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Preface

These lecture notes provide a concise introduction to the theory of polymer dy-
namics. The reader is assumed to have a reasonable math background (including
some knowledge of probability and statistics, partial differential equations, and
complex functions) and have some knowledge of statistical mechanics.

We will first introduce the concept of a Gaussian chain (chapter 1), which is a
simple bead and spring model representing theequilibriumproperties of a poly-
mer. By adding friction and random forces to such a chain, onearrives at a de-
scription of thedynamicsof a single polymer. For simplicity we will first neglect
any hydrodynamic interactions (HIs). Surprisingly, this so-called Rouse model
(chapter 2) is a very good approximation for low molecular weight polymers at
high concentrations.

The next two chapters deal with extensions of the Rouse model. In chapter 3
we will treat HIs in an approximate way and arrive at the Zimm model, appropriate
for dilute polymers. In chapter 4 we will introduce the tube model, in which
the primary result of entanglements in high molecular weight polymers is the
constraining of a test chain to longitudinal motion along its own contour.

The following books have been very helpful in the preparation of these lec-
tures:

• W.J. Briels,Theory of Polymer Dynamics, Lecture Notes, Uppsala (1994).
Also available onhttp://www.tn.utwente.nl/cdr/PolymeerDictaat/.

• M. Doi and S.F. Edwards,The Theory of Polymer Dynamics(Clarendon,
Oxford, 1986).

• D.M. McQuarrie,Statistical Mechanics(Harper & Row, New York, 1976).

I would especially like to thank Prof. Wim Briels, who introduced me to the sub-
ject of polymer dynamics. His work formed the basis of a largepart of these
lecture notes.

Johan Padding, Cambridge, January 2005.

5





Chapter 1

The Gaussian chain

1.1 Similarity of global properties

Polymers are long linear macromolecules made up of a large number of chemical
units or monomers, which are linked together through covalent bonds. The num-
ber of monomers per polymer may vary from a hundred to many thousands. We
can describe the conformation of a polymer by giving the positions of its back-
bone atoms. The positions of the remaining atoms then usually follow by simple
chemical rules. So, suppose we haveN+1 monomers, withN+1 position vectors

R0,R1, . . . ,RN.

We then haveN bond vectors

r1 = R1−R0, . . . , rN = RN −RN−1.

Much of the static and dynamic behavior of polymers can be explained by models
which are surprisingly simple. This is possible because theglobal, large scale
properties of polymers do not depend on the chemical detailsof the monomers,
except for some species-dependent “effective” parameters. For example, one can
measure the end-to-end vector, defined as

R = RN −R0 =
N

∑
i=1

r i . (1.1)

If the end-to-end vector is measured for a large number of polymers in a melt, one
will find that the distribution of end-to-end vectors is Gaussian and that the root
mean squared end-to-end distance scales with the square root of the number of
bonds,

√

〈R2〉 ∝
√

N, irrespective of the chemical details. This is a consequence
of the central limit theorem.
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1. THE GAUSSIAN CHAIN

1.2 The central limit theorem

Consider a chain consisting ofN independent bond vectorsr i . By this we mean
that the orientation and length of each bond is independent of all others. A justifi-
cation will be given at the end of this section. The probability density in configu-
ration spaceΨ

(

rN
)

may then be written as

Ψ
(

rN)=
N

∏
i=1

ψ(r i) . (1.2)

Assume further that the bond vector probability densityψ(r i) depends only on
the length of the bond vector and has zero mean,〈r i〉= 0. For the second moment
we write

〈

r2〉=
∫

d3r r 2ψ(r) ≡ b2, (1.3)

where we have defined the statistical segment (or Kuhn) length b,. LetΩ(R;N) be
the probability distribution function for the end-to-end vector given that we have
a chain of N bonds,

Ω(R;N) =

〈

δ

(

R−
N

∑
i=1

r i

)〉

, (1.4)

whereδ is the Dirac-delta function. The central limit theorem thenstates that

Ω(R;N) =

{

3
2πNb2

}3/2

exp

{

− 3R2

2Nb2

}

, (1.5)

i.e., that the end-to-end vector has a Gaussian distribution with zero mean and a
variance given by

〈

R2〉= Nb2. (1.6)

In order to prove Eq. (1.5) we write

Ω(R;N) =
1

(2π)3

∫

dk

〈

exp

{

ik ·
(

R−∑
i

r i

)}〉

=
1

(2π)3

∫

dk eik·R
〈

exp

{

−ik ·∑
i

r i

}〉

=
1

(2π)3

∫

dk eik·R
{

∫

dr e−ik·rψ(r)
}N

. (1.7)
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1. THE GAUSSIAN CHAIN

For k = 0, the Fourier transform ofψ(r) will be equal to one. Becauseψ(r)
has zero mean and finite second moment, the Fourier transformof ψ(r) will have
its maximum aroundk = 0 and go to zero for large values ofk. Raising such a
function to theN’th power leaves us with a function that differs from zero only
very close to the origin, and which may be approximated by

{

∫

dr e−ik·rψ(r)
}N

≈
{

1− 1
2

〈

(k · r)2
〉

}N

≈ 1− 1
2

N
〈

(k · r)2
〉

= 1− 1
6

Nk2b2 (1.8)

for small values ofk, and by zero for the values ofk where 1− 1
6Nk2b2 is negative.

