
their aspect ratio and magnetic properties. This
is not the case for iron because, whatever the
ligands used, nanocubes of �7 nm form. Fur-
thermore, the interparticle distance in these
samples is uniform and very short (1.6 nm),
which tends to suggest the absence of coordi-
nated long-chain ligands at the surface of the
particles. This can result from the formation in
all cases of hexamethyldisilazane, which can
remain coordinated at the surface of the parti-
cles. It is also noteworthy that neither water
formed upon condensation of OA with HDA in
the reaction conditions nor chloride ions present
in HDAC are detrimental to the formation and
magnetic properties of the iron nanocubes.
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Rheology and Microscopic
Topology of Entangled
Polymeric Liquids

Ralf Everaers,1,2* Sathish K. Sukumaran,1 Gary S. Grest,3

Carsten Svaneborg,1 Arvind Sivasubramanian,1 Kurt Kremer1

The viscoelastic properties of high molecular weight polymeric liquids are
dominated by topological constraints on a molecular scale. In a manner
similar to that of entangled ropes, polymer chains can slide past but not
through each other. Tube models of polymer dynamics and rheology are
based on the idea that entanglements confine a chain to small fluctuations
around a primitive path that follows the coarse-grained chain contour. Here
we provide a microscopic foundation for these highly successful phenom-
enological models. We analyze the topological state of polymeric liquids in
terms of primitive paths and obtain parameter-free, quantitative predictions
for the plateau modulus, which agree with experiment for all major classes
of synthetic polymers.

The relation between the complex vis-
coelastic properties of polymer liquids and
their microscopic structure and dynamics is
a key issue in modern materials science and
biophysics (1–3). A prototypical example is
natural rubber. Strictly speaking, natural
rubber is a (highly viscous) liquid, even
though over a large frequency range it pre-
sents the same rubber-elastic response to
oscillatory mechanical deformations as
vulcanized rubber (4 ). This response can
be characterized by a temperature- and
concentration-dependent material constant,

the plateau shear modulus G 0
N, which is on

the order of 106 Pa, or five orders of mag-
nitude smaller than the shear modulus of
ordinary solids. The origin of this behavior
can be traced back to the molecular scale.
Natural rubber consists of linear chain mol-
ecules of up to N � 3 � 104 monomer units
with molecular masses up to M � 106

g/mol and contour lengths up to L � 10
�m. Individual polymers adopt random coil
conformations. The coil diameter of about
100 nm is much smaller than the chain
contour length, but substantially larger than
the diameter of the corresponding densely
packed globule of �20 nm. Consequently,
neighboring chains strongly interpenetrate
and entangle with each other. In our exam-
ple, a spherical volume with the coil diam-
eter contains about 150 polymers. Although
the chain length has essentially no effect on
the magnitude of G 0

N, it strongly influences

the time or frequency interval for which the
plateau in the shear relaxation modulus
GN(�) can be observed (1). For natural
rubber (5, 6 ), one can estimate that the
relaxation-time increases from �d(M � 104

g/mol) � 5 � 10�5 s to �d(M � 106

g/mol) � 5 s and would reach years for
chains with molecular masses of 108 g/mol
even though their typical spatial extension
is only on the order of 1 �m.

