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Preface

These lecture notes provide a concise introduction to teerthof polymer dy-
namics. The reader is assumed to have a reasonable mathdaawtkgincluding
some knowledge of probability and statistics, partialeti#htial equations, and
complex functions) and have some knowledge of statistiemanics.

We will first introduce the concept of a Gaussian chain (okap}, which is a
simple bead and spring model representingdgeilibrium properties of a poly-
mer. By adding friction and random forces to such a chain,amges at a de-
scription of thedynamicsf a single polymer. For simplicity we will first neglect
any hydrodynamic interactions (HIs). Surprisingly, thiscalled Rouse model
(chapter 2) is a very good approximation for low moleculaighe polymers at
high concentrations.

The next two chapters deal with extensions of the Rouse madehapter 3
we will treat Hls in an approximate way and arrive at the Zimod®al, appropriate
for dilute polymers. In chapter 4 we will introduce the tubedel, in which
the primary result of entanglements in high molecular wejgblymers is the
constraining of a test chain to longitudinal motion alorgyatvn contour.

The following books have been very helpful in the preparatid these lec-
tures:

e W.J. Briels, Theory of Polymer Dynamig¢d.ecture Notes, Uppsala (1994).
Also available omttp://www.tn.utwente.nl/cdr/PolymeerDictaat/

e M. Doi and S.F. EdwardsThe Theory of Polymer Dynamid<larendon,
Oxford, 1986).

e D.M. McQuarrie,Statistical MechanicéHarper & Row, New York, 1976).

| would especially like to thank Prof. Wim Briels, who intraced me to the sub-
ject of polymer dynamics. His work formed the basis of a |apget of these
lecture notes.

Johan Padding, Cambridge, January 2005.






Chapter 1

The Gaussian chain

1.1 Similarity of global properties

Polymers are long linear macromolecules made up of a largdauof chemical
units or monomers, which are linked together through catddends. The num-
ber of monomers per polymer may vary from a hundred to manystéuads. We
can describe the conformation of a polymer by giving the tomss of its back-
bone atoms. The positions of the remaining atoms then ysiadbw by simple

chemical rules. So, suppose we h&i«e 1 monomers, wittN + 1 position vectors

Ro,R1,...,RN.
We then havéN bond vectors
r=R1—Rg,....,in=Rn—Rn_1.

Much of the static and dynamic behavior of polymers can béagmx@d by models
which are surprisingly simple. This is possible becausegibbal, large scale
properties of polymers do not depend on the chemical dedailse monomers,
except for some species-dependent “effective” paramefensexample, one can
measure the end-to-end vector, defined as

N
R=Rn—Rg= Zri. (1.1)

If the end-to-end vector is measured for a large number gfpels in a melt, one
will find that the distribution of end-to-end vectors is Gsias and that the root
mean squared end-to-end distance scales with the squdrefribe number of
bonds,/(R?) O /N, irrespective of the chemical details. This is a conseggenc
of the central limit theorem.



1. THE GAUSSIAN CHAIN

1.2 The central limit theorem

Consider a chain consisting df independent bond vectors By this we mean
that the orientation and length of each bond is independeait others. A justifi-
cation will be given at the end of this section. The prob&pdiensity in configu-
ration spacep (rN) may then be written as

N
w(rN) = j]lb(ri)- (1.2)

Assume further that the bond vector probability dengityr;) depends only on
the length of the bond vector and has zero meaih~= 0. For the second moment
we write

(r?) = /d3r r2(r) = b2, (1.3)
where we have defined the statistical segment (or Kuhn)emgtetQ (R; N) be

the probability distribution function for the end-to-enector given that we have
a chain of N bonds,

Q(R;N):<6 (R—iiri>>, (1.4)

whered is the Dirac-delta function. The central limit theorem tistates that

3/2
Q(R;N):{ﬁ} exp{—%}, (1.5)

i.e., that the end-to-end vector has a Gaussian distribbutith zero mean and a
variance given by

(R?) = NI, (1.6)

In order to prove Eq. (1.5) we write
1 .
Q(R;N) = W/dk <exp{|k~ <R—Zri>}>
- (2—111)3/dk dkR <exp{—ik-IZri}>
N

— (2—111)3/dk eik'R{/dr e””qJ(r)} : (1.7)
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For k = 0, the Fourier transform of (r) will be equal to one. Becausg(r)
has zero mean and finite second moment, the Fourier transfogr(r ) will have
its maximum aroundk = 0 and go to zero for large values kf Raising such a
function to theN’th power leaves us with a function that differs from zeroyonl
very close to the origin, and which may be approximated by

)
1—%N<(k~r)2>

= 1- %Nkzbz (1.8)

Q

Q

for small values ok, and by zero for the values kfwhere 1— %N k2b? is negative.
This again may be approximated by expzNk?b?} for all values ofk. Then

QR;N) = (2—]1T)3/dk exp{ikR—éNkzbz}

— 1(R)I(R)I (Ry) (1.9)
I(R) = %T/dkx exp{iRka—észk)z(}
1/2
= {ﬁ} exp{—%}. (1.10)

Combining Egs. (1.9) and (1.10) we get Eq. (1.5).

Using Q (R;N), we can obtain an interesting insight in the thermodynamic
behaviour of a polymer chain. The entropy of a chain in whioh ¢nd-to-end
vectorR is kept fixed, absorbing all constants into a reference pwtie given by

3kR
S(R,N)_kBInQ(R,N)_So—m, (2.12)
wherekg is Boltzmann’s constant. The free energy is then
3ks TR
A_U—TS_A0+W, (1.12)

whereT is the temperature. We see that the free energy is relatedtajically

to the end-to-end distance, as if the chain is a harmonic Kelm) spring with
spring constantiT /Nb?. Unlike an ordinary spring, however, the strength of the
springincreasewith temperature! These springs are often referred to asgiot
springs.
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Figure 1.1: A polyethylene chain
represented by segments af =

20 monomers. If enough consec-
utive monomers are combined into
one segment, the vectors connecting
these segments become independent
of each other.

