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Abstract

Mechanical stress and stiVness are increasingly recognized to play important roles

in numerous cell biological processes, notably cell diVerentiation and tissue

morphogenesis. Little definite is known, however, about how stress propagates

through diVerent cell structures or how it is converted to biochemical signals via

mechanotransduction, due in large part to the diYculty of interpreting many cell

mechanics experiments. A newly developed technique, two-point microrheology

(TPM), can provide highly interpretable, quantitative measurements of cells’

frequency-dependent shear moduli and spectra of their fluctuating intracellular stres-

ses. TPM is a noninvasive method based onmeasuring the Brownianmotion of large

numbers of intracellular particles using multiple-particle tracking. While requiring

only hardware available in many cell biology laboratories, a phase microscope and

digital video camera, as a statistical technique, it also requires the automated analysis

of many thousands of micrographs. Here we describe in detail the algorithms and

software tools used for such large-scale multiple-particle tracking as well as common

sources of error and themicroscopymethods needed tominimize them.Moreover,we

describe the physical principles behind TPM and other passive microrheological

methods, their limitations, and typical results for cultured epithelial cells.
I. Introduction

Cell biologists have long studied the complicated biochemical and physiological

responses of cells to mechanical stress or deformation (Orr et al., 2006; Vogel and

Sheetz, 2006). In addition to these responses, cells also show a purely mechanical,

deformation response to applied stress, determined by their shear modulus (Chapter 1

by Janmey et al. and Ch ap te r 2 by Kandow et al., this volume). While mechanical

and physiological responses can occur simultaneously and couple, complicating

interpretation, it is usually assumed that the deformations occurring immediately

after stress application or in response to small stresses are predominantly mechanical

in origin.

Only in the last decade or so have techniques, termed microrheology, been deve-

loped that can characterize cells’ dynamic shear modulus over a wide frequency
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range (Waigh, 2005; Weihs et al., 2006). Initially, many researchers hoped that

these new cell rheological measurements would display characteristic times

corresponding to known molecular timescales, such as that of the myosin ATP

hydrolysis cycle. Such contributions could then be dissected with genetic or phar-

macological interventions to tie together cell behavior at the molecular and meso-

scopic scales. Less ambitiously, it was hoped that the cell mechanical response

would at least closely resemble the response of various purified biopolymer gel

models (typically F-actin), whose rheology has been intensively studied since the

1980s (Kroy, 2006). In reality, however, the rheological responses of cells measured

to date have not contained identifiable molecular timescales and have not been

satisfactorily reproduced by any biopolymer gel model yet studied. Several experi-

ments have found the (low frequency) shear modulus of cells to be well described

by a weak power-law form, G*(o) � ob, with reported values of b varying over

the range 0.1–0.3 (Alcaraz et al., 2003; Desprat et al., 2005; Fabry et al., 2001;

HoVman et al., 2006; Lenormand et al., 2004; Yamada et al., 2000). Such a power-

law form has no characteristic times at all. In contrast, the low-frequency behavior

of reconstituted gels is either purely elastic with b ¼ 0 (Janmey et al., 1990;

Koenderink et al., 2006) or nearly so with a very small b exponent (Gardel et al.,

2006; Xu et al., 1998).

The challenges of interpreting and modeling cell rheological measurements have

several causes (Weihs et al., 2006). Primary among them is the obvious structural

complexity within cells. Cells are composed of numerous chemically and spatially

distinct subdomains that include the cell cortex, the nuclear envelope, lamellipodia

and stress fibers, not to mention the microtubule and intermediate filaments net-

works, endoplasmic reticula, and other organelles that fill the cell interior. It seems

likely that diVerent cell microrheological methods will probe diVerent mechanical

subdomains (or diVerent combinations of them), and that the target and response

might diVer among cell types or even among individual cells of the same type.

Indeed, it is not clear a priori to what extent cells may be understood as a contin-

uous viscoelastic solid, rather than a complex ensemble of discrete units. Finally,

there is also the fact that microrheology comprises a new and emerging set of

methodologies, with still unresolved technical issues regarding interpretation and

measurement artifacts, even with comparatively simple synthetic or reconstituted

biopolymer materials.

In this chapter, we will describe a cell microrheological method developed in

our laboratory, two-point microrheology (TPM) (Crocker et al., 2000; Lau et al.,

2003), which computes the rheology from measurements of the statistically cross-

correlated Brownian motion of pairs of embedded, intracellular tracers (for

complemen tary discus sion of parti cle-based micr orheology, see Chapt er 6 by

Panorchan et al., this volume). Compared to other techniques, TPM has the

advantage of being more interpretable: it is essentially immune to uncertainties

related to cytoskeletal heterogeneity and the tracer/network connection, and pro-

vides additional positive controls regarding whether the cell even behaves as a

viscoelastic continuum. TPM has the disadvantage that, like all methods based on
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Bro wnian moti on, it can be confou nded by active intr acellular process es, and

is thus mo st reliab le when app lied to cells that have been de pleted of ATP .

Mo reover, since TPM na turally probes a three-dim ensional struc ture much large r

than the trace rs, it is best suit ed to measur e the rheology of the thick centra l

‘‘body’ ’ of the cell , rather than thin structures such as the lamellipodium, cell

cortex, or nuclear envelope.

The diVerences among the mechanical properties of diVerent cell regions were
highlighted in a study in our laborat ory (Ho V man et al. , 2006 ), whi ch compared

the resul ts of TPM with ano ther techni que, magnet ic twist ing cytom etry (MTC ;

see Chapt er 19 by Pol te et al. , this volume ), based on rocking exter nal, integ rin-

atta ched microp articles using a magnet ic fie ld. While qualitativ ely sim ilar at

first glance ( Fig. 1), the results of these two measur ement s on the same ce ll type

are dist inctly di V erent on close inspect ion. Comb ined with literature and control

measurements, these results indicate that the mechanical properties of cells’ cor-

tical and deeper intracellular regions are diVerent, and thus presumably so are

their predominant structural elements and organization. While this diVerence is

in line with expectations from known cell physiology, it clearly represents a

potential confounding factor for all cell rheological measurements; a given
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Fig. 1 Comparison of the cell rheological data from two diVerent methods that probe either the deep

interior of TC7 epithelial cells, TPM (circles), averaged over N ¼ 7 cells, or the cortex, MTC (squares),

N ¼ 8 cells. Each rheological curve is a best fit to a sum of two power-law functions (Ho Vman et al.,

2006). Curves indicate only the relative frequency dependence; the vertical positions of the two data sets

are arbitrary. Absolute sti Vness estimates are discussed in Section VII.B .
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rheological method may potentially probe one or the other region, or a superposi-

tion of both. The unique interpretability of TPM was essential to sorting out this

confounding factor.

Examining the cell rheological findings in Fig. 1, both the cortical and interior

responses can be divided into two frequency regimes. At low frequencies, the

structures are predominantly elastic (G0 > G00), with the aforementioned power-

law form reported by several groups, G*(o) � ob, where many literature values of

b fall between the two values we find (bint¼ 0.26, bcort¼ 0.16). At high frequencies,

both structures are more dissipative than elastic (G00 > G0), with a power-law

exponent of about 3/4. Such high-frequency behavior has a simple physical expla-

nation—a 3/4 exponent is characteristic of the high-frequency rheology of net-

works formed of semiflexible (i.e., filamentary) polymers (Deng et al., 2006). While

this clearly suggests that deformations at high frequencies are resisted by a fila-

mentous network, it is an open question whether low-frequency deformations are

resisted by the same biopolymer network or by a diVerent structure altogether.

Indeed, the physical origin and molecular determinants of cells’ power-law rheolo-

gy have not been compellingly identified; clearly, much research remains to be

done. Given cells’ structural complexity, it seems likely that no single-cell micro-

rheological method can provide a complete or compelling description of cellular

responses to mechanical stress. Rather, a sensible strategy may be to apply multiple

microrheological techniques to single-cell types, with TPM contributing one par-

ticularly interpretable component, and to compare the results carefully for mutual

consistency.

From a hardware point of view, TPM is accessible as it requires only hardware

that is common in many cell biology laboratories: a high-magnification optical

microscope with phase-contrast or diVerential interference-contrast optics and a

high-intensity illuminator as well as a reasonably high-quality, low-noise camera

that can collect images at or near video rate (tens of frames per second). While

we use a specialized high-speed camera to collect the above reported TPM data,

this is not required to measure rheology in the weak power-law regime. Unlike

laser-deflection-based approaches, expertise with physical optics, analogue signal

processing, or lasers is not required. As a statistical method, however, it does

require the analysis of extremely large numbers of micrographs, at least 10,000

per single-cell measurement. With the use of automated image acquisition and

analysis routines and increasingly fast microcomputers, this requirement presents

little real impediment. Because of the small amplitude of the Brownian motion of

intracellular particles, care must be taken to minimize the eVects of microscope

vibration and to maximize the precision of the particle-tracking process. Beyond

describing the underlying algorithmic and mathematical procedures required for

TPM, this chapter will also discuss how to achieve high-performance multiple-

particle tracking using an imaging system. Such an instrument is potentially useful

for a number of cell biology applications other than TPM, for example, for studies

of endocytosis and intracellular traYcking.
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II. Principles of Passive Tracer Microrheology

In general, there are two approaches to measuring the rheology of soft materials,

active and passive. In the active approach, a known force (or deformation) is

applied to the material, and the resulting deformation (or force) is measured.