All melts or semidilute solutions of suf-
ficiently long flexible chain molecules
show the same, universal behavior (1). Ear-
ly theories treated entanglements as tran-
sient physical cross-links to capture the
analogy to rubber-elastic polymer net-
works. Modern theories of polymer dynam-
ics are based on the idea that Brownian
motion is dominated by the restriction that
the chains may slide past but not through
each other. Consequently, the motion of
each polymer chain is thought to be con-
fined to a tubelike region around a so-
called primitive path along the coarse-
grained chain contour (7 ) (Fig. 1). The
stress relaxation is effectively suspended
up to the time �d(N) required by the chains
to leave or renew their deformed original
tubes. The basic version of the tube model
considers only a single relaxation mecha-
nism: one-dimensional, curvilinear diffu-
sion in tubes of fixed length (“reptation”)
(8). Its prediction �d(N) 	 N3 agrees with
experimental data in the limit of large N
(9). Convincing microscopic evidence for
both tube confinement and reptation dy-
namics has been accumulated from experi-
ments and computer simulations (10–12).
Recent, more refined analytical (2) and nu-
merical models (13–17 ) of the dynamics of
the primitive paths account for additional
relaxation mechanisms and quantitatively
describe most rheological and single-chain
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38, 01187 Dresden, Germany. 3Sandia National Lab-
oratories, Albuquerque, NM 87185, USA.

*To whom correspondence should be addressed. E-
mail: everaers@mpipks-dresden.mpg.de

R E P O R T S

www.sciencemag.org SCIENCE VOL 303 6 FEBRUARY 2004 823

 o
n 

M
ay

 2
5,

 2
00

7 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


dynamics data with a small set of physical-
ly motivated, material-specific parameters
such as the tube diameter, dT .

What is still lacking, however, is an
understanding of the microscopic founda-
tions of the tube model. Entanglements im-
pose topological constraints on polymer
conformations (18) similar to those one
experiences in manipulating a knotted
string. However, so far theoretical (18, 19)
and computational (20, 21) efforts to intro-
duce elements from mathematical knot the-
ory into polymer statistical mechanics (Fig.
1C) have not led to a systematic derivation
of the tube model or its parameters. Here
we follow the opposite strategy and intro-
duce a physically motivated analysis of the
melt topology in terms of primitive paths
(Fig. 1B). The idea is to simultaneously
establish the microscopic foundations of
the tube model and to endow a highly
successful phenomenological model with
predictive power for structure-property re-

lations. In the present, first step, we con-
centrate on the plateau modulus and the
origin of its experimentally observed de-
pendence on the melt structure.

The static structure of polymer melts
and good-solvent semidilute solutions can
be discussed in terms of two length scales:
the Kuhn length, lK (1), and the packing
length, p (22). Both characteristic scales
depend in a nontrivial way on the micro-
scopic interactions, temperature, pressure,
concentration, etc., and can usually neither
be varied directly nor independently in ex-
periments or simulations. The Kuhn length
characterizes the conformations of individ-
ual chains and is defined as the step length
of a random walk with the same contour
length, L, and mean-square end-to-end dis-
tance 
R2� � lKL as those of the actual
chains. Although locally most monomers
belong to the same chain, random coils are
strongly interpenetrating on large scales.
The packing length, p � [�chain
R2�]�1, is

the characteristic length scale at which
polymers start to interpenetrate. (The prod-
uct of the number density of chains, �chain,
and of 
R2� is independent of chain length
for a fixed monomer number density, �.)
Plateau moduli can be compared by plot-
ting dimensionless numbers such as G 0

Nl3K/
kBT as a function of the ratio lK/p (22). The
experimental data for dense melts shown in
Fig. 2 result from a substantial effort made
in recent years (23–25) to synthesize mono-
disperse high molecular weight samples for
a wide range of different polymer species.
These samples were carefully characterized
by rheological measurements, and in many
cases the microscopic chain structure was
determined in small-angle neutron-scattering
experiments. The accessible lK/p range can be
extended appreciably by including data for
entangled semidilute solutions of polymers in
good solvents (26–28). All data points follow
the empirical relation G0

N � 0.00226kBT/p3

(24 ), which implies a simple proportionality
dT 	 p between tube diameter and pack-
ing length.

