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THEORY OF STRESS DISTRIBUTION IN

BLOCK COPOLYMER MICRODOMAINS

T. A. Witten, S. T. Milner, and Z-G Wang

Exxon Research and Engineering Co.
Annandale NJ 08801, USA

INTRODUCTION

Much of this meeting is devoted to the fascinating domain structures formed by
diblock copolymers whose blocks are strongly incompatible. These diblocks and more
complicated block copolymers have become important in a wide range of applications.
One important use of diblocks is in blends of incompatible homopolymers. Here
diblocks made of the two polymeric species to be blended allow control of the domain
morphology and inhibit macroscopic phase separation.

Our focus here is on the statistical mechanics of these diblocks, and how these
differ from homopolymers in a melt. The free energy contributions which distinguish
diblock domains have been appreciated for a long time [1]. On the one hand, the
material has interfacial energy proportional to the total surface area. This energy
tends to make the domains as large as possible. On the other hand, if the domains
are large, the constituent polymer blocks must be elongated. This is true because
all blocks must have one end at the domain interface, while the free ends must be
distributed so as to fill the adjacent domain. Balancing the resulting elastic energy
against the interfacial energy leads to a well-known scaling law for the domain size h
as a function of the molecular weight M of the copolymer: h ~ M?/®. This prediction
has been verified by experiment [2] and numerical work [3]. Much theoretical effort
has been devoted to fleshing out this simple scaling picture [4,3,5,6,7]. These theories
use sophisticated numerical techniques of polymer statistics to give a detailed picture
of the conformations and energetics of the polymer blocks. Complementing these are
simple extensions of the Meier scaling ideas to give qualitative insights [8,9,10]. A
recent approach [11,12] has made a satisfying connection between the scaling ap-
proach and the more systematic numerical approaches. This work has shown how
the numerical solution for a chain at a copolymer interface reduces to an analytical
form at asymptotically high molecular weight. The asymtotic theory confirms the
2/3 scaling power. Further, it gives the unknown proportionality constants in the
scaling theories explicitly in terms of known polymer parameters, and it gives detailed
predictions beyond the scope of the scaling theories.
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SPONTANEOUS CURVATURE IN A DIBLOCK COMPATIBILIZER

In this contribution we illustrate the power of the recent theories by working out an
example of practical interest. We wish to use-diblocks to arrest phase separation of
two blended homopolymers in an incompressible melt state. Like a surfactant, this
diblock “compatibilizer” is forced to reside at a narrow bilayer near the homopolymer
phase boundary. We wish to design the copolymer so that one of the homopolymers—
denoted I for “interior”—is confined in spherical domains of a particular radius R.
The other homopolymer—denoted E for “exterior”—lies outside these spheres. To
achieve the desired radius, the stress within the E-I diblock bilayer itself must give
rise to a spontaneous curvature of 1/R. For concreteness, we shall require 1-micron
domains of polybutadiene in polystyrene, a typical morphology in toughened-plastic
applications.

The state of a polymer block in this bilayer closely resembles its state in the
lamellar phase of the neat diblock material, as Leibler has discussed [10]. As in the
neat material the number of diblock polymer chains o per uni >a is governed by a
balance between interfacial energy and rubber-elastic energy. The interfacial energy
per unit area v resides in a narrow mixing zone which is small in relation to polymer
dimensions. The local monomer interactions which determine 4 are insensitive to
the overall connectivity of the polymers. This v is nearly the same with or without
copolymers present.

The elastic energy of a chain is proportional to the mean squared extension of
the blocks. Thus for e. g. the E blocks, the elastic energy T ~ k% /r%, where r% is
the mean-squared unperturbed end-to-end distance. Since each block displaces some
volume Vg in the melt, the height hr must be at least large enough to accomodate
the blocks which are present: hp > oVg. Any penetration of homopolymer into
the bilayer could only increase hg; we neglect such penetration here and justify this
below. The mean-squared radius r% appearing in T is proportional to molecular
weight, and thence to the volume V.

Combining these facts we find the scaling of elastic energy Tr per E-block
with coverage . We find Tg ~ 02Vg. The system chooses that coverage o which
minimizes the total energy per chain, Tg + T7 + /0. Letting the two chain volumes
vary in proportion, the optimal coverage evidently satisfies 0° ~ V7 ! so that hp ~

Vg ~ Vé/ ®. The same scaling applies to the I side of the bilayer. Thus the bilayer
thickness follows the 2/3 power law. Evidently hp grows indefinitely larger than the

ideal radius r ~ V;;/ % Thus the blocks become strongly stretched.