In the cell rheological context, this usually relies on atomic force microscope

(AFM) (Alcaraz et al., 2003) or similar, force-calibrated microcantilever instru-

ments (Desprat et al., 2005). The passive approach, which is our focus in this

chapter, examines the Brownian motion of tracers embedded in the soft material.

No force is applied at all, only the spontaneous motion of the tracers is observed

and quantified, considerably simplifying instrumentation requirements. The ‘‘cali-

bration’’ of the Brownian forces comes from simple physical principles: in general,

the (squared) amplitude of the tracer motion is inversely proportional to the

material’s stiVness.
A. Conventional Passive Microrheology
The simplest and first described example of Brownian motion is a spherical

tracer particle moving in a simple viscous fluid (like water or glycerol). Here, the

relationship between mechanical properties and tracer motion is the familiar

Stokes–Einstein relation:

� ¼ kBT

hDrðtÞ2ipa t ð1Þ

where � is the liquid’s viscosity, a is the tracer radius, and the ‘‘driving force’’ is

the energy of thermal fluctuations, kBT, where kB is Boltzman’s constant and T

the absolute temperature. The mean-squared displacement (MSD) of the particle’s

motion, hDrðtÞ2i, is simply the square of the net distance the tracer typically moves

during a given time interval, t, in this context called a lag time. We will discuss the

computation of the MSD in a later section.

To model the Brownian motion of tracers embedded in viscoelastic materials,

Eq. (1) needs to be modified. Several diVerent, but mathematically consistent

versions are in use; we employ the generalized Stokes–Einstein relation (GSER)

(Mason and Weitz, 1995):

G�ðoÞ ¼ kBT

iohDrðoÞ2ipa ð2Þ

where hDrðoÞ2i is the unilateral Fourier transform, f ðoÞ ¼ R1
0

e�iotf ðtÞdt of the

MSD and i ¼ ffiffiffiffiffiffiffi�1
p

, and the use of (Fourier) frequency, o, rather than lag time

facilitates comparison to conventional rheological models. Note that in order to

determine the rheology at even a single frequency, we must formally evaluate the

Fourier integral over all lag times from t ¼ 0 to t ¼ 1, while it is obviously

impossible to measure the MSD over that entire range. In practice, if we measure
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the MSD over a wide range of lag times, t1 < t < t2, then we can compute the

rheology over a range of frequencies o2 ¼ 1/t2 < o < o1 ¼ 1/t1, with a little

uncertainty at the frequency extrema. Numerically evaluating Fourier integrals

with typical data can be quite challenging, but simple approximate methods have

been developed, which we will describe in Section IV.

Equation (2) implies several relationships between the Brownian motion and the

shear modulus. Roughly speaking, since the overall amplitude of the MSD and its

Fourier transform are linearly proportional, the GSER implies an inverse relation-

ship between mechanical properties and the tracer’s MSD at a given frequency. In

addition, since hDrðoÞ2i is in general a complex function, so is G*(o). The real and
imaginary parts of the shear modulus, G0(o) and G00(o), respectively called the

storage modulus and loss modulus (Chapt er 1 by Janmey et al. and Chapt er 2 by

Kandow et al., this volume), represent the solid-like and liquid-like behavior of

the material. In simple viscous liquids, the above equation reduces to Eq. (1), with

MSD � t1 and G*(o) ¼ io�. In simple elastic solids, the MSD is lag time indepen-

dent, MSD � t0. In a viscoelastic material, the MSD will have an intermediate

form and will increase more slowly than linearly with lag time.

An important point is that the derivation of Eq. (2) assumed that the tracer is

embedded in a completely homogeneous material, and has ‘‘no-slip’’ boundary

conditions. In many complex synthetic materials, the rheology computed using the

GSER has been found to be incorrect due to a failure of one or both of these

assumptions (Crocker et al., 2000; Valentine et al., 2004). In porous materials,

tracers tend to diVuse inside fluid-filled pores, and systematically report a softer

and more fluid-like rheology. Tracers that associate strongly with the material,

for example adhering strongly to segments of a porous material, tend to report

rheology that is softer than the true bulk rheology but has the correct frequency

dependence (Van Citters et al., 2006). Tracers in cells tend to show this latter

behavior, implying that many microrheological techniques tend to yield reliable

frequency dependences but may have systematically underestimated absolute

stiVness values.
B. Expected Tracer Motion and Tracking Performance
The expected amplitude of the Brownian MSD for some simple cases can be

readily estimated. Consider spherical particles 1 mm in diameter, which are easily

visible under a high-magnification optical microscope. In water at room tempera-

ture, such particles will typically move 1 mm in each direction in a lag time of

t ¼ 1 sec. In an elastic material with a shear modulus of 1000 Pa ¼ 1 kPa, a typical

value reported for cell measurements (Fabry et al., 2001) and roughly that of very

soft agar, the rattling motion of a 1-mm tracer has an expected amplitude of only

1 nm. Such a miniscule motion is quite invisible to all but the highest-performance

particle-tracking instruments.

For comparison, consider the typical amplitudes of vibration and tracer position

measurement error. For an optical microscope simply placed on an ordinary
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laboratory bench or table, typical sample vibration amplitudes are 10–100 nm.

The same microscope on a well-engineered pneumatic vibration isolation plat-

form or table will have vibration amplitude typically about 10 times smaller, but

still comparable to or in excess of the expected Brownian motion signal, 1 nm,

estimated above. Image-based particle-tracking routines that have not been care-

fully optimized typically locate micron-sized particles to 10- to 20-nm precision

(Crocker et al., 2000), and this can be improved to a few nanometers using the

techniques described in later sections. While we find that intracellular tracers

typically move somewhat more than the 1-nm estimate above, passive cell micro-

rheology is nonetheless challenging for even a high-performance image-based

particle-tracking system. This is the reason why many such experiments are per-

formed with laser-deflection particle-tracking systems, which readily achieve sub-

nanometer precision, or with longer lag times, where the motion is somewhat larger.
C. Two-Point Microrheology
We concluded above that interpreting cell rheological measurements is often

diYcult due to uncertainties related to tracer boundary conditions and tracer/

network association. Fortunately, TPM removes most of the interpretation uncer-

tainties of conventional microrheology. Unlike other microrheological methods,

TPM can deliver a reliable, absolute measure of stiVness, rather than just its

frequency dependence, even in heterogeneous materials and cases where the tracer

boundary conditions are not known.

The basic principle of TPM is that all soft materials undergo a form of internal

Brownian motion, like waves on the surface of a choppy ocean. Tracers are carried

along by these random undulations of the medium, like corks bobbing on the

ocean. The Brownian motion of two separate tracers will be statistically correlated

because they will both be carried along by the Brownian motion of the segment of

the material spanning between them. TPM computes the rheology from the

amplitude of the tracers’ resulting cross-correlated motion. Elementary calcula-

tions show that in three dimensions, the correlation between the particles motion is

inversely proportional to their separation, R. This is a consequence of larger ma-

terial segments having smaller Brownian motion amplitudes (just as larger parti-

cles diVuse more slowly than small ones). This 1/R dependence provides a useful

positive control that the material is deforming like a continuous three-dimensional

object, a prerequisite for our analytical framework (Crocker et al., 2000).

The interpretive power of TPM comes from the fact that any local motion of the

tracers relative to the material generally will not be correlated with one another

(Levine and Lubensky, 2001). For example, in the troublesome case that tracers

inhabit soft pores in the material, their diVusive rattling in their respective pores

will be statistically independent, and will not contribute to the correlation mea-

surement in two-particle microrheology. Details of how to compute the cross-

correlation and rheology will be given later. While sample vibration does lead

to correlated motion, it has a diVerent character than that due to the material’s
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Brownian motion, and can simply be filtered out to a large extent. It turns out that

tracer position error increases the noise of the two-point measurement, and must

still be minimized. Provided it is not too much larger than the tracer motion,

however, it does not systematically aVect the inferred rheology, facilitating the use

of image-based particle-tracking methods.
III. Multiple-Particle Tracking Algorithms

Multiple-particle tracking can be broken down into four processing stages:

correcting imperfections in individual images, accurately locating particle posi-

tions, eliminating false or unwanted particles, and finally linking these positions

in time to create a trajectory (Crocker and Grier, 1996). We perform these tasks

with software we developed using the interactive data language (IDL; ITT Visual

Information Solutions, Boulder, CO), a high-level programming language used

extensively in astronomy and earth sciences, which we have made available as

freeware. Each section below is broken into two parts: one describing the general

approach and a second with specific instructions for using our IDL software.

A typical cell image is shown in Fig. 2. The image shows a TC7 green monkey

kidney epithelial cell illuminated with a pulsed near-IR laser, visualized using

shadow-castDICoptics (bright-fieldNomarski), and acquiredusing a non-interlaced
Fig. 2 An image of a TC7 epithelial cell illuminated by a pulsed near-IR laser, taken with high-

performance shadow-cast DIC. White box shows a region of interest for which further analysis will be

shown. Scale bar is 5 mm.
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camera with 512 � 512 resolution at a magnification of 96 nm/pixel. In our exam-

ple, we will track the �400-nm diameter endogenous lipid granules that are

common in these and many other cultured cells. Subsequently, we will highlight

only the small region of interest marked in Fig. 2, even though the algorithms

process the entire image. Other organelles or probes introduced experimentally,

such as polystyrene particles ( Chapter 6 by Panor chan et a l., this vo lume), may be

used for a similar purpose.
A. Image Restoration
Even the apparently high-quality image in Fig. 2 contains imperfections that

can frustrate particle-locating algorithms. These include both gradual variations in

background brightness, ‘‘shading,’’ and ‘‘snow,’’ errors in individual pixel values.