In order to study generic properties of
entangled polymers in computer simula-
tions, it is not necessary to resort to atom-
istic simulations of a specific chemical
species. Rather, one can choose a coarse-
grained model that combines numerical ef-
ficiency with the characteristic features of
(synthetic) polymers: connectivity, flexibil-
ity, local liquid-like monomer packing, and
mutual uncrossability of the chain back-
bones. Here, we mainly investigate dense
melts and semidilute solutions of bead-
spring polymers with variable intrinsic
stiffness. Chain segments are represented
as spheres with short-ranged excluded vol-
ume interactions. Model polymers are
formed by connecting beads via springs.
The parameter choice guarantees a suffi-
ciently close contact between connected
monomers to prevent chain crossings (29–
32). In addition, we present results for a
coarse-grained model for polycarbonate
(BPA-PC) (33, 34 ). In all cases, the char-
acteristic lengths lK and p are determined
directly from the polymer conformations in
equilibrated melt or solution samples. In
some cases, we have determined the plateau
moduli in extensive simulations of strained
melts (35–37 ) (Table 1). The good agree-
ment with the experimental data in Fig. 2
confirms the insensitivity of entanglement
effects to atomistic details. Furthermore, it
provides the necessary validation of our ge-
neric bead-spring models as well as the system-
atically coarse-grained polycarbonate model,
and establishes direct simulation as a (rather
expensive) brute-force approach for studying
rheological structure-property relations.

The key idea in this report is the analy-
sis of the topology of entangled melts on

(A)

(B)
(C1)

(D)

(C2)

Fig. 1. Relation between differ-
ent theoretical approaches to
describe entanglement effects
in polymeric liquids. (A) Sche-
matic view of an entangled and
cross-linked polymer melt. The
thermal fluctuations of the red
strand are reduced due to a
caging effect from nearby
chains. (B) The primitive path
(blue) corresponding to the red
chain conformation in an array
of fixed obstacles is the short-
est connection between the
chain ends that can be reached
from the initial conformation
without crossing any obstacles.
The relation between the prim-
itive path (B) and the tube (D)
description is straightforward.
(C) Topological theories pro-
pose to specify entanglements in terms of an (infinite) series of topological invariants for pairs
(C1), triplets (C2), etc., of closed loops and to integrate the conservation of these invariants
under strain into the statistical mechanical analysis (18–21). Unfortunately, it is diffcult to
progress beyond the pair term (C1), and so far no systematic derivation of the tube model
along these lines exists. (D) Tube model. In a single-chain picture, entanglements are
represented by an effective potential. The challenge is to predict the parameters of the tube
model from the molecular structure. Our primitive-path analysis allows us to systematically
derive the parameters of the tube model by passing from (A) over (B) to (D).

Table 1. System characteristics and results from the primitive-path analysis for bead-spring chain melts
(I to IV) and semidilute solutions (V and VI), as well a coarse-grained model for a polycarbonate melt
(BPA-PC). The Ne values quoted for BPA-PC refer to chemical repeat units.

Melts Solutions

I II III IV BPA-PC V VI

Structure �/3 0.85 0.85 0.85 0.85 0.85 0.134 0.231
lK/ 1.82 2.16 2.79 3.34 4.36 2.98 2.85
p/ 0.68 0.56 0.43 0.36 0.37 2.28 1.38

Rheological 103G0
N3/kBT 9.7 � 1.4 – 23 � 3 – 34 � 14 – –

simulations Ne 70 � 10 – 30 � 4 – 5 � 2 – –
Primitive app/ 10.7 � 0.5 9.7 � 0.3 8.7 � 0.1 8.6 � 0.2 8.9 � 0.7 34.5 � 0.3 24.3 � 3.4
path analysis Ne 65 � 7 45 � 3 28 � 1 23 � 1 6 � 1 363 � 6 188 � 52
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the basis of the concept of primitive paths
introduced by Edwards (38) to complement
his tube model (7 ). Edwards considered a
test chain embedded in an array of rigid,
infinitely thin, spatially fixed line obstacles
representing the constraints imposed by the
other polymers on thermal fluctuations of
the test chain (Fig. 1B). He identified the
random walk–like axis of the tube with
what the called the “primitive” path: the
shortest path between the endpoints of the
original chain into which its contour can be
contracted without crossing any obstacle.
Similar to the tube, the primitive path is
usually discussed without specifying the
relation between the obstacles and the melt
structure. Here we argue that the obstacles
encountered by a test chain are themselves
polymers with identical properties and pro-
pose to apply the primitive-path analysis to
all polymers in the system simultaneously.