Of course, in a real polymer the vectors connecting consecatonomers
do not take up random orientations. However, if enough ¢gagonsecutive
monomers are combined into one segment with center-of-p@ssionR;, the
vectors connecting the segmen® ¢ Rj_1, Ri=1 — R;, etcetera) become inde-
pendent of each othérsee Fig. 1.1. If the number of segments is large enough,
the end-to-end vector distribution, according to the edritmit theorem, will be
Gaussianly distributed and the local structure of the pelyappears only through
the statistical segment length

1.3 The Gaussian chain

Now we have established that global conformational progedf polymers are
largely independent of the chemical details, we can stanh fihe simplest model
available, consistent with a Gaussian end-to-end digtabu This model is one
in which every bond vector itself is Gaussian distributed,

3/2
P(r)= {Zinbz} exp{—z—izrz}. (1.13)

We assume we can ignore long range excluded volume intensctiThis is not always the
case. Consider building the chain by consecutively addingamers. At every step there are
on average more monomers in the back than in front of the lastomer. Therefore, in a good
solvent, the chain can gain entropy by going out, and beirggfathan a chain in which the new
monomer does not feel its predecessors. In a bad solvent tvmmers may feel an effective
attraction at short distances. In case this attractionrengtenough it may cause the chain to
shrink. Of course there is a whole range between good andapadat some point both effects
cancel and Eq. (1.5) holds true. A solvent having this priypercalled a@-solvent. In a polymer
melt, every monomer is isotropically surrounded by othenoroers, and there is no way to decide
whether the surrounding monomers belong to the same chaimeamonomer at hand or to a
different one. Consequently there will be no preferredaiom and the polymer melt will act as a
©-solvent. Here we shal restrict ourselves to such meltgzaadlvents.

10



1. THE GAUSSIAN CHAIN

Figure 1.2: The gaussian chain can be

represented by a collection of beads,, W\ % @ %

connected by harmonic springs of
strength 8gT /2.

Such a Gaussian chain is often represented by a mechanidel wfdoeads con-
nected by harmonic springs, as in Fig. 1.2. The potentiaiggnef such a chain
is given by:

1 N
D(ry,...,IN) = ékzlraz- (1.14)
i=

It is easy to see that if the spring consthig chosen equal to

3kgT
K="z

the Boltzmann distribution of the bond vectors obeys Eq2)(@nd (1.13). The
Gaussian chain is used as a starting point for the Rouse model

(1.15)

Problems

1-1. A way to test the Gaussian character of a distribution is toutate the ratio
of the fourth and the square of the second moment. Show thia¢ i¥nd-to-end
vector has a Gaussian distribution then

(R) _
o 5/3.

11






Chapter 2

The Rouse model

2.1 From statics to dynamics

In the previous chapter we have introduced the Gaussian elsaa model for the
equilibrium (static) properties of polymers. We will nowjast it such that we can
use it to calculate dynamical properties as well. A prersitgiis that the polymer
chains are not very long, otherwise entanglements wittosading chains will
highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead hehgtrepre-
sents a monomer or a larger part of the chain, will continlyocsllide with the
solvent molecules. Besides a systematic friction force,lidad will experience
random forces, resulting in Brownian motion. In the nextiees we will analyze
the equations associated with Brownian motion, first fordase of a single bead,
then for the Gaussian chain. Of course the motion of a beadigirthe solvent
will induce a velocity field in the solvent which will be felytall the other beads.
To first order we might however neglect this effect and caosrsttie solvent as
being some kind of indifferent ether, only producing thetion. When applied
to dilute polymeric solutions, this model gives rather basgutts, indicating the
importance of hydrodynamic interactions. When applieddlymeric melts the
model is much more appropriate, because in polymeric mwadtériction may be
thought of as being caused by the motion of a chain relativiedaest of the ma-
terial, which to a first approximation may be taken to be at; n@pagation of
a velocity field like in a normal liquid is highly improbablmeaning there is no
hydrodynamic interaction.

13



2. THE ROUSE MODEL

Figure 2.1: A spherical bead moving
with velocity v will experience a fric-

\ ¢F;/ tion force —&v opposite to its veloc-
'@‘; > Y ity and random forced= due to the
-~ continuous bombardment of solvent
Zaa molecules.

2.2 Friction and random forces

Consider a spherical bead of radeuand massn moving in a solvent. Because
on average the bead will collide more often on the front did@ ton the back side,
it will experience a systematic force proportional with vedocity, and directed
opposite to its velocity. The bead will also experience aoan or stochastic force
F(t). These forces are summarized in Fig. 2.1 The equations admibten read

% _ (2.1)
zt—v = —fv+F (2.2)

In Appendix A we show that the friction constahis given by
§={/m=6msa/m, (2.3)

wherens is the viscosity of the solvent.
Solving Eq. (2.2) yields

t
v(t) = voe & + /0 dt e S-UR(Y), (2.4)

wherevy is the initial velocity. We will now determine averages oa#iipossible
realizations of-(t), with the initial velocity as a condition. To this end we hawe
make some assumptions about the stochastic force. In viéw dfaotic charac-
ter, the following assumptions seem to be appropriate $@avérageproperties:

(Ft)) = 0 (2.5)
(F(t)-F(t)),, = Cyd(t-t) (2.6)

INote that we have divided all forces by the mas®f the bead. Consequently(t) is an
acceleration and the friction constdnis a frequency.