To understand the bilayer in greater detail, we must determine the confor-
mational statistics of the blocks in each bilayer. This problem has been studied
extensively for the lamellar phase of the neat material, as noted above. The problem
may be reduced to that of a single chain with one end confined to the interface,
moving in a height- dependent pressure p(z), arising from interaction with the other
chains [4,5,6]. (This pressure is equivalent to a height-dependent monomer chemi-
cal potential [12].) In an arbitrary pressure field p(z) the ensemble of end-confined
chains at coverage ¢ would produce a particular monomer concentration profile p(z).
The correct, self-consistent, p(z) is that which achieves a constant p(z) equal to the
density of the melt in question.
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In the asymptotic limit of high molecular weight, the self-consistent p(z) takes
an exceeding simple form [12]. It becomes a parabolic function of height which falls
from a maximum at the interface to zero at a particular height h. Since the pressure
p(2) is sufficient to extend the block chains far beyond their ideal dimensions, the
work required to insert an additional block into the layer must be much greater than
kT. This means that unattached chains are strongly excluded from the layer. This
is equally true whether these outsiders are blocks attached to an opposing lamellar
interface or are homopolymers. Any contribution to the density from such outsiders
is confined [13] to a narrow zone of relative height A/h ~ V~1/3, Thus penetration
by outside chains has a negligible impact asymptotically on the configurations of the
attached blocks.

Recently we [14,15] used the asymptotic theory to find the energy of a slightly
bent bilayer. We now use this theory to treat the concrete compatibilizer problem at
hand. The first step is to find the elastic free energies per block Tx and T explicitly
for the polymers in question. The energy to extend an E-block to height hz may be
written (1/2)agh%/Ve, where the length ap characterizes the intrinsic elasticity of
the—F~ehains. The elastic energy per chain Tf is a universal multiple of this energy,
viz. [11]

2
Tp = ——= = —ago’Vpg, (1)
and similarly for T7.

Here, and throughout this discussion, we use Vi and Vi to measure molecular
weight. Molecular weight enters our problem only through these volumes. Using
this notation, the intrinsic elasticity of a polymer enters only through the single

. parameter a, which we call the “packing length”. Such quantities as the length of a

statistical segment are relevant only insofar as they affect the packing length. We list
the packing lengths and other parameters of our system in Table I. Packing lengths
for common polymers are a few Angstroms [16].

A bilayer made of two asymmetric polymers will not in general be flat; it will
have a radius of curvature R (which proves to be spherical). This curvature changes
the elastic energies. When the curvature is small and spherical, the asymptotic theory
gives [14]

2 2
Tg = ﬂa aEVE l: g% + ? (%) + ] . (2)
For this exterior layer, the curvature allows the chains to splay out, thus reducing
their energy in first order. For the interior layer the linear term has the opposite
sign. The general form of this bending energy is the same for any thin layer, and
is well known [18]. Even the numerical coefficients shown here are close to a recent
estimate of Leibler [10].

The actual radius R is that which minimizes the total energy per chain, Ts +

Tt ++/o. Thus the partial derivitives of this energy with ¢ and with 1/R must both
vanish. For the 1/R derivitive only the corrections to T and 77 contribute: one
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Table I

Melt Properties for Polystyrene
and Hydrogenated Polybutadiene [16]

polymer Temp- density mg® b Cu © packing
erature length
(Kelvin)  (amu A=%) (amu) (A) (A)?

polystyrene 400 0.61 52 1.54 94 115

hydrogenated 373¢ _0.49 21.7 1.54 5.5 129

1,2 polybutadiene

a. molecular weight per backbone bond [16]
b. length of backbone bond [16]

c¢. mean-square end-end distance relative to that of a freely jointed
chain of backbone bonds [16]

d. packing length defined in text, as calculated from preceding table
data.

e. We estimate less than 10% change from these values at 400 Kelvin.

