
CHAPTER 6 - PERIODIC BOUNDARIES

In considering an ideal gas, we didn't worry about whether our numerical
results depend upon the size of the container because the particles are pointlike.
However, if the particles of the system interact with each other, even if through hard-
core repulsion only, we must be concerned with effects arising from the finite system
size.  One way of reducing finite size effects is the use of periodic boundaries, in which
a given sample is surrounded by replicas of itself.  In this chapter, we introduce
periodic boundary conditions and apply them to a non-ideal gas.

6.1 Non-ideal gas

The ideal gas law describes most gases fairly well at very low density, where
the intermolecular separation is large.  However, the law is less accurate at moderate
density, for which intermolecular interactions are more common.  In this section, we
describe the deviations from ideal gas behavior expected at low density.  With the aim
of simulating a non-ideal gas, different computational approaches to minimizing
boundary effects on small systems are presented in Secs. 6.2-6.4.  One of the
boundary schemes is implemented in the project of Sec. 6.5, which is a simulation of a
simple, but not ideal, gas of hard spheres.

Virial expansion

The ideal gas law can be trivially rewritten as

P / kBT = N / V. (6.1)

Although this equation is well-behaved at very low density, the relationship between P,
V and T works less well at medium density.  One way of parametrizing the deviation
from ideal gas behavior at medium density is to expand Eq. (6.1) as a power series in
the density:

P / kBT = (N / V) + B2(T) (N / V)2 + B3(T) (N / V)3 + ... (6.2)

This equation is called the virial expansion, and the temperature-dependent terms are
refered to as the virial coefficients.  Specifically, B2(T) is the second virial coefficient
and is the leading-order correction to the ideal gas law.  Because it is more common to
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express the density in terms of moles per unit volume, rather than the number of
molecules N per unit volume, the second virial coefficient in molar densities is equal to
NoB2, where No is Avogadro's number.

Eq. (6.2) is not the only way of parametrizing deviations from ideal gas
behavior.  One approach due to van der Waals, which we develop in more detail
below, recognizes that the non-zero size of molecules reduces the volume available
for molecular motion.  Van der Waals parametrized this reduction by writing a gas law
of the form

P(V - Nvav) = NkBT, (6.3)

where vav is the average volume reduction per molecule associated with the molecular
size.  Van der Waals considered other effects as well, that are included in a more
general form of Eq. (6.3) called the van der Waals equation.

The second virial coefficient can be expressed in terms of the parameter vav by
rearranging Eq. (6.3):

P / kBT = N / (V - Nvav)

= (N / V) /  (1 - Nvav / V)

≅ (N / V) •  [1 + (N / V)vav ]. (6.4)

Comparing with Eq. (6.2), we expect

B2 = vav. (6.5)

Second virial coefficient

In Eq. (6.3), the parameter vav is the reduction in apparent volume per particle.
The following argument provides an expression for vav in terms of the molecular
volume vo.  Consider the situation in which all molecules are spherical with diameter
a, such that the molecular volume is

vo = (4π/3)(a/2)3

     = (π/6)a3. (6.6)
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Distance of closest approach = a

Molecular diameter = a

Radius of excluded volume = a

Fig. 6.1  Two hard-sphere molecules cannot be separated by a center-to-center
distance of less than a.  Thus, the volume excluded to a pair of molecules is
vex = (4π/3)a3.

As illustrated in Fig. 6.1, the center-to-center distance between two molecules cannot
be less than a, meaning that a given molecule is excluded from a volume vex around
another molecule of

vex = (4π/3)a3 = 8vo. (6.7)

That is, the volume reduction associated with each pair of molecules is 8vo.  However,
the average volume reduction per molecule is not 8vo.

Consider two molecules, A and B.  The volume reduction experienced by either
member of the pair is vex.  But the total volume reduction of the pair must also be vex,
and not 2vex, since the excluded volume is the same region of space for both
molecules.  In other words, one must be careful not to double-count the same region of
space in evaluating the excluded volume.  Thus, the excluded volume per molecule is
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vav = vex / 2 = 4vo. (6.8)

Substituting for vav and vo, the excluded volume argument predicts that

B2 =  (2π/3)a3. (6.9)

[Once again, see the caveat following Eq. (6.2) about B2 in molar units].  This
prediction is tested in Project 6 by simulating a gas of hard spheres under pressure.