This again may be approximated by exp
{

−1
6Nk2b2

}

for all values ofk. Then

Ω(R;N) =
1

(2π)3

∫

dk exp

{

ik ·R− 1
6

Nk2b2
}

= I (Rx) I (Ry) I (Rz) (1.9)

I (Rx) =
1

2π

∫

dkx exp

{

iRxkx−
1
6

Nb2k2
x

}

=

{

3
2πNb2

}1/2

exp

{

− 3R2
x

2Nb2

}

. (1.10)

Combining Eqs. (1.9) and (1.10) we get Eq. (1.5).
Using Ω(R;N), we can obtain an interesting insight in the thermodynamic

behaviour of a polymer chain. The entropy of a chain in which the end-to-end
vectorR is kept fixed, absorbing all constants into a reference entropy, is given by

S(R;N) = kB lnΩ(R;N) = S0−
3kR2

2Nb2 , (1.11)

wherekB is Boltzmann’s constant. The free energy is then

A = U −TS= A0+
3kBTR2

2Nb2 , (1.12)

whereT is the temperature. We see that the free energy is related quadratically
to the end-to-end distance, as if the chain is a harmonic (Hookean) spring with
spring constant 3kBT/Nb2. Unlike an ordinary spring, however, the strength of the
springincreaseswith temperature! These springs are often referred to as entropic
springs.
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1. THE GAUSSIAN CHAIN

Figure 1.1: A polyethylene chain
represented by segments ofλ =
20 monomers. If enough consec-
utive monomers are combined into
one segment, the vectors connecting
these segments become independent
of each other.

Of course, in a real polymer the vectors connecting consecutive monomers
do not take up random orientations. However, if enough (sayλ) consecutive
monomers are combined into one segment with center-of-masspositionRi , the
vectors connecting the segments (Ri −Ri−1, Ri+1−Ri, etcetera) become inde-
pendent of each other,1 see Fig. 1.1. If the number of segments is large enough,
the end-to-end vector distribution, according to the central limit theorem, will be
Gaussianly distributed and the local structure of the polymer appears only through
the statistical segment lengthb.

1.3 The Gaussian chain

Now we have established that global conformational properties of polymers are
largely independent of the chemical details, we can start from the simplest model
available, consistent with a Gaussian end-to-end distribution. This model is one
in which every bond vector itself is Gaussian distributed,

ψ(r) =

{

3
2πb2

}3/2

exp

{

− 3
2b2r2

}

. (1.13)

1We assume we can ignore long range excluded volume interactions. This is not always the
case. Consider building the chain by consecutively adding monomers. At every step there are
on average more monomers in the back than in front of the last monomer. Therefore, in a good
solvent, the chain can gain entropy by going out, and being larger than a chain in which the new
monomer does not feel its predecessors. In a bad solvent two monomers may feel an effective
attraction at short distances. In case this attraction is strong enough it may cause the chain to
shrink. Of course there is a whole range between good and bad,and at some point both effects
cancel and Eq. (1.5) holds true. A solvent having this property is called aΘ-solvent. In a polymer
melt, every monomer is isotropically surrounded by other monomers, and there is no way to decide
whether the surrounding monomers belong to the same chain asthe monomer at hand or to a
different one. Consequently there will be no preferred direction and the polymer melt will act as a
Θ-solvent. Here we shal restrict ourselves to such melts andΘ-solvents.
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1. THE GAUSSIAN CHAIN

Figure 1.2: The gaussian chain can be
represented by a collection of beads
connected by harmonic springs of
strength 3kBT/b2.

Such a Gaussian chain is often represented by a mechanical model of beads con-
nected by harmonic springs, as in Fig. 1.2. The potential energy of such a chain
is given by:

Φ(r1, . . . , rN) =
1
2

k
N

∑
i=1

r2
i . (1.14)

It is easy to see that if the spring constantk is chosen equal to

k =
3kBT

b2 , (1.15)

the Boltzmann distribution of the bond vectors obeys Eqs. (1.2) and (1.13). The
Gaussian chain is used as a starting point for the Rouse model.