14



2. THE ROUSE MODEL

whereC,, may depend on the initial velocity. Using Egs. (2.4) - (248, find

(V(t)y, = voe ¥+ /th e SU(F(T),,
0
= vge & (2.7)
V) (D), = Ve 25t+2/ dt e ¥@-yg . (F(1)),

0

+/ dT/dT g ¢@-T-T) <F(T)~F(t’)>VO
C e E Cuo (4 2%t
— e E(l e ) (2.8)
The bead is in thermal equilibrium with the solvent. Accagiio the equipartition

theorem, for large, Eq. (2.8) should be equal t&3JT /m, from which it follows
that

(F(t)-F(t")) = 6@6 (t—t). (2.9)

This is one manifestation of the fluctuation-dissipaticgaitem, which states that
the systematic part of the microscopic force appearing @drittion is actually
determined by the correlation of the random force.

Integrating Eq. (2.4) we get

() =ro+ ¢ (1-e %) )+ [ o [far e HUR) (210)

from which we calculate the mean square displacement

2
<(r(t)—ro)2>vO:§(1—e—5t)2+3$2 (2at—3+4e & —2&). (2.11)

For very large this becomes

{(r(t)—ro)?) = G%Tt, (2.12)

from which we get the Einstein equation

_keT _ keT
D= = (2.13)

where we have usedr (t) —ro)?) = 6Dt. Notice that the diffusion coefficiem
is independent of the massof the bead.

15



2. THE ROUSE MODEL

From Eq. (2.7) we see that the bead loses its memory of italinélocity
after a time spam ~ 1/§. Using equipartition its initial velocity may be put equal
to /3kgT/m. The distancé it travels, divided by its diameter then is

I_: \/3kBT/m: pksT ’ (2.14)
a ag \/ omza

wherep is the mass density of the bead. Typical valuesldee~ 1072 for a
nanometre sized bead ahth ~ 10~* for a micrometre sized bead in water at
room temperature. We see that the particles have hardly draivihe time pos-
sible velocity gradients have relaxed to equilibrium. Wivem are interested in
timescales on which particle configurations change, we rastyict our attention
to the space coordinates, and average over the velocitiestirhe development of
the distribution of particles on these time scales is goselyy the Smoluchowski
equation.

In Appendix B we shall derive the Smoluchowski equation amalsthat the

explicit equations of motion for the particles, i.e. the gawin equations, which
lead to the Smoluchowski equation are

% - —%D¢+DD+f (2.15)
f(t) = 0 (2.16)
fOIY)) = 2DIs(t—t). (2.17)

wherel denotes the 3-dimensional unit matrig = 0. We use these equations
in the next section to derive the equations of motion for ypeir.

2.3 The Rouse chain

Suppose we have a Gaussian chain consistiny #f1 beads connected by
springs of strengtk = 3kgT /b?, see section 1.3. If we focus on one bead, while
keeping all other beads fixed, we see that the external®dldwhich that bead
moves is generated by connections to its predecessor andssac. \We assume
that each bead feels the same frictgrthat its motion is overdamped, and that
the diffusion coefficienD = kgT /{ is independent of the positidR, of the bead.
This model for a polymer is called the Rouse chain. Accordm&qgs. (2.15)-

16



2. THE ROUSE MODEL

(2.17) the Langevin equations describing the motion of adeahain are

Ry _ 3T

a = —W(Ro—Rl)—l—fo (2.18)

% = _Q’Z'%(an—Rnl—Rnﬂ)Hn (2.19)
Ll _32%<RN—RN1>+1=N (2.20)
(fa(t)) = 0 (221)
(fa()fm(t')) = 2DI&md(t—t'). (2.22)

Eq. (2.19) applieswhen=1,... . N—1.

2.4 Normal mode analysis

Equations (2.18) - (2.20) ar&N + 3) coupled stochastic differential equations.
In order to solve them, we will first ignore the stochastictsf,, and try specific
solutions of the following form:

Rn(t) = X(t) cogan+c). (2.23)

The equations of motion then read

dX _ 3KeT

g cose = —W{cosc—cos(a-l—c)}x (2.24)
%—):cos(na-l—c) = —%%ir?(a/Z)cos(na-l—c)x (2.25)
C;—)t(cos(Na-l—c) = —:%Zl%r{cos(Na—i-c)—cos((N—l)a+c)}X, (2.26)

where we have used

2cogna+c) —cos((n—1)a+c) —cos((n+1)a+c)
= cogna+c) {2—2cosa} = cogna+ c)4sirf(a/2). (2.27)

The boundaries of the chain, Egs. (2.24) and (2.26), arestenswith Eq. (2.25)
if we choose

cosc—coga+c) = 4sirf(a/2)cosc (2.28)
cogNa+c)—cos((N—1)a+c) = 4sirf(a/2)cogNa+c), (2.29)

17



2. THE ROUSE MODEL

which is equivalent to

co§a—Cc) = cOsc (2.30)
cos((N+1)a+c) = cogNa+c). (2.31)
We find independent solutions from
a—-c = ¢ (2.32)
(N+1)a+c = p2n—Na-—c, (2.33)
wherepis an integer. So finally
- Np+n1' c=a/2= 2(Npi 0 (2.34)

Eq. (2.23), witha andc from Eq. (2.34), decouples the set of differential equa-
tions. To find the general solution to Eqgs. (2.18) to (2.22feven a linear combi-
nation of allindependensolutions, formed by taking in the ranggp=0,...,N:

Rn=Xo+2 3 Xocos| P (nt 1) (2.35)
n— o le PERINTLY 2 '

The factor 2 in front of the summation is only for reasons afv@mience. Making
use of

LS os| P e ] 26 (0< p<2(N+1)) (2.36)
N2, S N2 % =P | |
we may invert this to
1 N pTT 1
Xp= N—Hn;Rncos{N_i_l(n-i—é)} . (2.37)
The equations of motion then read
dXp  3keT , . prt
(Fp(t)) = 0O (2.39)
I _ 2D — Y
(Fo(t)Fo(t')) = —N+1I6(t t) (2.40)
D —
(Fp(t)Fg(t')) = N—Hlapqé(t—t’) (p+9>0) (2.41)

2The validity of Eq. (2.36) is evident whegm= 0 or p= N+ 1. In the remaining cases the sum
may be evaluated using dogm+ c) = 1/2(€"3 4 e7'"%'¢). The result then is

N i )
Niﬂn;COS[Np—L(”JF%)] = 2(N1+ 1) sins&n(if )

2(NTD)
which is consistent with Eq. (2.36).