However, both eVects can be sensibly removed by applying a spatial band-pass

filter to the image, which reduces both low spatial frequency (shading) and high

spatial frequency (snow) contributions, while leaving intact the intermediate

frequencies corresponding to our tracers.

In IDL: bpass.pro is the program used to filter the images. It uses a ‘‘wavelet’’

technique corresponding to convolution with a ‘‘Mexican hat’’ kernel to remove

the random digitization noise and background, respectively (Crocker and Grier,

1996). The program requires two parameters delimiting the spatial wavelengths in

pixels. Set the first to 1 pixel and the second to the typical particle diameter, 5 pixels

in the example. Filtered images will then retain features with a linear dimension

between 1 and 5 pixels. The unfiltered and filtered images are shown in Fig. 3.
B. Locating Possible Particle Positions
The image now consists of bright spots on a dark background. As a first

approximation for images collected at a high signal-to-noise ratio (SNR), the

brightest pixel in each spot corresponds to its position rounded to the nearest

pixel. The distribution of brightness in the rest of the spot can be used to further
Fig. 3 Close-up of region of interest from Fig. 2 before (left) or after (right) spatial filtering. Notice

subtraction of background intensity.



Fig. 4 Automatic detection of particles for tracking, showing region of interest with all local maxima

in brightness marked with circles (left), and particles that will actually be tracked (right). Notice the

removal of particles in the nucleus, particle aggregates, and dim out of focus particles.
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refine the position to subpixel accuracy. To further refine the particle location, we

use an algorithm that computes the brightness-weighted centroid within a circular

mask that is slightly larger than the particle (Crocker andGrier, 1996). While many

other methods exist, all perform similarly in the limit of large SNR (high-quality

pictures) (Cheezum et al., 2001). Details of this algorithm and the limits to its

performance are the subject of Section V.

In IDL: feature.pro in our particle-tracking suite performs the centroiding opera-

tion. This program requires the user to specify the size of the mask to be used. To

avoid finding multiple centers on the same particle and to minimize location error,

it should be set to a value just larger than the average particle size. Since the sample

has particles of diVerent sizes, ranging from 5 to 9 pixels, we use a mask size of

11 pixels. All possible particle positions (local maxima of brightness) are shown in

Fig. 4 (left). This algorithm also computes other properties of each particle image,

including total image brightness, as well as average size (radius of gyration) and

elongation of the particles. For convenience, this program and bpass.pro have been

combined into one program, pretrack.pro, that can run on large, multiple image

data sets once the correct bpass.pro and feature.pro parameters have been determined

interactively on single images.
C. Eliminating Spurious or Unwanted Particle Trajectories
Because the previous stage of analysis identified all local maxima of brightness

as potential particles, it readily identified a large number of maxima corresponding

to very low-contrast intracellular structures or camera noise. Moreover, it also

located particles in the nucleus, which presumably should not be pooled together

with cytoplasmic lipid granules for analysis. In general, these unwanted tracer

locations must be discriminated out based on some combinations of their spatial

location and morphology, for example total brightness or apparent size.

In IDL: The discrimination process begins by making scatter plots of two of the

desired properties (e.g., x- and y-coordinates or particle brightness and radius).
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Using polycut.pro, the user draws a polygon over the scatter plot using the mouse.

The program then selectively retains or removes all of the objects within the polygon.

In this example, first the particles in the nucleus are located and removed by drawing

a polygon around the nucleus in the x–y scatter plot (polygon cut). If several

discontinuous movies are being pooled together, we suggest a separate polygon cut

for each, as the cell may drift between sets. Next, a polygonal cut in brightness-radius

plane, Fig. 5, is used to further refine the particles by appearance. Particle positions

due to (noise-induced) image artifacts are dim and small. Aggregates of endogenous

particles are large and bright. Also points with sizes greater than the feature mask

should not be used since they represent features found on large, low-contrast

structures inside the cell such as the membrane. Typically, the user experiments

with diVerent polygon placements until only the desired population of features is

selected for further processing. Provided the illuminator settings are not altered, the

same polygon can be used for all the images of a single cell or even multiple cells

collected in the same session. Note in Fig. 4 (right), there are no particles in the

background or the nucleus and each particle contains only one center.
D. Linking Positions into Trajectories
Having determined a satisfactory set of particle positions, next we match loca-

tions in each image with corresponding locations in later images to produce

trajectories. This involves determining which particle in a given image most likely

corresponds to the particle in the next image. Since all tracer particles are fairly
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similar, proximity is the only real indication that particles in successive images

correspond to the same physical object. Globally, the optimum identification

of particle positions should minimize the total squared distance of travel

(Crocker and Grier, 1996). To make such identification computationally feasible,

a maximum possible particle displacement between images must be specified. This

parameter should be suYciently larger than the maximum distance of travel in a

single-frame interval, to ensure that physical displacements are never rejected. The

trajectories for our example are shown in Fig. 6. Notice that the particle motions

resemble random walks more than continuous curves. For this reason, alternative

tracking algorithms that identify particles by trying to extrapolate their motion or

compare their velocities are not well suited to our data. How to extract rheological

information from our particles’ random trajectories will be discussed in Section IV.

It should be noted that particle tracking provides an additional layer of filtering

for rejecting spurious, artifactual tracers. For instance, if a random fluctuation of

the camera noise leads to a spurious feature being identified in a given frame

(which survives discrimination), it is highly unlikely that a similar fluctuation will

occur in several consecutive frames. As a result, while trajectories of physical

particles often contain as many positions as movie frames, those of spurious

noise particles are generally very short, and can be easily rejected based on the

small number of continuous frames in which they are detected. For this reason, in

the preceding discrimination stage it is usually better to adjust the settings to avoid

occasional rejection of physical tracers, even if it allows a few spurious particles to

be passed through.

In IDL: Particle locations from movies of many images are linked into trajec-

tories using track.pro. The user needs to provide one parameter, the maximal

distance that a particle may travel between consecutive frames. We find that

4 pixels is a suitable threshold for 50 frames per second data, but this is likely to

vary with diVerent cell types and magnification. In this application, setting the

‘‘goodenough’’ parameter to 10 rejects spurious tracer trajectories having fewer

than 10 valid locations.

Figure 6B and C displays checks that we have found useful to verify the proper

operation of the particle-locating and particle-tracking algorithms. Figure 6B

shows a histogram of the particle displacements between consecutive frames

(t ¼ 1/50 sec), generated using makepdf.pro. Note that the histogram completely

decays and is not truncated by the maximum displacement setting, 4 pixels, which

is larger than the largest displacement. Moreover, note that the histogram has

long tails. If particles were diVusing in water, this histogram would be completely

Gaussian. Here, the long tails are an indication that diVerent particles are trapped
in heterogeneous local environments. Very long or nearly flat tails to large

displacement are an indication of the tracking of spurious particle images. In

Fig. 6C, a histogram of the fractional part of x-position of the particles, x mod 1,

is shown; with proper subpixel accuracy in particle-tracking algorithms, there

should be no favored subpixel value. That means a histogram of the x-position of

all particle positions modulo 1 should be completely flat. Lack of flatness indicates

poor imaging or mask settings and will be discussed in Section V.B.
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Fig. 6 (A) Tracer trajectories from the region of interest. (B) Histogram of tracer displacements

between consecutive frames, which decays well before 4 pixels, the maximum displacement set in the

particle-tracking software. (C) Histogram of the x-position of the particle modulo 1, demonstrating that

there is negligible systematic error with these choices of tracking parameters.
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E. Available Software Packages and Computing Resources
Source code for our IDL particle-tracking routines is available for free down-

load at http://www.physics.emory.edu/�weeks/idl/ along with a short online tuto-

rial. These particle-tracking routines have been translated into the increasingly

http://www.physics.emory.edu/~weeks/idl/
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popular MatLab environment. Both IDL and MatLab are available for a wide

variety of computing platforms and many research institutions have a site license

for at least one of them. Moreover, a ‘‘stand-alone’’ version (with a graphical user

interface) has been compiled for the Windows, Macintosh, and Linux operating

systems, and does not require purchasing the IDL software. Links to the MatLab

and stand-alone versions may be found at the site above. Many commercially

available particle-tracking software packages, such as Diatrack and Metamorph,

should also be able to track intracellular tracers with comparable precision and

ease of use. While these solutions can be quite costly, they have the advantage of

oVering user support, software customization to specific imaging needs, integrated

image acquisition, and training courses. It should be remembered, however, that

additional routines to compute rheology from the particle trajectories, described in

the following section, are at this time only available in IDL form.