Problems

1-1. A way to test the Gaussian character of a distribution is to calculate the ratio
of the fourth and the square of the second moment. Show that ifthe end-to-end
vector has a Gaussian distribution then

〈

R4
〉

〈R2〉2 = 5/3.
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Chapter 2

The Rouse model

2.1 From statics to dynamics

In the previous chapter we have introduced the Gaussian chain as a model for the
equilibrium (static) properties of polymers. We will now adjust it such that we can
use it to calculate dynamical properties as well. A prerequisite is that the polymer
chains are not very long, otherwise entanglements with surrounding chains will
highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead, whether it repre-
sents a monomer or a larger part of the chain, will continuously collide with the
solvent molecules. Besides a systematic friction force, the bead will experience
random forces, resulting in Brownian motion. In the next sections we will analyze
the equations associated with Brownian motion, first for thecase of a single bead,
then for the Gaussian chain. Of course the motion of a bead through the solvent
will induce a velocity field in the solvent which will be felt by all the other beads.
To first order we might however neglect this effect and consider the solvent as
being some kind of indifferent ether, only producing the friction. When applied
to dilute polymeric solutions, this model gives rather bad results, indicating the
importance of hydrodynamic interactions. When applied to polymeric melts the
model is much more appropriate, because in polymeric melts the friction may be
thought of as being caused by the motion of a chain relative tothe rest of the ma-
terial, which to a first approximation may be taken to be at rest; propagation of
a velocity field like in a normal liquid is highly improbable,meaning there is no
hydrodynamic interaction.
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2. THE ROUSE MODEL

v-xv

F

Figure 2.1: A spherical bead moving
with velocity v will experience a fric-
tion force −ξv opposite to its veloc-
ity and random forcesF due to the
continuous bombardment of solvent
molecules.

2.2 Friction and random forces

Consider a spherical bead of radiusa and massm moving in a solvent. Because
on average the bead will collide more often on the front side than on the back side,
it will experience a systematic force proportional with itsvelocity, and directed
opposite to its velocity. The bead will also experience a random or stochastic force
F(t). These forces are summarized in Fig. 2.1 The equations of motion then read1

dr
dt

= v (2.1)

dv
dt

= −ξv+F. (2.2)

In Appendix A we show that the friction constantξ is given by

ξ = ζ/m= 6πηsa/m, (2.3)

whereηs is the viscosity of the solvent.
Solving Eq. (2.2) yields

v(t) = v0e−ξt +

∫ t

0
dτ e−ξ(t−τ)F(t). (2.4)

wherev0 is the initial velocity. We will now determine averages overall possible
realizations ofF(t), with the initial velocity as a condition. To this end we haveto
make some assumptions about the stochastic force. In view ofits chaotic charac-
ter, the following assumptions seem to be appropriate for itsaverageproperties:

〈F(t)〉 = 0 (2.5)
〈

F(t) ·F(t ′)
〉

v0
= Cv0δ(t− t ′) (2.6)

1Note that we have divided all forces by the massm of the bead. Consequently,F(t) is an
acceleration and the friction constantξ is a frequency.
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2. THE ROUSE MODEL

whereCv0 may depend on the initial velocity. Using Eqs. (2.4) - (2.6),we find

〈v(t)〉v0
= v0e−ξt +

∫ t

0
dτ e−ξ(t−τ) 〈F(τ)〉v0

= v0e−ξt (2.7)

〈v(t) ·v(t)〉v0
= v2

0e−2ξt +2
∫ t

0
dτ e−ξ(2t−τ)v0 · 〈F(τ)〉v0

+

∫ t

0
dτ′
∫ t

0
dτ e−ξ(2t−τ−τ′) 〈F(τ) ·F(τ′)

〉

v0

= v2
0e−2ξt +

Cv0

2ξ

(

1−e−2ξt
)

. (2.8)

The bead is in thermal equilibrium with the solvent. According to the equipartition
theorem, for larget, Eq. (2.8) should be equal to 3kBT/m, from which it follows
that

〈

F(t) ·F(t ′)
〉

= 6
kBTξ

m
δ(t − t ′). (2.9)

This is one manifestation of the fluctuation-dissipation theorem, which states that
the systematic part of the microscopic force appearing as the friction is actually
determined by the correlation of the random force.