Interfacial energy [17] at 423 Kelvin is taken to be 3 dyne/cm. for
4000-molecular-weight HPBD. From this data we estimate that this en-
ergy increases by about 6% at 400K. A further small increase is expected
in the limit of high HPBD molecular weight. At 400K, 3 dyne/cm.=
5.5 x 1073kT A~2. This is the value of v used for the estimates in the
text.

finds
13 ang

0=Vgag [‘gUVE + 2? R

3 13 02V}
] + V]a[ |:§0'V[ + 2? R . (3)

The condition for a flat interface, 1/R = 0, is independent of our numerical
coefficients. Evidently

VEzﬂg = sza[. (4)

For our polystyrene and hydrogenated polybutadiene, with ag/a; = 0.9, a
balanced flat interface occurs when V;/Vg = 0.9'/2; i. e. the bilayer should be be
about 53% polystyrene by volume.

To achieve the desired curvature with the E polystyrene on the exterior, the
E molecular weight must be slightly greater than this balancing value: Viap =
VZar(1+¢€). Using Eq. (3) near the balance point, we find

52 Vg + Vi
e ———

- 5
15 R (5)
The coverage o is that which minimizes the total energy:
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where we have again used the condition (Eq. 4) that the bilayer is essentially bal-
anced.

We now work out the explicit prediction for € for a particular molecular weight.
We suppose that the E, polystyrene, block has a volume Ve of 10543, i. e. a molecular
weight of 61,000. At balance, the I, polybutadiene, block must have a volume V; of
94,0004°. Using Eq. (4) and the data in Table I, the coverage o is then one chain
per 71042 . The thickness of the bilayer hg + h; = o(Vg + Vi) is 270A. For
comparison, an ideal, noninteracting diblock would have a root-mean-square end-to-
end distance perpendicular to the interface of (Vg /ag+Vi/ar)'/? = 130 A—somewhat
smaller than the calculated bilayer height. The elastic energy is 1.9 kT /diblock. The
bending constant [14] K is 80kT. To achieve the desired 1-micron radius, requires an
imbalance € (= VZag/(Viar) — 1) of 9%. The required imbalance can be achieved
e. g. by reducing the polybutadiene molecular weight by 4.5%. These results have
an uncertainty of perhaps 10%, owing to the uncertainty in the data in Table I.
Temperature and finite molecular weight effects could influence these data by this
amount. More importantly these explicit results rely on our asymptotic theory; they
are surely somewhat inaccurate for the small molecular weights of our example. We
discuss the importance of these inaccuracies in the Discussion section.

SIGNIFICANCE OF THE PACKING LENGTH

We have seen that the single polymer chain parameter controlling the properties of
the bilayer is the packing length a. In this section we show that a is related to
recent notions of rubber elasticity in entangled polymer melts. We also discuss how

a may be altered by chemical changes in the polymer, and how such changes should
influence the bilayer.

The name “packing length” is natural, because a describes the number of
independent chains packed into a given small volume of the melt. Comparing the
defining equation (above Eq. 1) for a with the conventional expression 1/2 h%(r2/3)~!
for the elastic energy in terms of the unperturbed end-to-end distance r, we see that
a may also be expressed by r? = 3V/a. This same law relates the size of a small
chain segment of size r to the volume V it displaces. In an arbitrary small sphere of
radius r the number of independent chains represented is of order 7 /V(r) ~ r /a. The
actual average number of chains represented differs from this value by an unimportant
numerical constant. Thus the packing length a is the parameter determining the
number of independent chains present in a given small volume of the melt.

Recently Lin [16] and Kavassalis and Noolandi [19] have shown a striking em-
pirical connection between this packing property and the characteristic (plateau)
moduli of polymer melts. In the ordinary language of rubber elasticity, this modulus
is kT'/Ve, where V, is a characteristic chain volume which depends on the type of
polymer. A section of volume V, has a corresponding size r. as discussed above.
Remarkably, the average number of chains sharing the volume r? appears to be inde-
pendent of polymer type [16,19]. Expressing this fact in terms of the packing length
a gives G =~ 0.13kTa 3,
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Evidently a is related to two separate properties of the melt. It governs the
rubber modulus and thus influences the chain entanglements. But also, it controls the
elastic stretch energy relevant for the equilibrium properties of a copolymer bilayer.
This latter property bears no essential relation to entanglement, since the equilibrium
properties in question are independent of any (finite-lived) entanglement constraints.

Polymers with large a values appear to offer interesting potential for their
bilayer properties. A diblock made with such polymers would contain a large elastic
energy per chain, as compared with a diblock of the same volume and interfacial

energy. The large a results in a large elastic energy per chain, and hence enhances
the distinctive features of the bilayer.