These software programs are somewhat computationally intensive, but can be

run eVectively on a high-performance personal computer. The use of large stacks

of images can lead to large file sizes (�256 Mbyte). We use a dual 2.4-GHz Athlon

processor Linux server, with 2 Gbyte of RAM and a 500-Gbyte RAID array

hard drive. In one day, it can convert �80,000 images, each containing several

hundred tracers, into trajectories. A large amount of RAM storage allows for

multiple users (ideally, at least 0.5 Gbyte of RAM per simultaneous user). Image-

and particle-tracking data are analyzed, compressed, and then archived onto

removable, external hard drives.
IV. Computing Rheology from Tracer Trajectories

The central idea behind passive microrheology is that the random, Brownian

motion of small embedded tracers is determined by the stiVness of the material

surrounding them; tracers in hard materials naturally move less than ones in soft

materials. Here, we detail how the ensembles of random particle trajectories

computed in the preceding section are converted to an MSD or its two-point equi-

valent, 2P-MSD. This is followed by a description of the algorithms that convert

this data to the rheological parameters of the surroundings, along with a discussion

of their physical and numerical limitations. As for earlier sections, a general

description of the required procedures will be followed by specific instructions

for using our IDL routines.
A. Computing Mean-Squared Displacements
In Fig. 7A, the x-component of a numerically generated Brownian particle

is shown as a function of time. Note the random nature of this curve. Mathemati-

cally, theMSD is equal to the average, squared distance a particle travels in a given

time interval, referred to as lag time, t, expressed as:
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hDx2ðtÞi ¼ hðxðtþ tÞ � xðtÞÞ2i ð3Þ
where x indicates tracer position in one dimension, t is time, and <� � �> indicates

time and ensemble (over all particles) average. However, it may be best understood

graphically. Figure 7B shows a histogram of the distance of travel from 200

particles diVusing in a liquid for 0.02 and 0.4 sec, respectively. The MSD at given

lag time is just the square of the standard deviation of particle positions after

a given lag time. To convert a one-dimensional MSD, hDx2ðtÞi, to a three-

dimensional MSD, hDr2ðtÞi, multiply its amplitude by 3. This assumes an isotropic

material, which means the material has identical properties in the x-, y-, and

z-directions.

In IDL: msd.pro calculates MSDs from the trajectory files. For the MSD to be

in physical units, the pixel size and frame rate of the camera must be well known.

The magnification can be readily calibrated using microscope stage micrometers

(Edmund Optics, Barrington, NJ) or diVraction gratings.
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B. Computing Two-Point Mean-Squared Displacements
The basic idea of TPM (Crocker et al., 2000) is that inside a viscoelastic solid, a

particle cannot move without moving its neighbors, like two people trying to jump

on a trampoline without aVecting each other. While in general the correlation of

two vectorial displacements is a second-rank tensor, we typically correlate the

motion of two particles along their line of centers, as this has the best signal to

noise. This correlation may be represented mathematically as:

DrrðR; tÞ ¼ hDr1ðtÞDr2ðtÞi ð4Þ
where Dr1ðtÞ and Dr2ðtÞ are the stochastic motions of the first and second particle,

respectively, along their mutual line of centers in lag time t (Fig. 8). The brackets
indicate an average over all pairs of particles in the data set with separation R. In

practice pairs with similarR values are pooled together to create a function of both

R and t.
Since the TPM signal’s origin is Brownian fluctuations of the material, the

t dependence should be related to the rheology in a manner resembling the con-

ventional MSD. Indeed, this resemblance can be made exact (Crocker et al., 2000),

by rescaling the two-point correlation tensor Drr with a geometric factor, 2R/a:

hDx2ðtÞi2 ¼
2R

a
Drr ð5Þ

If the material is homogeneous and isotropic on length scales significantly

smaller than the tracer, incompressible, and connected to the tracers by uniform

no-slip boundary conditions over their entire surfaces, the twoMSDs will be equal

hDx2ðtÞi2 ¼ hDx2ðtÞi. If these boundary and homogeneity conditions are not

satisfied, the two MSDs will be unequal. In this case, applying the two-point

MSD in the GSER will still yield the ‘‘bulk’’ rheology of the material (on the

long length scale ‘‘R’’), while the conventional single-particle MSD will report a

rheology that is a complicated superposition of the bulk rheology and the rheology

of the material at the tracer boundary (Levine and Lubensky, 2001).
r1 r2

Fig. 8 Schematic of displacements used to compute the two-point MSD.
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As mentioned earlier, two-point measurements will readily detect sample vi-

bration and drift, as these eVects lead to completely correlated tracer motion.

When this artifactual motion is significant compared to the Brownian signal, we

fit the Drr(R, t) function to a form (A(t)/R) þ B(t). By using the A(t) component

exclusively to compute the 2P-MSD and rheology, we can reliably remove artifacts

due to sample vibration and drift.

In IDL: msd2pnt.pro is used to generate Drr from trajectory data. Like msd.pro,

it requires the pixel size and the frame rate of the camera to produce data in

physical units. Also, it requires the user to input a range of separations over which

to correlate particles. The images of closely spaced particles can overlap, adding a

spurious cross-correlation to their motion and confounding the TPM measure-

ment. We find that using a 2 mm minimum separation is suYcient to overcome

this problem (Lau et al., 2003). The upper limit is determined by the cell’s finite

thickness, which is about 4 mm for the cells we study. The fact that the cell is a thick

slab rather than an infinite three-dimensional solid leads to deviations from 1/R

decay. However, we find these deviations become negligible when R is less than

about twice the cell thickness, so we typically use an upper limit of 8 mm and a

smaller number for thinner cell types.

msdd.pro converts Drr into hDx2ðtÞi2 and can further delimit the minimum and

maximum separations used in the calculation. Since msd2pnt.pro can take hours

to run, while msdd.pro takes seconds, it is more eYcient to set R limits wide in

msd2pnt.pro and then reduce them to diVerent extents in msdd.pro, in order to

test for the eVects of changing the R limits on the final rheology. The ‘‘lfit’’

keyword in msdd.pro causes the routine to perform the vibration/drift correction

described above.
C. Applying Automated Image Analysis for Statistics
The statistical error in particle MSDs is readily estimated. If we approximate the

distribution of tracer displacements (as in Fig. 7B) as a Gaussian, the standard

error for the variance is simply 2hx2i= ffiffiffiffiffiffiffiffi
Neff

p
, where NeV is the number of statisti-

cally uncorrelated measurements in the distribution. If an image series contains Nt

tracers and spans a time interval T, thenNeff � NtT=t. That is, if we image a single

particle for 10 sec at 50 frames a second, we have roughly 500 independent samples

of the displacement for a lag time of 1/50 sec, but only 10 independent samples for

a lag time of 1 sec. This t dependence causes the statistical errors to increase

dramatically at longer lag times. As an example, if we were imaging a sample

containing 100 tracers at 50 frames per second, and we wanted no more than 1%

statistical error in the MSD over the lag times from 1/50 to 1 sec, then we need

NeV ¼ 104 independent samples at t¼ 1 sec. Since we are pooling the results of 100

tracers, then we need T ¼ 100 sec of data. Obviously, analyzing the corresponding

5000 images, and 500,000 tracer positions for this modest example requires

eYcient, automated image analysis. Algorithms that require the user to manually
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select particles to be tracked or to estimate their locations are not practical for

this application.

In general, two-point correlation functions have much higher statistical noise,

requiring the acquisition of significantly higher statistical power, higher tolerance

of noisier data, or both. The origin of this is straightforward to understand.

The value of Drr is the mean of a distribution of numbers hDr1Dr2i, since both

Dr1 and Dr2 are single-particle displacements, the widths of the distribution of

hDr1Dr2i is roughly hDx2ðtÞi, the conventional MSD, in the limit of weak correla-

tion. In general, the two-point correlated motion, Drr, is much smaller than the

single-particle MSDhDx2ðtÞi. Indeed, under the most favorable case, the ratio

of these two quantities according to Eq. (5) is 2R/a, which typically has a value

of 10–20. We then expect that reliable measurements of the two-point MSD

would require averaging at least (2R/a)2 or several hundred times [i.e., (10–20)2]

more Dr1Dr2 measurements, relative to Dx2 measurements to compute a conven-

tional MSD, in order to reach a similar statistical noise. This simple estimate is

consistent with our experience.

Does this mean that rather than the 5000 images in our example to measure the

conventional MSD, we now need to collect 500,000 images? Fortunately, that is

not the case. In a field of view containing 100 randomly located tracers, each tracer

might have 10 or more neighbors within the proper distance range for computing

two-point correlations. Thus, each image gives us not 100 samples of Dr1Dr2 but

more like several thousand. For this reason, the statistical noise of two-point

measurements is highly sensitive to the number of tracers in the field of view.

In general, if there are 100 or more tracers in a microscope field of view, then about

10 times as many images are required to accurately compute a two-point MSD

than a conventional MSD. Alternatively, the statistical noise of the two-point

measurement will be about
ffiffiffiffiffi
10

p
, or just a few times higher than that of the conven-

tional MSD computed from the same data. It should be noted, however, that more

statistical power is required for materials where the conventional MSD is much

larger than the two-point MSD, according to the square of MSD/2P-MSD ratio.

In highly porous materials, the two-point signal can be so small compared to the

‘‘background noise’’ of uncorrelated tracer motion that it becomes hopelessly

impractical to measure from a statistical point of view.
D. Converting MSDs to Rheology
Earlier we defined mathematical relationships that should allow analytical cal-

culation of rheological properties from the MSD, a process called inversion

typically performed in the Fourier space. However, notice that the Fourier trans-

form integral spans all times from zero to infinity. This means we would need data

sets spanning this same time interval in order to do the conversion analytically.

While this cannot be achieved in practice, many numerical transform methods

have been proposed to provide an approximation (Waigh, 2005), with many
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stressing the importance of collecting data at a high frequency over a very wide

time range.

Here we describe a very simple method (Mason, 2000). At each lag time point,

we estimate the logarithmic derivative (or slope on a log–log plot):

aðtÞ ¼ d lnhDr2ðtÞi
d lnt

ð6Þ

One way to do this is to first take the logarithm of both the MSD and t values
and then for each t point, fit a line to a few points of the corresponding logarithms

ofMSD surrounding the chosen t. The value of this fit at the chosen t is therefore a
smoothed approximation of the MSD, and its slope is the logarithmic derivative.