18



2. THE ROUSE MODEL

wherep,q=0,...,N. F,is a weighted average of the stochastic forfges

1 N prt 1
— _ - 2.42
Fp N 1n§: fncoslN 1(n-i- 2)} , ( )

and is therefore itself a stochastic variable, charaaérisy its first and second
moments, Egs. (2.39) - (2.41).

2.5 Rouse mode relaxation times and amplitudes

Egs. (2.38) - (2.41) form a decoupled set N3+ 1) stochastic differential equa-
tions, each of which describes the fluctuations and relaxatof a normal mode
(a Rouse mode) of the Rouse chain. It is easy to see that th#nZRouse mode,
Xo, is the position of the centre-of-ma&s = S,Rn/(N + 1) of the polymer
chain. The mean square displacement of the centre-of-mag$) can easily be
calculated:

Xo(t) = Xo(0)+ Oth Fo(T) (2.43)

0

Genlt) = ((X0l0)~Xa(0)2) = ( ['er [ ot Fo(n)-Fo(t) )
~ gt =6Det (2.44)

So the diffusion coefficient of the centre-of-mass of theypwr is given byDg =
D/(N+1)=kgT/[(N+1){]. Notice that the diffusion coefficient scales inversely
proportional to the length (and weight) of the polymer chakil other modes

1 < p < N describe independent vibrations of the chain leaving thereeof-
mass unchanged; Eqg. (2.37) shows that Rouse nXgdeescibes vibrations of
a wavelength corresponding to a subchaimNgp segments. In the applications
ahead of us, we will frequently need the time correlatiorctions of these Rouse
modes. From Eg. (2.38) we get

t
Xp(t) = xp(O)e—t/Trur/0 dt e (t-0/F (1), (2.45)

where the characteristic relaxation timgis given by

W, prt OWA(N+1)2 1

The last approximation is valid for large wavelengths, inchtrcasep < N. Mul-
tiplying Eq. (2.45) byX(0) and taking the average over all possible realisations

19



2. THE ROUSE MODEL

of the random force, we find
(Xp(t)-Xp(0)) = (X5) exp(—t/Tp). (2.47)

From these equations it is clear that the lower Rouse modeghwepresent
motions with larger wavelengths, are also slower modes. rélaxation time of
the slowest modg) = 1, is often referred to as the Rouse time

We now calculate the equilibrium expectation valuesxé)c l.e., the ampli-
tudes of the normal modes. To this end, first consider thesstal weight of a
configurationRy, ..., Ry in Carthesian coordinates,

, (2.48)

1
P(R07"'7RN):ZeXp[ sz —Rn- 1

whereZ is a normalization constant (the partition function). We nae Eq. (2.35)
to find the statistical weight of a configuration in Rouse daomaites. Since the
transformation to the Rouse coordinates is a linear tramsfoon from one set
of orthogonal coordinates to another, the correspondioghlan is simply a con-
stant. The statistical weight therefore reads

P(Xo,...,XN):%exp[ if N+1) zxp psiﬁ(%)]. (2.49)

[Exercise: show this] Since this is a simple product of irefegent Gaussians, the
amplitudes of the Rouse modes can easily be calculated:

04)-

b2 C(NFD)P? 1

el 2.50
8(N + 1) sir? ( e p? (2:50)

N+1))

Again, the last approximation is valid whgn< N. Using the amplitudes and
relaxation times of the Rouse modes, Eqgs. (2.50) and (2e$pectively, we can
now calculate all kinds of dynamic quantities of the Rousairth

2.6 Correlation of the end-to-end vector

The first dynamic quantity we are interested in is the timeetation function of
the end-to-end vectd®. Notice that

_ PR prt
R_RN—Ro—ZleXp{(—l)p—1}cos{2<N+1)} : (2.51)

20



2. THE ROUSE MODEL

1.0 T T T T T T

Figure 2.2:  Molecular dynamics
simulation results for the orienta- os
tional correlation function of the %
end-to-end vector of a GoHza2 €
polyethylene chain under melt con<
ditions (symbols), compared withV
the Rouse model prediction (solid
line). J.T. Padding and W.J. Briels,

R(DR

0.6

J. Chem. Physl14, 8685 (2001). 04 1000 2000 3000 4000
t[ps]

Because the Rouse mode amplitudes decgy &sour results will be dominated
by p values which are extremely small comparedNto/Ne therefore write

N
R—-45'Xp, (2.52)
p=1

where the prime at the summation sign indicates that ontydevith oddp should
occur in the sum. Then

N
(R()-R(0)) = 1621’<><p<t>-xp<0>>
p=

2 N
_ E:Tiz(NH) z’%e‘ﬁp. (2.53)

p=1

The characteristic decay time at latgie 11, which is proportional tgN + 1)2.

