ on the positive
imaginary axis,

Ao’ ™ =3iC~[1—cos(mn/N) ], (A1)

and N — 1 branch points A¢' ™ on the negative imaginary
axis,
A =1Cs [ 1—cos(mn/N) ],
m=1,2, +++, N—1. (A2)

The integral in Eq. (8) for nonnegative Q can thus be
calculated simply by completing the integration con-
tour by an infinite semicircle in the upper half-plane
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and applying the residue theorem,
P(Q) = (3/2)r e N

N—-1
X 2

m=1

exp(irQ) Un—r L (14-iNC)

PPN

X Un_~ V2 (14iNCy)dN,  (A3)

where the contour integrals in Eq. (A3) are taken
around each of N—1 singular points A’ .

For the evaluation of the individual contour inte-
grals it is convenient to substitute the Chebyshev poly-
nomials in Eq. (A3) in the form of products

N1

Una(14iNC) = (20)5 TT [i(N=\/™)],
m==1

N-1

Una(14iNCs) = 2C)N IT LIV =A™) ], (A4)

where \.'™ and Af® correspond to the zeros of the
polynomials, given by Egs. (A1) and (A2). Expressing
then the integration variable )’ in the contour integral
around Ao’ as M=\, 4pe® and taking the limit
of the integral for p—0, we get the result for the contour
integral in terms of reciprocal products of differences
among the zeros of the Chebyshev polynomials,

f _ exp(NQ) U (1-HN'C) U (1N Y
A/ (m)

= 2723 (4\'~1)/2C—(N—1)C3— (N—D/2

N-1
X exp(iN™Q) I [N @) T

I=1,l#m

N1

X IL [0 =0 0) T, (A3)
i=1

The first homogeneous product can be calculated from

the relation (A6), which follows from comparison of

Egs. (10) and (A4),
N

I GOV —2/@) I = (20) -
I=1

sing
_— A6
sin(Na)’ (A6)

where
a=arccos{1+4+iC\"),

by taking the limit for N'—\, 0™

N

II GO =2SO)]1

I=1,l1#m
. (N =2, )
lim :
Margrtm SIn[ NV arccos(14-iCN\') ]
= (—1)mtNTICN2 N1 gin2 (s /N ). (A7)

Similarly to Eq. (A6), the product involving N\g/©®

= (2C)¥ 1 sinay,
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terms may be written in general as

N1 . sinB
F_\ (D — N—1 __ " ,
IT Gi—)y ) J= (207 2220, (a8

where
B=arccos(14+iCs\');

however, since in the region of our interest (\'—\,’ )
the quantity iCs\’ is never negative, the angle 8 is
imaginary, as can be seen from its definition above.
The product occurring in Eq. (A5) can be thus ex-
pressed in terms of hyperbolic functions,

N-1
A= JT [ —=2@)
1=1

sinhy
sinh(Nvy) ’

where the real quantity y can be calculated from

equation
. v Cs\1/2 mr
sinh <—> = <— —) sin <—) ,
2 C 2N

or, after transcription in terms of goniometric functions,

A= 2‘\7C3N_1ym( 1 +ym2) 1/2'L'm_2N ( 1—- vm_4N) __1’ (AIO)

= (2C) M1 (A9)

where y,, and v, are defined in the same way as in
Eq. (11). Finally, the substitution of products (A7)
and (A10) into the relation for the contour integrals
(AS5) and their summation as indicated in (A3) yields
the distribution function P((Q) given by Eq. (11).
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