The implementation of this idea into a
simulation code for bead-spring chains is
straightforward: First, the chain ends are
fixed in space. Then, the intrachain excluded-
volume interactions are disabled, while re-
taining the interchain excluded-volume in-
teractions. Finally the energy of the system
is minimized by slowly cooling the system
toward T � 0 (39). Without thermal fluc-
tuations and intrachain excluded-volume
interactions, the bond springs try to reduce
the bond length to zero and pull the chains
taut. The interchain excluded-volume inter-
actions ensure that different chains do not
cut through each other, and thus the topol-
ogy is conserved throughout the procedure.
The result of such an analysis is a mesh of
primitive paths (Fig. 3). The primitive-path
analysis automatically accounts for multi-
chain entanglements of arbitrary order
(Fig. 1C2).

Figure 3 shows that individual primitive
paths consist of straight segments of
strongly fluctuating length and more or less
sharp turns at entanglement points between
two paths. Being random walks, they can
be characterized by a Kuhn length, app, and
a contour length, Lpp. Compared to the
original chains, the line tension leads to a
reduction of the contour length Lpp �� L.
Due to the fixed endpoint positions

R 2

pp� � 
R2�, it follows that Lppapp � LlK.
Thus, the primitive paths must have a cor-
respondingly larger Kuhn length in order to
reach the same spatial extension as the
original chains (1). Figure 4 illustrates this
point by showing a comparison of the
mean-square spatial distances 
r2|i – j|� and

r 2

pp|i – j|� between pairs of monomers i and
j for the original chains and the primitive
paths, respectively. It is sufficient to extract
a single number, the average bond length of
the primitive paths, bpp, to determine Lpp �
Nbpp, app � 
R2�/Lpp as well as 
r 2

pp|i – j|�

for arbitrary chemical distances |i – j| (Fig.
4). For all systems studied, Lpp �� app, i.e.,
our chains are sufficiently long to be mul-
tiply entangled. In this limit, the primitive
paths reach essentially the same overall
extension as the original chains for chemi-
cal distances |i – j| �� N, so that we can
neglect finite-N effects in our analysis.

An intuitive way to characterize the to-
pological state of (bead-spring) melts and
solutions is to calculate the number of
monomers between entanglements (often
referred to as entanglement “length”),
which is given by the number of monomers
per Kuhn segment of the primitive path,
Ne � app/bpp. Our results are summarized
in Table 1. For the bead-spring systems, the

extracted values for the entanglement
lengths vary over a wide range 23 � Ne �
363, and we find that (i) stiff chains are
more strongly entangled than flexible
chains and (ii) dilution reduces the number
of entanglements. In the case of polycar-
bonate, we properly reproduce the extraor-
dinarily short entanglement length of Ne �
6 monomers reported in the literature (22).

Having supplied a microscopic defini-
tion of primitive paths as physical observ-
ables and having determined their proper-
ties for melt and solution configurations of
entangled bead-spring model polymers, we
are now in a position to test the predictive
power of the tube model. For this purpose,
we use the standard expression (1)