Figure 2.2 shows that Eq. (2.53) gives a good descriptioh@fitne correla-
tion function of the end-to-end vector of a real polymer ahiaia melt (provided
the polymer is not much longer than the entanglement length)

2.7 Segmental motion

In this section we will calculate the mean square displacesngeqt) of the
individual segments. Using Eqg. (2.35) and the fact thaeddiit modes are not
correlated, we get for segmamt

((Ra() = Rn(0))%) = { (Xo(t) - X0(0))*)

. pTt 1
+4 3 (Xolt) - Xo(0))?) cos W) (2.5

21



2. THE ROUSE MODEL

Averaging over all segments, and introducing Eqgs. (2.44) @¥7), the mean
square displacement of a typical segment in the Rouse medel i

Osedl) = Niﬂi<(Rn(t)—Rn(o>)2>

N
— 6Dct+4y (XZ)(1-e /). (2.55)
p=1

Two limits may be distinguished. First, whers very larget > 11, the first term
in Eqg. (2.55) will dominate, yielding

Oseqt) =~ 6Dgt (t>11). (2.56)

This is consistent with the fact that the polymer as a whdfesis with diffusion
coefficientDg.

Secondly, whert < 11 the sum overp in Eq. (2.55) dominates. IN > 1
the relaxation times can be approximated by the right hatelah Eq. (2.46), the
Rouse mode amplitudes can be approximated by the right hd@osEqg. (2.50),
and the sum can be replaced by an integral,

2b? ® 1 {02
= = = —tp°/T1
gseg(t) 2 (N+1)/0 dp 02 <1 € )

2 00 t ,
0 T1.J0

™
20 (N+1)1 t 1
= W on évmlfodtﬁ
1/2
= (12?[;'02) t1/2 (INKt<KT1, N> 1). (2.57)

So, at short times the mean square displacement of a tygigalent is subdiffu-
sive with an exponent 1/2, and is independent of the numbsegrhentd in the
chain.

Figure 2.3 shows the mean square displacement of monomeste$s and
centre-of-mass (squares) of an unentangled polyethyleaim én its melt. Ob-
serve that the chain motion is in agreement with the Rouseshprddiction, but
only for displacements larger than the square statistegihent lengtHo?.

2.8 Stress and viscosity

We will now calculate the viscosity of a solution or melt of & chains. To
this end we will first introduce the macroscopic conceptdmass and shear flow.
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2. THE ROUSE MODEL

Figure 2.3: Molecular dynamics
simulation results for the mean
square displacements of afgH242 10°
polyethylene chain under melt con-
ditions (symbols). The dotted and 4
dot-dashed lines are Rouse pred‘@-
tions for a chain with an infinitez
number of modes and for a finit& *°
Rouse chain, respectively. The hor-

0se, ROUSE, infinite N7
—- 0, ROUSE, T, EXact -

izontal line is the statistical segment 10~
length b?. J.T. Padding and W.J. ]
Briels, J. Chem. Phys114, 8685
(2001).

Then we will show how the viscosity can be calculated from erogcopic model
such as the Rouse model.

2.8.1 The stress tensor

Suppose the fluid velocity on a macroscopic scale is desthpéhe fluid velocity
field v(r). When two neighbouring fluid volume elements move with défe
velocities, they will experience a friction force proporial to the area of the
surface between the two fluid volume elements. Moreoven authout relative
motion, the volume elements will be able to exchange mommertuough the
motions of, and interactions between, the constituenigbest

All the above forces can conveniently be summarized in tlesstensor. Con-
sider a surface element of siz& dnd normatk. Let dF be the force exerted by
the fluid below the surface element on the fluid above the fll@chent. Then we
define the stress tensBiby

dFy = — 3 SypfpdA = —(S-1), dA, (2.58)
B
wherea and3 run from 1 to 3 (orx, y, andz). It is easy to show that the total
forceF on a volume element is given by
F=vO-S. (2.59)

In the case of simple fluids the stress tensor consists of arteyich is inde-
pendent of the fluid velocity, and a viscous part which depdivarly on the
instantaneouslerivativesdvy /drg. In Appendix A we elaborate on this, and cal-
culate the velocity field and friction on a sphere moving innade liquid. In the

23



2. THE ROUSE MODEL

Y Y
—.I:*t 4t Figure 2.4: Shear flow in they-
v v lane (a). Strairy, shear ratey,
I . . p (a) Iy &

and stressS,y versus timet for

. Sxy> ¢ Sw ~ ; sudden shear strain (b) and sud-

2) b) 0 den shear flow (c).
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more general case of complex fluids, the stress tensor dementhehistory of
fluid flow (the fluid has a memory) and has both viscous andielesimponents.

2.8.2 Shear flow and viscosity

Shear flows, for which the velocity components are given by

Va (r,t) = ZKGB (t)rB, (260)
B

are commonly used for studying the viscoelastic propedfemplex fluids. If
the shear ratess,g (t) are small enough, the stress tensor depends lineakyn
and can be written as

t
Sup (1) = /_de G(t— 1)K (1), (2.61)

whereG (t) is called the shear relaxation modul@(t) contains the shear stress
memory of the complex fluid. This becomes apparent when wsidentwo
special cases, depicted in Fig. 2.4:

(i) Sudden shear strainAt t = 0 a shear straiy is suddenly applied to a
relaxed system. The velocity field is given by

Ww(t) = d(t)yry (2.62)
w(t) = 0 (2.63)
V() = 0 (2.64)

The stress tensor component of interes§s which now reads

Sy(t) = YG(). (2.65)

SoG(t) is simply the stress relaxation after a sudden shear strain.
(i1) Sudden shear flawAt t = 0 a shear flow is suddenly switched on:

Ww(t) = O(t)yry (2.66)
wt) = 0 (2.67)
Vo (t) = 0 (2.68)
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2. THE ROUSE MODEL

Here®(t) is the Heaviside function angiis the shear rate. No®,y is given by

oot
=y/0 dt G(t—r1), (2.69)

In the case of simple fluids, the shear stress is the produstexdr rate and the
shear viscosity, a characteristic transport property effthid (see Appendix A,
Eq. (A.3)). Similarly, in the case of complex fluids, the sheacosity is defined
as the ratio of steady-state shear stress and shear rate,

Sy (1)
y

r]_llm

= lim dT Gt—t / dt G(1 (2.70)

The limitt — co must be taken because during the early stages elasticestrass
built up. This expression shows that the integral over tleasrelaxation modulus
yields the (low shear rate) viscosity.