We then use an approximate, algebraic form of the GSER:

jG�ðoÞj � kBT

pahDr2ðt ¼ 1=oÞiG½1þ aðt ¼ 1=oÞ� ð7Þ

where G represents the Gamma function. In using this expression, one first com-

putes a set of o values that are reciprocals of the measured lag times. At each

frequency point, the value of jG�ðoÞj is then computed using only the values of the

MSD and its logarithmic derivative at t ¼ 1=o. Formally, the value of jG�ðoÞj at
each frequency would require the numerical Fourier integration of the MSD over

all lag times in the interval (0 to infinity), but in practice that integral is dominated

by the value of the integrand at ot � 1. Equation (7) is exact in the limit that

the MSD has a purely power-law form. For other more general forms, Eq. (7) is an

excellent approximation at lag times where the MSD is well approximated locally

by a power-law, and is seldom more than 15% in error otherwise.

To make contact with more standard rheological representations, one can

compute the following from jG�ðoÞj:

dðoÞ ¼ p
2

d lnjG�ðoÞj
d lno

G0ðoÞ ¼ jG�ðoÞj cos ðdðoÞÞ
G00ðoÞ ¼ jG�ðoÞj sin ðdðoÞÞ

ð8Þ

where dðoÞ is the phase angle (d ¼ 0 indicates solid-like behavior and d ¼ p/2
liquid-like behavior), andG0 andG( are the storage and loss moduli satisfying G*¼
G0 þ iG00. In practice, we compute d(o) using a procedure identical to that for

computing a(t). Note that when the phase angle is near 0 or p/2, small errors in

d(o) [due either to statistical noise in the MSD or to systematic uncertainties

in Eq. (7)] can get amplified tremendously in the smaller modulus, G00 or G0,
respectively. We have developed more accurate (but also more complicated) ver-

sions of Eqs. (7) and (8), whic h also rely on second logarithm ic deriva tive s

(Dasgupta et al., 2002). While these give more accurate results in general, for cell

rheological data the diVerence is negligible.
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Additionally, there are some artifacts that, no matter what algorithms are

used, cannot be corrected for. Because the shear modulus formally depends on

the MSD value at over a finite range of frequencies, shear moduli at the extrema

of frequency range are subjected to additional ‘‘truncation’’ errors. The algorithm

above implicitly assumes that the power-law behavior at the extrema of the data

set extends indefinitely to higher or lower frequencies. Any curvature, even the

slightest ripple, at the extremal lag times can cause a disproportionate change in

the shear moduli. Consequently, unless there are physical motivations for believing

this extrapolation is justified, confidence in this part of the data should be low.

Strictly speaking, it may be best to compute the rheology from the entire lag time

range and then ignore a decade (one order of magnitude) of frequency on each end

of the curve.

MSDs themselves are often subject to artifacts at their frequency extrema as

well, as described in Section V.E. Any systematic deviations of the MSD due to

these eVects will be further amplified in the shear moduli. Therefore, in some

situations it might be wise to truncate the lag time range of the MSD prior to

computing the rheology. In general, as the lag time range of the MSD being used is

restricted, the ends of the curve will tend to ‘‘wiggle.’’ This is a sign that the shear

moduli being produced are subject to strong truncation errors.

One exercise we have found invaluable when utilizing this algorithm is to

generate simulated MSD curves that resemble the actual data and calculate rheo-

logical properties from these curves. Changing the dynamic range of such

simulated data allows the identification of truncation eVects. Furthermore, adding

Gaussian distributed noise to this data is helpful for determining the artifacts

associated with it. A final warning is that a ‘‘reasonable’’ appearance of calculated

rheology (e.g., resembling something from a rheology text book) does not mean

the inversion is physical. The emergence of a noise floor on data from a particle

diVusing in a liquid will lead to results that look almost exactly like the rheology of

a Maxwell fluid, which is a common example in these texts.

In IDL:micrheo.pro is the program in our IDL suite that does these calculations.

It has a built in smoothing to help reduce statistical noise. In addition, it uses

second-order formula for smaller systematic errors (Dasgupta et al., 2002) and

provides warnings when the computed shear moduli are numerically unreliable. Its

input is either an MSD or 2P-MSD.
V. Error Sources in Multiple-Particle Tracking

In this section, we describe several common sources of error in particle-tracking

instruments. While some of these error sources can be mitigated by the use of high-

quality equipment, most errors are due to irreducible physical limitations on

imaging detector performance and illumination brightness. In practice, a good

understanding of the origin of diVerent errors, followed by careful adjustment of

the imaging system to optimal settings, can lead to significant performance
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improvements. We will describe three classes of error: random error, systematic

errors, and dynamic error.
A. Random Error (Camera Noise)
The more accurately a given particle can be located, the higher the quality of

measurements of cellular rheology. In fact with optimal particles, illumination,

imaging, and software, it is possible to measure the position of a 400-nm particle

to within �5 nm. While it may seem remarkable to be able to determine the

particle’s location this well with optical methods, the limiting precision of particle

localization is quite diVerent from optical resolution—the limit below which struc-

tural details in complicated specimens cannot be discerned (typically about a

quarter of the wavelength of light used). Instead, the situation is analogous to a

familiar problem in curve fitting, finding the position of a local maximum or peak

in a curve. If we have a reasonable number of evaluations of a peaked function

and the values are very precise, a least squares fitter can locate the peak center to

an arbitrarily high precision (relative to the width of the peak). In this analogy, the

peaked function is the light intensity distribution for a tracer, with a width set by

the tracer size or optical resolution.

While some noise in a camera depends on the details of its construction and

electronics, there are ultimate physical limits on the performance of all cameras

due to the discrete nature of light itself. Imagine that we had a ‘‘perfect’’ camera

that recorded the precise two-dimensional coordinates of all incoming photons

arriving from a microscope. An ‘‘image’’ of a single small tracer might resemble a

round cloud of points in a two-dimensional scatter plot (Fig. 9). From elementary

statistics, we know that the standard error sx;sy when computing the mean x and y

center positions of the cloud (corresponding to the particle location) is:

sx ¼ sy ¼ a
ffiffiffiffiffi
N

p ð9Þ
A B C

a
0

a
N1/2

0

−a −a
N1/2
a

X X X X X

Fig. 9 Improvement in positioning precision by photon statistics. A particle forms an idealized,

circular image of radius a whose center is marked by an � (A). If a single photon is detected, the

position of the particle (set to be at zero) can be determined to �a (B). If more photons are detected a

cloud is detected (C). This limits the potential position (reduces measurement error) of the particle.
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Fig. 10 Determination of particle centroid from a pixilated image. A hypothetical distribution of

photons from a single particle on a grid (A) leads to the formation of a pixelated grayscale image (B)

with a peaked brightness distribution (C). Particle-tracking algorithms find the center (peak) of this

distribution very accurately.
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where a is the apparent radius (technically the standard deviation) of the cloud,

and N is the number of points/photons (assuming a Gaussian distribution).

In practice, well-made cameras approach this physical limit of performance when

they are operating at illumination levels near the maximum allowed by detector

saturation. Of course, rather than averaging the positions of individual photons, we

determine the tracer’s position by calculating the centroid of an intensity distribu-

tion, analogous to computing the ‘‘center of mass’’ for a continuous mass distri-

bution (Fig. 10). Provided that we spread the tracer image over a suYcient number

of pixels to reasonably represent the tracer’s brightness distribution, the error in

the centroid positions is precisely the same as that in the previous example.

In summary, whenever imaging a sample, there will be statistical fluctuations

in the number of photons detected by the camera even under ideal conditions.

These fluctuations are irreducible and lead to random errors in the reported

brightness of individual pixels. In general, using a higher illumination will reduce

this error, but that approach is ultimately limited by detector saturation.
B. Systematic Errors
In general, dividing the image of a small tracer into pixels does not necessarily

introduce significant errors. However, improper image pixelation and masking can

introduce systematic (as opposed to random) errors into the computed particle

positions. One form of systematic error is ‘‘pixel biasing,’’ the tendency of the

algorithm to ‘‘round’’ the centroid position to the nearest pixel as mentioned in

Section III.D. At its worst, a particle moving at a uniform speed across the field

of view would appear to ‘‘hop’’ from one pixel to another (Fig. 11), introducing

�0.5 pixels of position error.

This problem can largely be avoided by use of the proper magnification and

image-processing settings. One source of pixel biasing is too low a magnification—

ensure that single tracer images appear more than 3–4 pixels in diameter. This error
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of the fractional part of the x-coordinate, instead of being flat (C).
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also commonly occurs during calculation of the centroid. When computing the

centroid of a single tracer image, most algorithms mask oV (force into zero

brightness) pixels outside some radius to avoid contributions from other nearby

particles. Error is introduced if the background of the image is not zero at the edge

of the mask. Physically, common image defects, such as diVraction rings and out of

focus background particles, or user errors, such as specifying too small of a mask

size, can cause this problem. For images relatively free of obvious defects, it is

usually possible to reduce this error to less than 0.1 pixels by using a suitably large

mask size.

Another, rather subtle source of systematic error is due to the fact that the

individual detectors corresponding to each camera pixel are not equally sensitive

to light, with the typical variations between pixels being a few percent. This

typically introduces a systematic error between the physical and measured position

that is a few percent of a pixel, and which varies randomly with location in the

field of view. This error can be largely eliminated by calibrating each pixel in the

camera using a uniformly illuminated specimen (e.g., an empty bright field), and

then numerically correcting all pixel intensity values by division against the cali-

bration image prior to centroid finding. This algorithm, termed ‘‘flat-fielding,’’ is

routinely used by astronomers, but is seldom needed for particle-tracking

applications.