6.2 Periodic systems

Most macroscopic systems contain a very large number of particles which is
beyond the size of system that is achievable or necessary in a computer simulation.
Usually, the physical behavior of a system is apparent in a simulation with less than
105 particles; indeed, many properties can be obtained fairly accurately using just 103

particles in a three-dimensional system.  In this section, we discuss periodic boundary
conditions (PBCs), which is one of several techniques employed in the simulation of
small systems.

A typical macroscopic system in three dimensions has perhaps 1021 molecules
or more.  On the order of (1021)2/3 ~ 1014 of these molecules may be at the surface, or
boundary, of the system.  Although 1014 is a large number of molecules, they
represent but a tiny fraction - 1014 / 1021 ~ 10-7 - of the total number of molecules in
the system.  Surface effects are usually not observable if the system has such a tiny
fraction of its molecules at the surface.  However, there are physical systems for which
surface effects are very important.  For example, even the largest atomic nuclei have
only about 250 nucleons, of which a large fraction reside on the nuclear surface at any
given time.

Consider a large cubical system, itself made of small cubical objects with sides
of unit length.  If there are 1000 small cubes in total, packed tightly together, then each
surface is covered by 100 small cubes.  Thus, there are about 500-600 small cubes at
the surface (488 to be precise).  In a typical three-dimensional simulation involving 103

particles, perhaps half of the particles will lie at or near the boundary of the system.

What does it matter that some particles are at the boundary while others are in
the interior?  In what way are particles at the boundary different from particles in the
interior?  Suppose that the particles are subject to short range forces of the square-
well form discussed in Chap. 4, and reproduced in Fig. 6.2.
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V(x)

x

Fig. 6.2  Short-range square-well interaction potential.

If the system is dense, the mean interparticle separation lies in the attractive
region of the potential.  One would then expect the following:
•particles in the interior have attractive interactions with about 12 nearest neighbors
•particles on the surface have attractive interactions with about 9 nearest neighbors.
Hence, the surface particles are less deeply bound than the interior particles, and they
experience an unbalanced force directed towards the interior.  The unbalanced force
gives the system a surface tension.  The situation is illustrated for a two-dimensional
system in Fig. 6.3.

Because surface effects are potentially important for simulations involving only
hundreds or thousands of particles, measures have been developed to minimize the
effects of boundaries.  The most commonly used method involves the imposition of
periodic boundary conditions, or PBCs, in which the finite system is imagined to be

Interior particle Surface particle

Fig. 6.3  Particles on the surface of a system are less well bound and experience
unbalanced forces compared to those in the interior.
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Fig. 6.4.  The system or cell in the center, colored light gray, is surrounded by periodic
images of itself.

surrounded by periodic replicas of itself.  In principle, each particle may interact with
other particles within the system, or with particles in the images.  The system in Fig. 6.4
is somewhat small, in that each particle interacts with its neighbor and images of its
neighbor: that is, particle A lies within interaction distance of particle B within its cell
and with images of particle B in neighboring cells.  In essence, periodic boundaries
give the system a toroidal shape in a higher-dimensional space, as demonstrated in
Fig. 6.5.

Fig. 6.5.  Representation of periodic boundaries in a two-dimensional system by
forming a torus in three-dimensional space.
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Fig. 6.6.  Particle reaching the boundary of a periodic cell.

6.3 Rectangular cells

The cells shown in Figs. 6.4 and 6.5 are rectangular in shape, and are very
commonly used for periodic systems.  Other representations are pursued in Sec. 6.4.
Figs. 6.4 and 6.5 not only illustrate how particles interact with their neighbors, they also
show how particles should move through the system.  Consider what happens when a
particle, say B in Fig. 6.6, reaches the boundary of the cell.  If the cell has a hard wall,
then B will bounce off the wall, presuming that the wall isn't sticky.  However, if the
boundaries are periodic, then B will pass through the wall and reappear on the
opposite side of the cell.  Thus, the x, y or z-coordinates of the particle are shifted by
one cell length in the appropriate direction when the particle crosses the cell wall.