2.8.3 Microscopic expression for the viscosity and stresemisor

Eq. (2.70) is not very useful as it stands because the viyassiot related to the
microscopic properties of the molecular model. Microscaxpresions for trans-
port properties such as the viscosity can be found by rgatie relaxation of
a macroscopic disturbance to spontaneous fluctuations @gaiftibrium system.
Close to equilibrium there is no way to distinguish betwegonganeous fluctua-
tions and deviations from equilibrium that are externalggared. Since one can-
not distinguish, according to the regression hypothes@rfager, the regression
of spontaneous fluctuations should coincide with the rélasaof macroscopic
variables to equilibrium. A derivation for the viscositydamany other transport
properties can be found in Statistical Mechanics text bodKkse result for the
viscosity is

=i / dt m'Cf()o;"inf(O)>, 2.71)

whereV is the volume in which the microscopic stress tersdf" is calculated.
Eq. (2.71) is sometimes referred to as the Green-Kubo esiprefor the viscosity.
Using Onsager’s regression hypothesis, it is possibleltderalso the integrand
of Eq. (2.71) to the shear relaxation modu&) in the macroscopic world:

G(t) = % (o3 1) o (0)) (2.72)
The microscopic stress tensor in Egs. (2.71) and (2.72)nergdly defined as
Gmicr _ 1 Mot
—v Z —V)+RiF], (2.73)
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2. THE ROUSE MODEL

whereM; is the mass and; the velocity of particle, andF; is the force on patrticle
i. Egs. (2.71) and (2.72) are ensemble averages under egumibonditions. We
can therefore set the macroscopic fluid velocity fiekd zero. If furthermore we
assume that the interactions between the particles angipaiadditive, we find

Ntot Niot—1 Ntot

gmier — (ZMVV.+ Zx . .+1 )F.J> (2.74)

whereFi; is the force that particlg is exerting on particle.

The sums in Egs. (2.73) and (2.74) must be taken ovéMialparticles in the
system, including the solvent particles. At first sight, @idd be a tremendous
task to calculate the viscosity analytically. Fortunatédy most polymers there is
a large separation of time scales between the stress rielaxate to the solvent
and the stress relaxation due to the polymers. In most caseamtherefore treat
the solvent contribution to the viscosity, denotedjayseparately from the poly-
mer contribution. Moreover, because the velocities of thigmper segments are
usually overdamped, the polymer stress is dominated byntkeaictions between
the beads. The first (kinetic) part of Eq. (2.73) or (2.74) riiegn be neglected.

2.8.4 Calculation for the Rouse model

Even if we can treat separately the solvent contributios, 2bm ovei in Eq.
(2.74) must still be taken over all beads of all chains in y&em. This is why
in real polymer systems the stress tensor is a collectivpgrtg. In the Rouse
model, however, there is no correlation between the dyraofione chain and
the other, so one may just as well analyze the stress redexatia single chain
and make an ensemble average over all initial configurations

Using Egs. (2.35) and (2.74), the microscopic stress tenfsaRouse chain
in a specific configuration, neglecting also the kinetic dbations, is equal to

i 13kgT N
o = (Rn—1—Rn) (Rn—1—Rn)
V b2 nZ]_

148T & X 0

= V2 z z prxq5|n(Np+1) (ﬁ)x

n=1p=1¢=1
. { gm . qrn
S'”(NH)S'n(z(NH))
124kBT pTt
= Vb Nzxpxpsm2< (N+1)) (2.75)
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Combining this with the expression for the equilibrium Reusode amplitudes,
Eq. (2.50), this can be written more concisely as

amicr:‘?’kBT k prp'
& (XF)

The correlation of th&y-component of the microscopic stress tensar=a0 with
the one at =t is therefore

micr micr 3kBT 2NN XX X X 0
Oxy (t)GXy (0) = ( ) Zlqzl px{ E);I(Z;)qué;qu( ) (2.77)

To obtain the shear relaxation modulus, according to Eq.2§2.the ensemble
average must be taken over all possible configurations=a. Now, since the
Rouse modes are Gaussian variables, all the ensemble eserfagroducts of an

odd number ofXy's are zero and the ensemble averages of products of an even
number ofXy’'s can be written as a sum of products of averages of onlyXy&

For the even term in Eq. (2.77) we find:

(Xopx (1) Xpy (1) Xgx (0) Xgy (0)) = (Xpx(t Xpy )) (Xax(0) Xqy (0))
+ (Xpx(t) Xay (0)) (Xpy (t qu( )
<><px( (0)) (Xpy (t) Xay (0)) .(2.78)

The first four ensemble averages equal zero because, for seRbain in equi-
librium, there is no correlation between different cadestomponents. The last
two ensemble averages are nonzero only whieng, since the Rouse modes are
mutually orthogonal. Using the fact that all carthesian ponents are equivalent,
and Eqg. (2.47), the shear relaxation modulus (excludingdhent contribution)
of a Rouse chain can be expressed as

2
(Xk(t) - Xk(0))
(X¢)
wherec = N/V is the number density of beads.
In concentrated polymer systems and melts, the stress isndted by the
polymer contribution. The shear relaxation modulus cal®d above predicts a

viscosity, at constant monomer concentraticand segmental frictioq, propor-
tional toN:

B °° CkBTT;L
= /odtG( N+122p2

ckeT 112 clb?
—N—|—1§€ 36 (N-i—l) (2.80)

(2.76)

cka

_keT <

Gt ="y

Z exp(—2t/tp), (2.79)

p=1
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This has been confirmed for concentrated polymers with loweoudar weight
Concentrated polymers of high molecular weight give déferresults, stressing
the importance of entanglements. We will deal with this ira@ter 4.