For microrheology using large ensembles of particles, the contribution of all

these systematic errors can often be ignored. For example, if a tracer moves a half a

pixel, it may appear to move 0.4 or 0.6 pixels due to a 0.1 pixel systematic error.

When many such measurements are squared and averaged together to compute an

MSD, the deviations will largely cancel. However, this may not be the case in other

particle-tracking situations with few particles, poor resolution, or short trajectory

lengths in comparison to the lag times of interest. If one is computing a histogram

of displacements, such as in Fig. 12, these systematic errors will lead to an obvious
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Fig. 12 Another manifestation of systematic error. The ripples in this histogram of tracer displace-

ment indicate that tracers seem to move in increments of a pixel. This type of motion is nonphysical and

is most likely an artifact from choosing poor tracking parameters.
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‘‘ripple’’ in the measurements, with displacements of integer multiples of one pixel

length being more likely than half-integer multiples.
C. Dynamic Error
A subtle form of error that aVects measurements of tracers’ random motion

is due to systematic underestimation of tracer motion when finite exposure times

are used (Savin and Doyle, 2005). This error is absent when the duration of the

exposure is infinitesimal compared to the time interval between successive movie

frames. If the particle moves significantly during the camera exposure, the mea-

sured centroid reports the time-averaged position during the exposure (Fig. 13).

Because random walks tend to loop back on themselves, this time-averaging eVect
artificially reduces the amplitude of the MSD. This selective reduction of short lag

time MSD value will make diVusive Brownian motion look superdiVusive (the

MSD will increase more rapidly than linearly with time) at short lag times.

The requirements to reduce dynamic error and optimize the MSD precision

are at odds with each other. High precision demands as much light as possible be

used to form the image, which is most easily achieved by increasing the

exposure integration time, while dynamic error requires minimizing the exposure

time. Obviously, the solution is to use the longest exposure possible that will not

introduce dynamic error. We know of no rigorous mathematical criterion in

determining the optimal exposure time for an arbitrary particle-tracking situation.
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Fig. 13 An example of dynamic error in a random walk trajectory. Using a short shutter time, the

position at a given instant is recorded at, for example, t ¼ 0.5 and 1.5 t (black crosses). When a long

shutter time, t, is used, the time-averaged location of a tracer is found, for example t intervals from 0 to 1

t and from 1 to 2 t (gray crosses). The distance between time-averaged locations is systematically less

than that for instantaneous locations.
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In general, we find that if the amplitude of the mean-squared motion during the

exposure interval is less than a quarter of the mean-squared motion between

exposures, then the underestimation of MSD caused by dynamic error will be

less than 10%. For tracers undergoing simple diVusive Brownian motion, this

corresponds to an exposure time no longer than one quarter the time interval

between frames, for example 1/200 sec for acquisition speeds of 50 frames per

second. For the general case, the criterion is more diYcult to apply, as it requires

knowledge of the MSD at lag times shorter than those being measured. In that

case, one is reduced to guessing the form of the short time MSD by extrapolating

the available data or relying on physical models or literature results. Note that in

the case where the MSD is nearly time independent (as in an elastic solid), the

exposure time needs to be much smaller than a quarter of the frame interval to

eliminate dynamic error.
D. Sample Drift, Computational Detrending, and Its Limitations
Drift in the sample stage contributes another source of uncertainty. Thermal

expansion can cause the stage or sample chambers to slowly translate across the

camera field of view during long experiments, often by several pixels. Computa-

tional correction of such global error is referred to as ‘‘detrending.’’ One may

correct each particle individually, by subtracting a portion of its net translocation,

calculated by linear interpolation, from each point of the trajectory. However, this

often introduces artifacts into the MSD at long times because it subtracts some of

the tracer’s actual motion. Alternatively, if a large number of tracers are available,

one can compute the average motion of the tracers’ center of mass and subtract it

from each particle position. In general, this procedure reduces the amplitude of the



7. Multiple-Particle Tracking and Two-Point Microrheology in Cells 167
MSD by a factor 1/N (in addition to that caused by detrending), so is only

recommended if N 	 10.

The utility of all such ‘‘detrending’’ algorithms is significantly reduced by the

systematic position errors described in the previous section. The nonlinear

mapping of actual to measured position will cause even motionless tracers to

move slightly relative to one another, over the timescale of detrending. In a similar

vein, when studying very slowly moving tracers, it is often tempting to time average

multiple measurements (perhaps with detrending) to yield spatial resolutions that

are hypothetically much smaller than a nanometer. Systematic errors tend to limit

the utility of such approaches because they are not reduced by averaging.

Finally, all of themeasurements described here are in the two dimensions x and y.

While the particles also fluctuate in z, which might be detected by fluctuations

in particle intensity or diVraction pattern, the x and y positions of any spherical

particle are still well determined as above. The 3-D separation of the particles will

in general be slightly higher than the in-plane distance.
E. EVects of Measurement Errors on the MSD
Particle-tracking errors lead to several perturbations in measured MSDs

(Martin et al., 2002; Savin and Doyle, 2005). The most common error is due to

the contribution from random position measurement error, as outlined in Section

V.A, which contributes additively to the value of the actual, physical MSD:

hDx2imeasured ¼ hDx2iphysical þ 2s2x ð10Þ
where sx is the standard deviation of the random position measurement error. At

short lag times, where the MSD is small, the measured MSD will start to flatten

and appear subdiVusive if the physical motion approaches the precision of the

MSD. Conversely, if dynamic errors are significant, the MSD can appear super-

diVusive at very short times.

Another common artifact is that MSDs will tend to flatten at long times. This is

due to particle loss from the imaging plane. While we image in two dimensions,

particles diVuse in three dimensions and at long times will diVuse out of the

imaging plane. Since large particles move less than small particles, larger ones

tend to stay in the focal plane longer. This can lead to downturns in the MSD,

when the typical motion exceeds the square of the depth of focus. Our MSD

calculation software tabulates the number of independent measurements, NeV,

used as a function of lag time. As discussed in Section IV.C, this quantity should

decay as 1/t; deviations from this indicate significant particle loss.

Reliably estimating the precision of measured MSDs can be quite diYcult.

A common method is for experimenters to estimate their total tracking precision

by measuring the apparent MSD of immobilized tracers in ‘‘control’’ samples. This

has obvious diagnostic value, and allows the eVects of diVerent microscope adjust-

ments and ambient sample vibration to be rapidly determined. Still, the resulting

error estimates must be treated with caution when applied to intracellular particles.
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Obviously, ensembles of immobilized tracers will not display any dynamic error,

and systematic error cannot be easily estimated from such samples. Moreover, the

observed random position error will correspond to the intracellular case only if the

optical parameters of that problem, such as tracer size and index of refraction, are

faithfully reproduced, which is often diYcult in practice.
VI. Instrument Requirements for High-Performance Tracking

Even though our software tools can often yield acceptable particle tracking under

less than ideal imaging conditions, acquiring high-quality images facilitates image

analysis and yields more reliable rheological data. The following sections discuss

important practices of instrumentation that minimize errors of measurements.
A. Isolation from Vibration, Acoustic Noise, and Thermal Drift
Research laboratories often contain many sources of vibration (blowers for air

handlers, fume hoods, cell culture hoods, as well as people walking and talking).

All of these shake the microscope and the sample stage, often by a surprisingly

large amount. In almost all research locations, a pneumatic isolation table is

absolutely critical for dampening out these vibration sources. Furthermore, con-

nections from the outside world (power cords, gas lines) can conduct vibrations to

the floating tabletop; their number should be minimized. For example, rather than

having several AC power cords hanging between the isolated table and the outside,

these can be ganged into a power strip, and its single cord used to connect oV the

table. Moreover, many electronic devices contain small cooling fans and electrical

transformers that can be significant sources of vibration. These should not be

placed on the isolated table surface. For the same reason, we use an external lamp

power supply in lieu of the supply built into the microscopic base (which has the

additional advantage or reducing thermal expansion drift in the microscope body).

Additionally, many inverted microscopes have a screw to lock the illumination

stalk. We find tightening this down is helpful with reducing sample vibration.

Microscopes and sample chambers will expand and contract as they change

temperature. If the scope is to be heated, let it reach the set point temperature for

10–20 min before starting experiments. Air currents from ventilation systems can

cause substantial drift and periodic motion in a microscope over timescales as

short as tens of seconds. Surrounding the microscopic with a curtain to prevent

drafts from blowing directly on the microscope is very helpful and will largely

eliminate these eVects. Finally, stage drift can also be induced by the body heat and

exhalations of an operator sitting too close to the microscope.
B. Microscopy—Generation of High-Contrast Tracer Images
Maximizing image quality and MSD precision requires juggling several imaging

parameters. Specifically, we want to adjust the microscope to simultaneously

maximize the contrast between the tracer image and its surrounding background
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and magnification, while using the maximal illumination intensity and minimal

exposure time to avoid dynamic error.

In general, all other things being equal, the precision of MSD improves propor-

tionally with the magnification and as the square root of the tracer brightness.

Because it is diYcult to predict the performance of a given microscopy condition

beforehand, we take an empirical approach. Most image analysis software allows

the user to acquire a single frame and to read out the brightness value of individual

pixels selected with a cursor. For 8-bit cameras, this value is an integer between

0 and 255. We routinely use this function to determine the brightness diVerence
between the center of a typical tracer and the background. Ideally, the brightness

diVerence should be at least 100 of 255, while for some simple specimens and high-

refractive index tracers it can be adjusted as high as 150–200. At the same time, it

can be validated that image saturation, that is pixel values of 0 or 255, is not

present.