There are a number of ways to implement rectangular PBCs.  Often, the
coordinate system is chosen such that the particles lie between -box/2 and +box/2, for
a rectangular cell of length box.  After each move, the position of a particle is checked
and shifted so that the particle lies within the box:

hbox=0.5*box;
if(x > hbox) x=x-box; (6.10)
if(x < -hbox) x=x+box;

The difference in the position of two particles is also subject to PBCs.  Simply
taking the difference between two position vectors does not necessarily yield the
appropriate displacement vector.  Consider the situation in Fig. 6.7.  The shortest
displacement between A and B and their images is not found within a cell, but rather
between cells.  Applying the obvious definition

∆r = rB - rA (6.11)
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∆r = rB - rA
shifted ∆r

Fig. 6.7  Vectors in a periodic system.  The displacement vector ∆r = rB - rA evaluated
only within one cell (colored gray), is not the smallest one between A and B, if one
takes the images into account.  The shifted ∆r is the smallest displacement between A
and B, including the image positions.

does not yield the relevant displacement vector.  First, the vector is too large, having a
component in the x-direction that is more than half of the cell length.  Second, it points
in the wrong direction.  The value of ∆r obtained from Eq. (6.11) must be shifted by the
same procedure as is used for the position vectors themselves, if one is to obtain the
shortest distance between two specific particles in a periodic system:

hbox=0.5*box;
dx=x2-x1;
if(dx > hbox) dx=dx-box; (6.12)
if(dx < -hbox) dx=dx+box;

Procedure (6.12) must be applied to each Cartesian coordinate.

In some situations, it may be efficient to store a particle's coordinates as a
number between -0.5 and +0.5, and apply a scale factor to generate the "physical"
coordinate only when needed.  We call these reduced coordinates because they are
dimensionless.  As usual, both x and dx must lie in the range -0.5 to +0.5.  However, if
one uses the range 0 to 1 for x, then a separate procedure for shifting dx must be used
to allow -0.5 < dx < 0.5.  Whether this reduced coordinate system is computationally
useful depends upon the problem at hand: if the code involves many calculations of
physical positions, then reduced coordinates may not be efficient.

On some computers, codes with if statements run inefficiently, and means have
been developed for avoiding if statements with periodic boundary conditions.
However, these alternatives may be slower than using ifs in many situations, and are
not necessarily recommended by the author.  Check your codes!
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In C (invalid if x is more than box/2 away from of a boundary):
boxi = 1.0 / box;
x = x - box * (int)(2.0*x*boxi); (-box/2 ≤ x ≤ +box/2) (6.13)

In FORTRAN:
BOXI = 1.0 / BOX
X = X - BOX*ANINT(X * BOXI) (-BOX/2 ≤ X ≤ +BOX/2) (6.14)
X = X - ANINT(X) (-1/2 ≤ X ≤ +1/2)

6.4  Variations on PBCs

While rectangular boundaries may be fine for simulations of fluids, they may be
inappropriate for solids, since the rectangular box shape may impose an artificial
symmetry on the solid.  A way of reducing the effects of the boundary symmetry on the
system is to allow the prism to become a parallelopiped.  The situation is illustrated for
two dimensions in Fig. 6.8: one corner of the parallelogram is fixed at the origin while
the two adjacent corners are allowed to move.  Care must be taken to ensure that the
configuration space of the box shapes is sampled randomly, and this can be
accomplished by moving the corners of the box in Cartesian directions.

A method that eliminates the boundaries completely, at the expense of
introducing other finite size effects, is the usage of so-called spherical boundaries.

Fixed

Free

Free

Fig. 6.8.  Periodic, non-rectangular boundaries for a two-dimensional system.
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Fig. 6.9.  Spherical boundary conditions, in which a two-dimensional system is placed
onto the surface of a sphere.

Consider the two-dimensional planar system shown on the left-hand side of Fig. 6.9.
With spherical boundary conditions, the particles of the system are placed on the
edge-less surface of a sphere.  The measurement of distances along the surface does
not have the same geometry as it would on a plane, even if geodesics or "great circles"
are used.  However, this measurement issue becomes less important as the sphere is
made larger in radius.

6.5 Project 6 - Hard sphere gas

All of the coding elements that have been developed in the previous Chaps. 3-5
for Monte Carlo are brought together in Project 6 for the non-ideal gas.  This project
uses periodic boundary conditions and neighbor lists to simulate a system of particles
which have hard-core geometry and which are subject to an external pressure.  Once
again, the author repeats the mantra that it is important to build codes from simple
structures with compact notation that is easy to debug.