In dilute polymer solutions, we do not neglect the solvemttabution to the
stress. The shear relaxation modulus Eq. (2.79) must be entgoh by a very
fast decaying term, the integral of which is the solventessty ns, leading to the
following expression for the intrinsic viscosity:

_ . N—Ns _Na 1b° 2
n] = FI)ano one Vn_sﬁ(N-l_l) : (2.81)

Here,p = cM/(Nav(N + 1)) is the polymer concentratioM is the mol mass of
the polymer, andNa, is Avogadro’s number. Eq. (2.81) is at variance with exper-
imental results for dilute polymers, signifying the impante of hydrodynamic
interactions. These will be included in the next chapter.

Problems

2-1.Why is it obvious that the expression for the end-to-endareRt Eq. (2.52),
should only contain Rouse modes of odd mode nunpBer

2-2. Show that the shear relaxation moduts@) of a Rouse chain at short times
decays like ~1/2 and is given by

ckgT T
G(t) = Niil,/gl (TN <t < T1).

3A somewhat strongeX dependence is often observed because the density and, mmoe i
tant, the segmental friction coefficient increase with @asing\.
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Appendix A: Friction on a slowly moving sphere

We will calculate the fluid flow field around a moving sphere dne resulting
friction. To formulate the basic equations for the fluid waize the conservation
of mass and momentum. The conservation of mass is expregskd bontinuity
equation

Dp
B = —pO-v, (A.1)

and the conservation of momentum by the Navier-Stokes Enguat

p%v =0-S (A.2)

Herep(r,t) is the fluid densityy(r,t) the fluid velocity, /Dt = v- 0O+ 0/0t the
total derivative, and s the stress tensor. _

We now have to specify the nature of the stress tei$sorFor a viscous
fluid, friction occurs when the distance between two neigiiing fluid elements
changes, i.e. they move relative to each other. Most simyatisfcan be described
by a stress tensor which consists of a part which is indeperafehe velocity,
and a part which depends linearly on the derivatiagg drg, i.e., where the fric-
tion force is proportional to thenstantaneouselative velocity of the two fluid
element$ The most general form of the stress tensor for such a fluid is

S]B—r]s{a—r[}'i‘ﬁ}—{l:"i‘ <§ﬂs—K)D-V}6GB, (AS)

wherens is the shear viscosity, the bulk viscosity, which is the resistance of the
fluid against compression, afthe pressure.

Many flow fields of interest can be described assuming thé&tufdeis incom-
pressible, i.e. that the density along the flow is constamth&t casdl-v = 0,
as follows from Eq. (A.1). Assuming moreover that the vdiesiare small, and
that the second order non-linear tevmlv may be neglected, we obtain Stokes

4The calculations in this Appendix assume that the solveanisotropic, unstructured fluid,
with a characteristic stress relaxation time which is muohalger than the time scale of any flow
experiment. The stress response of such a so-called Newtfinid appears to biastantaneous
Newtonian fluids usually consist of small and roughly spterimolecules, e.g., water and light
oils. Non-Newtonian fluids, on the other hand, usually csinsf large or elongated molecules.
Often they are structured, either spontaneously or un@snfluence of flow. Their characteristic
stress relaxation time is experimentally accessible. As@equence, the stress between two non-
Newtonian fluid elements generally depends onftiséory of relative velocities, and contains an
elastic part. Examples are polymers and self-assemblirfigctants.
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Figure 2.5: Definition of spherical co-
y ordinates(r, 0, @) and the unit vectors
&, &, andey.

X

equation for incompressible flow

ov
Py = ns%v — OP (A.4)
O.v = O. (A.5)

Now consider a sphere of radiasnoving with velocityvs in a quiescent lig-
uid. Assume that the velocity field is stationary. Referralgcoordinates and
velocities to a frame which moves with velocity relative to the fluid transforms
the problem into one of a resting sphere in a fluid which, ajdatistances from
the sphere, moves with constant velocity= —vs. The problem is best consid-
ered in spherical coordinates (see Fig. 2.5)f) = W& + Vol + V&, SO that
0 = 0 in the flow direction. By symmetry the azimuthal componéethe fluid
velocity is equal to zeroyy = 0. The fluid flow at infinity gives the boundary
conditions

Vi = Vpcosd

Vo = —VoSin® } for r — co. (A.6)

Moreover, we will assume that the fluid is at rest on the sertd¢he sphere (stick
boundary conditions):

Vi =Vg =0 for r=a. (A.7)

5In spherical coordinates the gradient, Laplacian and damce are given by

. 0 1. 0 1 .0
Of = &5 T+ 785" rsmee‘pacp
10/,0 0 1 02
2 —_— —_ —_ _
U= S ( or > r23|n969< in 669f>+r25|n296(92
10 0 1 o0
Ov = & (o) + rsme a8 (SNOve) + i 30
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It can easily be verified that the solution of Eqgs. (A.4) - (A

3a a°
Vi = VpcosO (1— o + F) (A.8)
. 3a a
Vg = —VpSin@ (1— i F) (A.9)
P—po = —g”j‘goa cosh. (A.10)

We shall now use this flow field to calculate the friction foeerted by the fluid
on the sphere. The stress on the surface of the sphere rieghiéSollowing force
per unit area:

=~ 4 N " ~ 0V
f = S-&=0&S+8Sm =& Pl _q+8Ns 5
or (r=a)
= (—po+ 310 050 & — 3nsVo sinB&. (A.11)
2a 2a

Integrating over the whole surface of the sphere, only thepmment in the flow
direction survives:

F— / dQ a2 [(—po+ 322’0 cosﬂ) cosH+ 322’0 sir? e} — 6mM<av. (A.12)

Transforming back to the frame in which the sphere is moviity welocity
vs = —Vg through a quiescent liquid, we find for the fluid flow field

3a a?\ . . 3a a?
V() = Vs (1+@)+er<er-vS>E(1—r—2), (A13)
and the friction on the sphere
F = —lvs= —6Tmsavs. (A.14)

F is known as the Stokes friction.
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Appendix B: Smoluchowski and Langevin equations

The Smoluchowski equation describes the time evolutiomefirobability den-
sity W(r,rp;t) to find a particle at a particular positionat a particular time,
given it was atrg att = 0. It is assumed that at every instant of time the patrticle
is in thermal equilibrium with respect to its velocity, i.¢he particle velocity is
strongly damped on the Smoluchowski timescale. A flux wilkgxgiven by

J(r,ro,t) = —DOW(r,ro;t) — %W(r,ro;t)DCD(r). (B.1)
The first term in Eq. (B.1) is the flux due to the diffusive matiof the parti-
cle; D is the diffusion coefficient, occurring if(r (t) —ro)?) = 6Dt. The second
term is the flux in the “downhill” gradient direction of thetexnal potentiatp(r),
damped by the friction coefficiedt At equilibrium, the flux must be zero and the
distribution must be equal to the Boltzmann distribution

Weq(r) = Cexp[—BP(r)], (B.2)

wheref = 1/kgT andC a normalization constant. Using this in Eq. (B.1) while
settingJ(r,t) = O, leads to the Einstein equation (2.13). In general, we agsum
that no particles are generated or destroyed, so

0

aW(r,ro;t):—IZI-J(r,ro,t). (B.3)
Combining Eg. (B.1) with the above equation of particle @wation we arrive
at the Smoluchowski equation

%W(r,ro;t) = 0. %lp(r,ro;t)l:ld)(r) +0-[DOY(r,ro;t)]  (B.4)

tIi_r)r(1)LIJ(r,ro;t) = O(r—ro). (B.5)

The Smoluchowski equation describes how particle didtiobiufunctions change
in time and is fundamental to the non-equilibrium statatimechanics of over-
damped particles such as colloids and polymers.

Sometimes itis more advantageous to have explicit equatibmotion for the
particles instead of distribution functions. Below we $hbw that the Langevin
equations which lead to the above Smoluchowski equatian are

% = —%D¢+DD+f (B.6)
(f1) = 0 (B.7)
(fHf(t)) = 2DIg(t—t'). (B.8)
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wherel denotes the 3-dimensional unit matrig = dqg.
The proof starts with the Chapman-Kolmogorov equationcihin our case
reads

W(r,ro;t+At) = /dr’ W(r,r'; A)W(r' ro;t). (B.9)

This equation simply states that the probability of findingaaticle at position

at timet + At, given it was atg att = 0, is equal to the probability of finding that
particle at positiom’ at timet, given it was at positiong at timet = 0, multiplied
by the probability that it moved from tor in the last intervalit, integrated over
all possibilities forr’ (we assume¥ is properly normalized). In the following
we assume that we are always interesteavierages/ dr F(r)W(r,ro;t) of some
functionF(r). According to Eq. (B.9) this averagetat At reads

/dr F(r)W(r,ro;t +At) :/dr /dr’ F(NW(r,r’;A)W(r' ro;t). (B.10)

We shall now perform the integral with respect ton the right hand side. Because
W(r,r’; At) differs from zero only when is in the neighbourhood of, we expand
F(r) aroundr’,

aF 0%F (1)

F(r):F(r/)—i_;(rG_r or/, + Z B)a/aé

wherea andf run from 1 to 3. Introducing this into Eq. (B.10) we get

/dr F(W(r,roit+At) =
/dr’ {/dr ‘P(r,r’;At)}W(r’,ro;t)p(r/>+
/dr {/dr —ra (r,r At)}Lp(r fo: )GI;({:’)+

(B.11)

NI =

: / / . N ()
égﬁ/dr {/dr (ra —ra)(rg—rp)W(r,r ,At)}LIJ(r ,ro,t)m.
(B.12)
Now we evaluate the terms between brackets:
/dr Wir,ra) = 1 (B.13)
/dr W(r, A = —%ZSA +g—[,)At (B.14)
/dr (ra—re)(rg—rp)W(r,r’;At) = 2D3ypAt, (B.15)
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which hold true up to first order iAt. The first equation is obvious. The last two
easily follow from the Langevin equations (B.6) - (B.8).rzducing this into Eq.
(B.12), dividing byAt and taking the limiAt — 0, we get

/dr F r ro; t)
109 D OF(r) | OPF()\ (s .
Z/d {[ Zar/ ar’] ar/, +D or’2 }LIJ(r ,ro;t)  (B.16)

Next we change the integration variableinto r and perform some partial inte-
grations. Making use of lij_,W(r,ro;t) =0 and0?(DW) = 0O-(wOD) 4 0O-
(DOW), we finally obtain

o s
Z/dr F(r { {— r fo;t)g%} +%[D‘P(r,ro:t)]}
_ /dr F(r { { W(r,ro;t)O(r )} -i—EI-[DEIlP(r,ro;t)]}. (B.17)

Because this has to hold true for all possiblg) we conclude that the Smolu-
chowski equation (B.4) follows from the Langevin equati¢Bs$) - (B.8).
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