Most image acquisition hardware and software allows the user to change image

brightness and contrast, and to make an image collected at low illumination look

like one collected at high illumination. However, it should be remembered that

changing such ‘‘gain’’ will not aVect the final tracking precision because both the

signal and camera noise are amplified together. Even though the images may look

the same to the eye, the image from the lower illumination setting will have a higher

level of pixel noise and thus poorer resolution. For this reason, ‘‘gain’’ should be

set at the minimum setting and any automatic controls in the camera (e.g.,

automatic gain control) should be turned oV.
1. Contrast Generation Methods
Care should be taken when choosing and using optical contrast generation

techniques to visualize low-refractive index tracers (such as the endogenous lipid

granules we use here). Remember that our tracking software is not based on

contrast as a ratio, but on the absolute diVerence in brightness. For example,

extinction-mode DIC (also called dark-field Nomarski) creates a very dark back-

ground surrounding bright tracers; in other words, it produces a high brightness

ratio. However, extinction mode also blocks much of the illumination, resulting in

an image where the tracers have a low absolute brightness. As a result, extinction-

mode DIC generally yields lower quality tracking than two other contrast enhance-

ment techniques: shadow-cast DIC (bright-field Nomarski) or phase contrast,

which generate a larger absolute diVerence in brightness for a given specimen

illumination. Epifluorescence imaging of fluorescently tagged microspheres can

also create images with high contrast ratio, although the overall brightness of the

image is significantly lower than that provided by bright-field methods. Therefore,

fluorescence imaging is not well suited for high-performance particle tracking.

With any contrast generation method, the microscope’s performance depends

critically on operator skill and proper alignment. For example, DIC will give

images that ‘‘look right’’ but have degraded contrast if the wrong DIC prism is

used, the polarizers are misaligned or there are small bubbles in the immersion oil.
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Similarly, phase contrast will have degraded performance if the phase ring is not

properly centered. Given all that can go wrong, quickly checking the actual

brightness diVerence achieved (and verifying that it is comparable with earlier

experiments) is usually a worthwhile practice prior to data collection.
2. Numerical Aperture of Condenser
For conventional bright-field microscopy, the numerical aperture (NA) of the

illumination (i.e., the aperture diaphragm setting in the condenser) is critical to

maximizing tracking precision. For example, with low-NA illumination, the tracer

images have a very high contrast, large depth of focus, and prominent diVraction
rings. Because much of the light is stopped by the aperture diaphragm, the absolute

brightness of the image is low. Conversely, at high NA, the absolute image bright-

ness is maximized, but the contrast between the tracers and the background can be

quite small. The optimum setting is clearly in between the two extremes: where

tracer contrast is good, and total image brightness is not too attenuated. For our

microscope operating in conventional bright-field or DIC microscopy with an oil

immersion condenser, a condenser aperture setting of near NA ¼ 0.4 yields the

best brightness diVerence and particle-tracking performance.
3. Magnification
The absolute minimum magnification is set by the size of the particles that are

being tracked. Particles images must be at least 3–4 pixels in diameter. However,

higher magnifications could be used to increase spatial precision, so long as total

illumination can also be increased to keep the detector near saturation levels. With

the higher magnification, the intensity of the particle can be spread over more

pixels, allowing more accurate centroiding. However, it is important to note that,

without increasing the illumination intensity, the signal at each pixel decreases in

proportion to the square of magnification. Therefore, simply increasing the mag-

nification without simultaneously increasing the illumination will not increase

performance.
C. Using Low-Noise, Non-interlaced Camera
The amount of random pixel noise present in a camera can be readily measured.

One acquires a series of ‘‘blank’’ images where the illumination is uniform across

the field of view and near the saturation value. Because of camera noise, the

brightness value of a given pixel will vary from image to image. One can then take

the diVerences of intensities at a given pixel between pairs of images, and compute

the standard deviation of the resulting diVerences. Division of this standard

deviation by
ffiffiffi
2

p
yields the root-mean-squared (RMS) pixel noise. For a quality

camera, the RMS noise amplitude should be 0.5–1% of the pixel brightness, which

is calculated by subtracting out the average reading in dark images. The pixel
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detectors on many cameras hold about 40,000 photoelectrons at saturation (called

the ‘‘well capacity’’); the corresponding statistical noise is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
40000

p ¼ 0:5%. Some

inexpensive consumer cameras can have noise figures significantly higher than this,

and they are not recommended for particle tracking. Specialized camera with

larger well capacities might have significantly better performance, but will likely

require 12-bit digitization to take advantage of the lower noise. 12-bit digitization

is typically used to improve the dynamic range of intensity readout, rather than to

reduce camera readout noise, and thus has a limited impact on particle-tracking

applications. It should also be noted that lossy compression algorithms (such as

JPEG or MPEG) tend to contribute low-amplitude defects to image data that can

degrade particle-tracking performance. If high precision is needed, uncompressed

images or lossless compression such as LZW should be used exclusively.

Interlacing is a standard leftover from the early days of video technology.

To eliminate image flicker (which requires 50–60 images per second) while reducing

transmission bandwidth, the display redraws half of the image at a time, alternat-

ing between the even and odd rows. This eliminates visual flicker while only

transmitting 30 frames per second (for NTSC video in North America and Japan)

or 25 frames per second (for PAL or SECAM video elsewhere). While the odd and

even rows can be separately analyzed to perform particle tracking at equivalent

rates of 50 or 60 frames per second, interlacing degrades tracking performance

because only half as many pixels are used when computing the centroid. When

spatial precision is critical, a noninterlaced (also called a progressive scan) camera

should be employed.
D. Using High-Intensity, Filtered Illuminator

1. Intensity and Controlling Dynamic Error
As described earlier, the precision of particle-tracking techniques is ultimately

limited by the intensity of the illumination. In fact the ideal illumination would be a

very short, very bright pulse of light, like a camera flash, which simultaneously

reduces both random and dynamic error. A practical approach to illuminating

samples for particle tracking is to use the microscope illuminator at its maximum

setting and then vary the exposure time in the camera or the pulse length of light to

obtain the required SNR for image processing. In general longer exposure time will

decrease random position error, while increasing dynamic error. While random

error has a fixed amplitude, dynamic error is proportional to the tracer’s MSD.

Thus, if the MSD at the shortest lag time is much larger than the precision of the

determined MSD, one can safely reduce the exposure time to minimize the dynam-

ic error. Conversely, if the MSD at the shortest lag time is comparable or smaller

than its precision, then a longer exposure is probably warranted.

Even at the maximum setting on a 100-W halogen illuminator, exposure times of

several milliseconds are typically required to produce optimal, near-saturation

bright-field images at a magnification of 100 nm/pixel. Dynamic error is thus likely
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even at frame rates in excess of 50 frames per second. When we require faster

acquisition rates to perform high-frequency microrheology, we employ a custom-

built, pulsed near-IR laser illuminator that can fully expose the detector in tens of

microseconds, allowing the use of a high-speed camera operating at several thou-

sand frames per second without dynamic error. Pulsing the laser also minimizes the

possibility of heating and photodamage eVects.
2. Filtering
One downside to the use of high dose of photons is the tendency to heat or

photodamage living cells. In general, halogen lamps emit copious long-wave UV

light, and their intensity actually peaks well into the near-IR. Many living cells

under the continuous illumination of unfiltered, maximum setting (100 W) halogen

illumination die in less than an hour, while cells just outside the illuminated field

appear unaVected. To minimize radiation damage, we place two optical filters

in the illumination light path (purchased from Edmund Optics, Barrington, New

Jersey): one (Cat. No. F54–049) that blocks UV wavelengths shorter than 400 nm

and another (Cat. No. F46–386) that blocks wavelengths from 700 to �1800 nm.

With both filters in place, cells in and out of the illumination field show indistin-

guishable long-term viability and proliferation on a heated 37 
Cmicroscope stage.
E. Using Synthetic Tracers to Increase Visibility
One way to enhance the contrast of tracers is to use synthetic microparticles of a

high-refractive index n, for example polystyrene (n ¼ 1.6). Many such probes have

been used in cellular rheological experiments, being introduced by phagocytosis

(Caspi et al., 2000; HoVman et al., 2006) or microinjection (Tseng et al., 2002).

Moreover, such particles could potentially be designed to target a specific structure

(actin filaments or microtubules) or a specific protein (diVerent integrins or other
surface receptors) (Puig-de-Morales et al., 2004). In in vitro studies, the surface

chemistry of the bead has large eVects on the resulting rheological measurements

(Valentine et al., 2004). The eVect of tracer surface chemistry on the inferred ‘‘one-

point’’ microrheology of cells is still an issue without a clear consensus. On the

other hand, tracer chemistry is expected to have a much more limited eVect on
TPM measurements.
VII. Example: Cultured Epithelial Cells
A. Particle-Tracking Results for TC7 Epithelial Cells
The results of particle tracking in TC7 cells are shown in Fig. 14. The top panel

shows the MSD and 2P-MSD for the endogenous tracers found in living cells,

computed using 18,000 images comparable to those shown in Section III. We find
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Fig. 14 Experimental results from a TC7 epithelial cell, showing single-particle MSD (top, triangles)

and 2P-MSD (top, circles). Lines are eye guides with a slope 1 (top) and 1.5 (bottom), respectively.