We also expect large a values to reduce processing problems which often occur
in diblock compatibilizers. It is observed [20,21] that when the diblocks have too-
high molecular weight or the blocks are too incompatible, the resulting material
has an intractibly high viscosity. This behavior is natural in view of the expected
entanglement [13] properties of the end-confined blocks. Such blocks are not able to
release their entanglements by the normal mechanism of reptation, since their ends
are confined to the phase boundary. We estimate that the viscosity of the layer grows
exponentially with molecular weight [13].

This excessive increase in viscosity can be mitigated by increasing the packing
length a. Larger packing length means fewer entanglements per chain, as indicated
above. This should allow faster disentanglement and lower viscosity. Thus increasing
a may allow use of molecular weights and interfacial energies vy larger than would

otherwise be possible. At the same time the distinctive elastic energy of the bilayer
is increased.

It seems feasible to control the packing length a to a large extent via the
polymer’s architecture. In terms of the conventional backbone bondlength b, the
volume per backbone bond mg/p and the characteristic ratio Cw, a may be expressed
as

my 3

p Coob?

a=

To decrease a below that seen in the simplest polymers appears difficult. But
to increase a requires only that the chain be made more bulky, e. g. by increasing
mg without increasing C., too much. This could be accomplished in principle by
attaching short side chains at frequent intervals along the backbone. If the side
chains are composed of the same parent material, their presence should not affect
compatibility properties markedly.

DISCUSSION

We first discuss the applicability of our asymptotic formulas to real copolymers. The
asymptotic theory assumes that the elastic energy per chain is large compared to
kT, or that the layer thickness A is much larger than the ideal chain radius r. We
have seen above that neither of these conditions is well satisfied for the example
we took: the elastic energy was only slightly larger than kT. The situation is not
much improved by taking high molecular weight, since the elastic energies T and
Tt increase only as the 1/3 power of the chainlengths Vz and V7.
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Still, there is some evidence that the asymptotic theory works even for mod-
erate elastic energies, provided that the blocks are strongly segregated. Throughout
the strongly segregated regime, one observes the asymptotic 2/3-power scaling be-
tween molecular weight and domain size [2]. If our estimates were strongly corrected
by finite- molecular-weight effects, there should be some additional molecular-weight
dependence beyond the asymptotic 2/3 power. Another indication comes from the
phase boundaries between spherical, cylindrical, lamellar, and double-diamond do-
main morphologies in neat copolymers [22,23,24]. The asymptotic theory implies
that these phase boundaries should depend only on the volume fractions of the two
blocks and not on the overall molecular weight. This is what is observed. Any de-
parture from the asymptotic Tx and T should affect interior and exterior domains
unequally and thus shift the phase boundaries at small molecular weight. Since the
boundaries are not in practice sensitive to molecular weight, it appears that the
asymptotic theory is adequate. Better estimates [25] of the pre-asymptotic correc-
tions are surely possible. In any case, the experimental results must approach the
asymptotic predictions above as the molecular weights are scaled up.

Though our calculation describes how to produce a bilayer with a given spon-
taneous radius of curvature R, we have so far said little about the actual domain
morphology [15] to be expected. Happily, this question has been studied extensively
in the context of oil/water/surfactant microemulsions [26,27]. This work depends on
nothing about the phase boundary except that it has a fixed total area per surfac-
tant 1/0 and has a fixed spontaneous radius of curvature R and bending modulus K.

When K R kT, as in our polymeric bilayers, the domains are spherical, with only
minor shape fluctuations. The (small) amount of copolymer present forces a fixed
total interfacial area. If the interface is to form spheres of radius R, there must be
enough interior homopolymer to fill the corresponding volume. If the actual amount
of homopolymer is less than this, the spheres are smaller than R; if the amount is
more than this, the excess homopolymer is expelled.

The correspondence between copolymers and surfactant interfaces is good only
if these interfaces are weakly curved. When the curvature is stronger, the diblock
interface exhibits new phenomena which are only beginning to be explored. Briefly,
the self-consistency of the parabolic pressure profile p(z) described above breaks down
[11] for strongly curved exterior layers, though it remains valid for interior layers. The
exterior pressure profile is believed to be divided into two zones of height. The zone
closer to the interface contains no free chain ends. This “exclusion zone” is believed to
be exponentially small [14] in 1/R, and it has no effect on the spontaneous curvature
or bending energy for the nearly flat bilayers discussed above. But this zone is
expected to be important for strongly curved domains, and calculating the chain
statistics in this case poses a challenging theoretical problem [28].
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