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Ideal Chain Statistics, Free Energy and Chain
Deformation

1 Probability Distribution of End-End Distances

We develop expressions for the probability distribution of end-end distances of a polymer chain. We start
from a simple random walk in one dimension, and generalize the result to three dimensions.

In one dimension, the number of ways of arriving a distance x from the origin after N steps of unit size
(n+ in the positive direction and n− in the negative) is given by a combinatorial expression.

W (N, x) =
N !

(n+!)(n−!)
(1)

where x = n+ − n−, N = n+ + n− and so n+ = (N + x)/2, and n− = (N − x)/2. The probability of this
occurrence is just the number of ways of realizing the occurrence divided by the total number of possible
trajectories.

p(N, x) =
1

2N
N !

(n+!)(n−!)
(2)

We consider the natural logarithm of the above probability. Using Stirling’s approximation, N ! ∼=√
2πN(N/e)N , and assuming that x � N we arrive at the probability distribution function, which is the

probability p(N, x)dx that the trajectory of the random walk is terminated within an interval dx from x.

P (N, x) =
1√

2πN
exp

(
−x2

2N

)
〈x2〉 =

∫ ∞
∞

x2 P (N, x)dx = N

P (N, x) =
1√

2π〈x2〉
exp

(
−x2

2〈x2〉

)
(3)

In three dimensions, the probability P (N,R) is just the product of P (N,Rx)P (N,Ry)P (N,Rz)dx dy dz
and since < R2 >= Nb2,

P (N,R) =

(
3

2πNb2

)3/2

exp

(
−3R2

2Nb2

)
(4)

so the probability of finding the chain end (terminus of an ideal random walk) in a spherical shell between
R and R+ dR is P (N,R) 4πR2 dR.
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2 Entropic Free Energy of a Polymer Chain

The free energy of an ideal polymer chain is derived from its conformational entropy, described by the
probability distribution above. The entropy as a function of the end to end distance R is provided by
Boltzmann’s relation S = k ln Ω(R) where Ω(R) is simply the number of ways (conformations) of arranging
monomers such that the chain has an end-end distance R. The free energy is given below.

S(N,R) =
−3

2
k
R2

Nb2
+ S0 (5)

F (N,R) =
3

2
kT

R2

Nb2
+ F0 (6)

The expressions above in Equation 6 relate the free energy of the polymer chain very simply to a ratio
between the end-end distance R and the unperturbed end-end distance, Nb2. The force required to perturb
the chain dimensions is is just given by

f =
∂F

∂R
=

3kT

Nb2
R (7)

This expression is linear in the displacement R and scales directly with temperature T . i.e. the polymer
acts as an entropic spring, and becomes stiffer with increasing temperature. The above expression only holds
true for deformations which do not significantly perturb the chain conformation, i.e. which do not make the
chain conformation depart from Gaussian statistics. It is valid only in the limit where the deformation is
small compared to the contour length of the polymer chain.

For a worm-like polymer chain, an approximate expression is provided by Siggia et al. [4], that fits small
and large extensions

f =
kT

b

[
2〈R〉
Rmax

+
1

2

(
Rmax

Rmax − 〈R〉

)2

− 1

2

]

3 Blobs: Crossover length scales

An important concept in the treatment of perturbations to polymer chain structure is that of a blob [5].
It describes a length scale below which the polymer chain may be considered to be unperturbed by other
forces or effects, whether they are excluded volume effects, surface interactions or external forces of tension
or compression. Since the entire chain is in a thermal bath, on some length scale, thermal energy becomes
the overriding influence and thus at length scales below this, the polymer exhibits ideal behavior.

We divide the polymer chain into blobs of size ξ, with g monomers per blob. The size of the blob is
described by ideal chain statistics, so ξ ≈ bg1/2.

Figure 1: The polymer chain can be thought of as being composed of blobs within which the chain executes
an unperturbed random walk, i.e. obeys Gaussian statistics
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3.1 Polymer Chain in Tension

For example, in elongation of a polymer chain due to tension, we may assume these blobs are more or less
lined-up along the direction of deformation. The number of blobs is (N/g) so that the extension R ≈ ξ (N/g).
From this, we see that

ξ ≈ Nb2/R

g ≈ N2b2/R2 (8)

The free energy of the chain is increased in tension due to the restriction of the degrees of freedom of the
blobs - each blob in this case contributes kT and so

F ≈ kT N/g ≈ kT R2

Nb2

If we consider the force required to stretch the polymer coil

f =
∂F

∂R
≈ kT R

Nb2
≈ kT/ξ (9)

we see that the blob defines a length scale over which the elastic energy is ≈ kT . That is, under an external
force, the polymer will be unperturbed on length scales smaller that that for which the corresponding ‘thermal
forces’ are kT or larger.

3.2 Pore Confinement - Chain in Biaxial compression

Confinement to a pore of diameter D sets the length scale of the blob, in the sense that on smaller length
scales than D, the monomers or segments do not feel the confinement, and may execute an unperturbed
random walk. We write equations for the size of the pore in terms of the number of segments in the blob,
and then estimate the length that the polymer occupies in the tube, L, as that resulting from a random walk
of the blobs in the tube.

D ≈ bg1/2

L ≈ D(N/g)1/2 ≈ bN1/2

The energetic penalty due to confinement is again kT per blob, so

Fconf ≈ kT (N/g) ≈ kTN(b/D)2 ≈ kT (R0/D)2 (10)

3.3 Slit Confinement - Chain in Uniaxial Confinement

The blob length scale is set by the size of the slit, D. The polymer chain executes a random walk within the
slit, with a radius (2-dimensional) given by

≈ D(N/g)1/2 ≈ bN1/2 (11)

That is, the result is as above. We will see later that for real chains which make a self-avoiding random
walk/possess excluded volume interactions, this will not be the case.
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3.4 Self Confinement due to Absorption

A favorable energetic interaction with a surface will lead to confinement of the chain to lie within a distance
ξ of the surface, which defines the blob length scale. We can make a very simple analysis which neglects
entropic considerations, and describe the blob scale as that beyond which the interaction energy is larger
than thermal energy. We require an expression for the number of monomer segments in each blob that are
in contact with the surface. If we make a mean field assumption for the density of monomer segments in the
blob, then the number of contacts is just this number density multiplied by the volume that exists within b
of the surface, i.e. bξ2.

The volume fraction of segments in the blob is given by φ ≈ (b3g/ξ3) ≈ b/ξ since ξ ≈ gb1/2. The number
density of monomers in the blob is φ/b3 and so the number of monomers in contact with the surface is

φ

b3
ξ2b ≈ ξ/b

If the interaction energy with the surface is −δkT per monomer, then the energy gain per blob is simply

δkTξ/b

which is approximately kT at the length scale ξ. This provides the size of the blob

ξ ≈ b/δ

Since each adsorption blob is of a size that it contributes kT to the energy, the chain energy is

F ≈ −kT (N/g) ≈ −kTNδ2 (12)
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