Physical system

The system is a set of particles placed in a rectangular prism, as in Project 5.
However, we now impose periodic boundaries on the system, so that a particle may
pass by the boundary and appear through the opposite face of the cell: it is not
stopped at the cell boundary, as in Project 6.  The sides of the cells fluctuate at fixed
pressure.  All particles interact through a hard core potential, which causes the cell
volume at a given pressure to increase above the corresponding ideal-gas volume.
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Simulation parameters

A rectangular prism is set up in the same way as in Project 5, with sides of
fluctuating length Lx, Ly, and Lz.

Lz

Ly

Lx

The particles are assigned a hard core radius a/2 through a potential energy function
of the form

V(x)

xa

The hard core diameter a introduces a length scale into the system, unlike Project 5
where the only length scale was provided by the pressure.  Thus, the pressure does
not determine the length unit, but is an independent parameter, upon which the
volume depends.

Code

1.  Start with a copy of your code from Project 5, using notation and structure that is
simple, transparent and efficient.
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2.  The particles in Project 5 were non-interacting, and did not pass through the prism
walls.  Make the boundaries periodic, allowing a particle to pass by a wall and appear
through the opposite face of the cell.  If there are too few particles in the system,  then
one of the box lengths may become so small that a particle begins to interact with its
own periodic image.  To avoid this situation, do not let a box side be less than 2a.

3.  For each particle i, introduce a neighbor list which contains the labels of all
particles within a distance of 2.5a of i.  See warnings in Chap. 5 about the declared
size of a neighbor list.  Make sure that your calculation of interparticle displacements

r respects the periodic boundaries, as in Eq. (6.13).  Do not update the neighbor list
after every sweep through the system, but update it only as often as is required by the
particle position step size ds/a  (see Chap. 4).

4.  Introduce the hard core geometry of the particles.  You may have to revise your
particle initialization routine to make sure that the particles do not overlap in the initial
configuration of the code.

5.  Choose a variety of pressures to test out your code.

Analysis

1.  Run two system sizes, choosing the number of particles N to be 64 and 216.
Compare your results for these two N's to check for finite system size effects.  We may
to pool the class data if the codes demand too much machine time.

2.  Allow the system to relax, and then find the expectations <V> and <V2> of the
volumeV for two values of the pressure: Pa3 = 0.05 and 0.1.  The ensemble should
have 300 configurations, each separated by 100N sweeps.

3.  Extract the second virial coefficient using Eq. (6.2), and compare it with the
theoretical expression in Eq. (6.9).

4.  Determine the volume compression modulus from the fluctuation expression Eq.
(5.28).

5.  To gauge the accuracy of your results, analyse two or more 150-configuration
subsets of your ensemble.
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Report

Your report should include the following items:
•a brief description of the physical system that you are simulating
•an analytical calculation of the second virial coefficient for your system
•an outline of your code
•the data analysis that gives the virial coefficient and compression modulus
•a discussion of finite system size effects by comparing N = 64 and 216.
•an estimate of the accuracy of your results
•a copy of your code.

Demonstration code

The introduction of a hard-core interaction between particles will increase the
volume of the system above the ideal-gas value, an effect that can be seen in the
demonstration code for a two-dimensional system.  You can choose among several
pressures in starting the code, and then change the pressure while the code is running
by clicking on the + or - boxes in the upper right-hand corner of the window.  Each click
will change  a2 by 1/10 (  since the problem is two-dimensional).

The physical size of the system adjusts as you change the pressure.  However,
the way the system is drawn on the screen is to fix the ideal gas value for the length
scale (N/ )1/2 at a fixed number of pixels (the 1/2 power arises because the system is
two-dimensional).  The ideal-gas length is indicated by the red bar above the black
box representing the system.  Changing the pressure does change the ideal-gas
length, but does not change the size of the bar as it is drawn on the screen.  In other
words, the scale to which the image is drawn is pressure-dependent.

At low pressure, the system is dilute and close to an ideal gas.  At high
pressure, the system is physically much smaller, but so is the ideal gas length;
however, the system is larger relative to the ideal-gas length.  The change in the
drawing scale can be seen by the size of the particles, which have a constant absolute
length, but appear to change size with the pressure.
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