The curves change substantially for ATP-depleted TC7 cells (bottom), averaged over N ¼ 7 cells, each

with 18,000 images. MSDs are systematically larger than 2P-MSDs. Curves from untreated cells are

reproduced in the bottom panel for comparison.
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that the tracers’ conventional MSD looks almost purely diVusive. If we assumed

the motion to be Brownian (rather than due to ATP-dependent processes), we

would conclude the cell interior is a simple fluid with a viscosity roughly 10 times

that of water. This explains why the random motion of organelles in cells so

strongly resembles the Brownian motion of tracers in water—both are diVusive
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motion with comparable amplitudes. The results of the two-point calculation give

a 2P-MSD with a superdiVusive lag time dependence, 2P-MSD � t1.5, which is

faster than a linear dependence on lag time expected for Brownian motion and

clearly indicative of active intracellular processes (Lau et al., 2003). The functional

form of Drr consistently displays a 1/R dependence, providing a positive control

that cells can be treated as three-dimensional viscoelastic continua. However,

the fact that single-particle MSD and 2P-MSD diVer in amplitude implies that

the no-slip, homogeneous boundary condition assumptions needed for the con-

ventional GSER are not valid (Section IV.B). The diVerence in functional form

either indicates the material in the tracers’ local environment has diVerent rheo-
logical characteristics from the bulk material or diVerential sensitivity to the

(yet unknown) non-Brownian driving forces. All in all, it is diYcult to definitively

conclude much else from such live cell data alone.

The bottom panel of Fig. 14 shows data for cells that have been depleted

of intracellular ATP using a combination of sodium azide and deoxyglucose.

ATP depletion inhibits motor-dependent processes but may also cause structural

changes, for example, by inhibiting a wide range of kinase-dependent processes.

The amplitudes of both the MSD and the 2P-MSD have dropped dramatically,

as expected if the active processes have been slowed or eliminated. Both curves

now display a simple power-law frequency dependence on lag time: MSD �
2P-MSD � t0.3. Both curves still turn upward at lag times greater than 1 sec.

Measurements with varied dosages of ATP depletion agents suggest that this

upturn is due to residual ATP activity, while the MSDs at shorter times are ATP

independent and Brownian in origin (HoVman et al., 2006). The fact that two types

of MSD have the same lag time dependence suggests that they are now probing

the same viscoelastic structure. The observation that they diVer in amplitude by

an order of magnitude suggests that individual tracers do not have the simple,

homogeneous no-slip boundary conditions commonly assumed. One simple expla-

nation would be if the tracers are strongly adhered or attached to a viscoelastic

network that is porous on their length scale (Van Citters et al., 2006), which seems

plausible given our knowledge of cytoskeletal ultrastructure. Finally, note that

the 2P-MSD has noticeably higher (but still acceptable) statistical noise versus the

conventional MSD, as expected from Section VI.C.
B. TPM of TC7 Epithelial Cells
The storage and loss modulus computed from our example data, specifically

the 2P-MSD of ATP-depleted cells, is shown in Fig. 15. The response has a simple

power-law form, G0(o) � o0.3, over the range of accessible frequencies, similar to

our published results (HoVman et al., 2006). Notice that the statistical noise (the

point to point amplitude variations) in the computed rheology appears much lower

than in the corresponding 2P-MSD. This is because our algorithm averages the

MSD over the time domain to draw a ‘‘smooth curve’’ through the MSD prior to

estimating the logarithmic slope as described in Section IV.D. This smoothing does
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Fig. 15 Inferred two-point microrheology of ATP-depleted TC7 cells computed using the data in

Fig. 13. The response is dominated by the storage modulus, G0 (open circles). The curvature of the

smaller loss modulus (closed circles) is artifactual.
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not eliminate the noise, but replaces it with a slow ‘‘ripple’’ in the computed shear

moduli, which is expected to follow a pure power-law in the frequency window,

corresponding to two parallel lines for G0and G00 (compare with Fig. 1). The arti-

factual curvature shown in Fig. 15 is typical of results computed from 2P-MSD

with the noise shown in Fig. 14. The curvature is always much more pronounced

in the smaller of the two shear moduli, G00 in this example. Nevertheless, this

rheological measurement would provide reliable power-law fits to infer both the

amplitude of the shear modulus (i.e., stiVness) and power-law exponent b.
As we noted in Section II.C, TPM can provide reliable stiVness information even

in heterogeneous media, or when the connections between the tracers and the

network do not satisfy the requirements of the GSER, Eq. (2). Averaging the

results of TPM measurements on many TC7 cells yields a mean stiVness value of
40 Pa at o ¼ 10 rad/sec (�1.6 Hz). Cell to cell variations are considerable with a

log-standard deviation of 1.6, meaning that �70% of the values fall within 1/1.6

and 1.6 times the mean value, or in the range 25–60 Pa. It should be remembered

that TPM reports a whole-cell average; the magnitude of the stiVness variations
across a cell has not yet been determined using TPM. Moreover, probes for TPM

may not uniformly sample all regions of the cell. This mean stiVness is more than

an order of magnitude lower than the value (�1 kPa) inferred by several other cell

rheological techniques, which we presume are probing the cell cortex. From a cell-

traYcking point of view, it is much easier to imagine organelles being traYcked

through a soft 40-Pa intracellular space than a stiV 1-kPa network.
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C. Computing Stress Fluctuation Spectra
In living cells where the rheology is known, it is also possible to use TPM to

quantify the amplitude and frequency dependence of the cells’ non-Brownian stress

fluctuations (Lau et al., 2003), which are presumably due to forces generated by

molecular motors or filament treadmilling. The basic idea is similar to that of the

linear response of a spring. If we apply a force F to a spring having a spring

constant k, the deflection x satisfies: F ¼ �kx. If we know any two of the three

variables, we can compute the third. Similarly, if we know the stiVness of a material

(its shear modulus) and how much it is deforming (by measuring the 2P-MSD of

embedded tracers), we can infer the magnitude of the force or stress driving the

deformation (all at a given frequency, o). In a viscoelastic material, the formula is:

JðoÞ � 3pajG�ðoÞj2hDx2ðoÞi2 ð11Þ
where hDx2ðoÞi2 is the unilateral Fourier transform of the 2P-MSD, as used in the

GSER, Eq. (2), and JðoÞ is the power spectrum of the fluctuating stresses causing

the material to deform. The power spectrum of a fluctuating function is the

squared amplitude of its Fourier transform, that is, the relative contributions

of stresses at low versus high frequencies. In a simple case where all three func-

tions are power-law functions of time/frequency, for example hDx2ðtÞi2 � ta,
G�ðoÞ � ob, and JðoÞ � o�g, then this formula takes the form of a simple

relation: aþ 1 ¼ 2bþ g. In an earlier study (Lau et al., 2003), we applied this

method to murine J774A.1 macrophage-like and F9 carcinoma cells, and found

that their stress fluctuation spectrum had a nearly power-law form, with an

exponent g � 2. If this equality were exact, this implies the relation a ¼ 1þ 2b.
For the example data in TC7 cells, a value of bint� 0:26 would imply a � 1:52,
consistent with the observed power-law slope of the 2P-MSD in living TC7 cells

(Fig. 14(top)).

A power-law stress fluctuation spectrum of the form DðoÞ � o�2 has a simple

physical explanation. Such a spectrum occurs if the fluctuating stresses are due

to discrete, rapid ‘‘step’’ changes. For example, such steps could be the result

of processive molecular motors gradually building stresses on a cytoskeletal ele-

ment, which is then abruptl y released when the mo tor de taches (Miz uno et al .,

2007). Altern atively, in a prestresse d cytoske leton, if filame nts or cro ss-link pr o-

teins occasionally rupture or release, this would also manifest as a DðoÞ � o�2

spectrum. All that is required is that the rate of the step change is faster relative to

our fastest observed timescale (20 msec in the example data), and that the repeti-

tion time is longer than the longest lag time observed (a few seconds in the

example). In contrast, if we imagine the network receiving short-duration force

impulses or ‘‘kicks,’’ the expected spectrum would be DðoÞ � o0, which is clearly

excluded by the data. While a cell’s shear modulus does not contain any readily

identifiable molecular timescales, it remains an open question whether molecular

timescales can be found in the stress fluctuation spectrum. This question might be

addressed by extending the frequency range of the measurements.
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VIII. Conclusions and Future Directions

TPM measurements on cultured cells provide a uniquely interpretable, quanti-

tative contribution to the field of cell mechanics. They indicate that cells contain

two mechanically distinct intracellular regions. The deeper intracellular interior

probed by TPM is found to have a power-law frequency dependence, whose origin

remains unknown. This region is remarkably soft, with a modulus that is only

a few tens of pascals. In living cells, this intracellular structure exhibits ATP-

dependent stress fluctuations with a ‘‘step-like’’ rather than a ‘‘kick-like’’ character.

This appears compatible with intracellular traYcking, slow cytoskeletal

remodeling, or both. While these results provide novel insight into the molecular-

scalemechanics of cells, they lackmolecular specificity. Future studies are needed to

‘‘dissect’’ the molecular determinants of both the rheology and non-Brownian

fluctuations, for example, through the use of specific cytoskeletal disruptors,

motor inhibitors, and genetic manipulations, as well as externally applied stresses

(Lee and Discher, 2001). Studies from our laboratory (Van Citters et al., 2006)

show, remarkably, that neither the intracellular rheology nor the stress fluctuations

measured by TPM depend on either F-actin or myosin. Such results remind us

that the field of cell mechanics is just beginning to understand the generation,

propagation, and relaxation of intracellular stress.
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