10-5

10-4

10-3

10-2

10-1

100

101

10-1 100 101

lK/p

polyolefins
polydienes

polyacrylates
miscellaneous
polycarbonate

PS/TCP
PB/PO

melts
solutions

BPA-PC

0.00226 (lK/p)3

G
N

0  
l K

3 
/ k

B
T

Fig. 2. Dimensionless
plateau moduli Gl K

3/kBT
as a function of the di-
mensionless ratio IK/p
of Kuhn length lK and
packing length p. The
figure contains (i) ex-
perimentally measured
plateau moduli for
polymer melts (25) (�;
colors mark different
groups of polymers as
indicated) and semidi-
lute solutions (26–28)
(�); (ii) plateau moduli
inferred from the nor-
mal tensions measured
in computer simulation
of bead-spring melts
(35, 36) (▫) and a semi-
atomistic polycarbonate melt (37) (�) under an elongational strain; and (iii) predictions of the tube
model Eq. 1 based on the results of our primitive-path analysis for bead-spring melts (�), bead-spring
semidilute solutions (●), and the semi-atomistic polycarbonate melt (�). The line indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

Fig. 3. Result of the primitive-path
analysis of a melt of 200 chains of
N � 1 � 350 beads. We show the
primitive path of one chain (red)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines.
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G 0
N �

4

5
(kBT/pa 2

pp) �
4

5
(�kBT/Ne) (1)

which relates the plateau modulus to the
Kuhn length of the primitive path. The
results are listed in Table 1, and we note
excellent agreement in those cases for
which we also determined the plateau mod-
ulus in simulations of stretched melts.
Moreover, the comparison to the available
experimental data in Fig. 2 suggests that
our topological analysis enables the tube
model to predict plateau moduli from
first principles.

The primitive-path analysis also provides
insight into the apparent proportionality of p
and dT (24 ). So far, we have characterized the
statistics of individual primitive paths in
terms of their Kuhn length, app. However, if
we think of the limitation of transverse fluc-
tuations of a polymer around its primitive
path as being due to a cage formed by the
surrounding paths, then it makes sense to
take a closer look at the mesh size,
�pp � (�chainLpp)�1/2, of the primitive path
mesh shown in Fig. 3. From the definition of
the packing length, p � [�chain
R

2�]�1, and
the identity 
R2� � Lppapp, one immediately
obtains the relation

papp � � 2
pp (2)

which shows that �pp can have a different
dependence on lK and p than app.

In contrast to semidilute solutions in �
solvents (27 ), there is no evidence for a
second, independent length scale character-
izing entanglements in dense melts of in-
trinsically flexible polymers. In this case,
Eq. 2 directly implies the experimentally
observed relation dT 	 app 	 �pp 	 p,
shedding new light on the physics underly-
ing the packing argument as well as on the
implications of competing proposals [for
references, see (40)]. Finally, Eq. 1 is only
valid for lK �� app, i.e., if the chains inside
the tube can be considered as entropic
springs. The parameters of our stiffest
bead-spring chains and of the polycarbon-

ate model are already close to the crossover
to a different regime, where the elastic
response is caused by bending of tightly
entangled semiflexible chains (41).

To summarize, we have introduced a
microscopic definition of the key quantity
of most current theories of polymer dynam-
ics and rheology (1, 2): the primitive paths
characterizing the topological state of an
entangled polymeric liquid. In the present
first step, we have concentrated on their
static properties. The comparison to a wide
range of experimental data suggests that the
tube model can make parameter-free, quan-
titative predictions for plateau moduli on
the basis of our purely topological analysis.
This paves the way to a systematic inves-
tigation of the dynamic processes described
by the tube model and of the relation be-
tween its parameters and the microscopic
structure of the polymeric liquids.
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Fig. 4. Mean-square monomer
distances for the original chain
conformations (open symbols)
and for the primitive paths (filled
symbols) as a function of chem-
ical distance. Results are shown
for two sets of equilibrated
melts of bead-spring polymers
with persistence length lK �
1.82 (ƒ) and lK � 3.34 (▫).
The lines represent a well-known
theoretical expression (30) for
freely jointed chains with the
same contour length and asymp-
totic mean-square end-to-end
distance as those of our bead-
spring chains and primitive
paths, respectively.
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