Integrating Eq. (2.4) we get

r(t) = r0 +
v0

ξ

(

1−e−ξt
)

+
∫ t

0
dτ
∫ τ

0
dτ′ e−ξ(τ−τ′)F(τ′), (2.10)

from which we calculate the mean square displacement

〈

(r(t)− r0)
2〉

v0
=

v2
0

ξ2

(

1−e−ξt
)2

+
3kBT
mξ2

(

2ξt −3+4e−ξt −e−2ξt
)

. (2.11)

For very larget this becomes

〈

(r(t)− r0)
2〉=

6kBT
mξ

t, (2.12)

from which we get the Einstein equation

D =
kBT
mξ

=
kBT

ζ
, (2.13)

where we have used
〈

(r(t)− r0)
2
〉

= 6Dt. Notice that the diffusion coefficientD
is independent of the massm of the bead.
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2. THE ROUSE MODEL

From Eq. (2.7) we see that the bead loses its memory of its initial velocity
after a time spanτ ≈ 1/ξ. Using equipartition its initial velocity may be put equal
to
√

3kBT/m. The distancel it travels, divided by its diameter then is

l
a

=

√

3kBT/m

aξ
=

√

ρkBT
9πη2

sa
, (2.14)

whereρ is the mass density of the bead. Typical values arel/a ≈ 10−2 for a
nanometre sized bead andl/a ≈ 10−4 for a micrometre sized bead in water at
room temperature. We see that the particles have hardly moved at the time pos-
sible velocity gradients have relaxed to equilibrium. Whenwe are interested in
timescales on which particle configurations change, we may restrict our attention
to the space coordinates, and average over the velocities. The time development of
the distribution of particles on these time scales is governed by the Smoluchowski
equation.

In Appendix B we shall derive the Smoluchowski equation and show that the
explicit equations of motion for the particles, i.e. the Langevin equations, which
lead to the Smoluchowski equation are

dr
dt

= −1
ζ

∇∇∇Φ+∇∇∇D+ f (2.15)

〈f(t)〉 = 0 (2.16)
〈

f(t)f(t ′)
〉

= 2DĪδ(t − t ′). (2.17)

whereĪ denotes the 3-dimensional unit matrix Iαβ = δαβ. We use these equations
in the next section to derive the equations of motion for a polymer.

2.3 The Rouse chain

Suppose we have a Gaussian chain consisting ofN + 1 beads connected byN
springs of strengthk = 3kBT/b2, see section 1.3. If we focus on one bead, while
keeping all other beads fixed, we see that the external fieldΦ in which that bead
moves is generated by connections to its predecessor and successor. We assume
that each bead feels the same frictionζ, that its motion is overdamped, and that
the diffusion coefficientD = kBT/ζ is independent of the positionRn of the bead.
This model for a polymer is called the Rouse chain. Accordingto Eqs. (2.15)-
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2. THE ROUSE MODEL

(2.17) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −3kBT

ζb2 (R0−R1)+ f0 (2.18)

dRn

dt
= −3kBT

ζb2 (2Rn−Rn−1−Rn+1)+ fn (2.19)

dRN

dt
= −3kBT

ζb2 (RN −RN−1)+ fN (2.20)

〈fn(t)〉 = 0 (2.21)
〈

fn(t) fm
(

t ′
)〉

= 2DĪδnmδ(t − t ′). (2.22)

Eq. (2.19) applies whenn = 1, . . . ,N−1.

2.4 Normal mode analysis

Equations (2.18) - (2.20) are(3N + 3) coupled stochastic differential equations.
In order to solve them, we will first ignore the stochastic forcesfn and try specific
solutions of the following form:

Rn(t) = X(t)cos(an+c). (2.23)

The equations of motion then read

dX
dt

cosc = −3kBT
ζb2 {cosc−cos(a+c)}X (2.24)

dX
dt

cos(na+c) = −3kBT
ζb2 4sin2(a/2)cos(na+c)X (2.25)

dX
dt

cos(Na+c) = −3kBT
ζb2 {cos(Na+c)−cos((N−1)a+c)}X, (2.26)

where we have used

2cos(na+c)−cos((n−1)a+c)−cos((n+1)a+c)

= cos(na+c){2−2cosa} = cos(na+c)4sin2(a/2). (2.27)

The boundaries of the chain, Eqs. (2.24) and (2.26), are consistent with Eq. (2.25)
if we choose

cosc−cos(a+c) = 4sin2(a/2)cosc (2.28)

cos(Na+c)−cos((N−1)a+c) = 4sin2(a/2)cos(Na+c), (2.29)
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2. THE ROUSE MODEL

which is equivalent to

cos(a−c) = cosc (2.30)

cos((N+1)a+c) = cos(Na+c). (2.31)

We find independent solutions from

a−c = c (2.32)

(N+1)a+c = p2π−Na−c, (2.33)

wherep is an integer. So finally

a =
pπ

N+1
, c = a/2 =

pπ
2(N+1)

. (2.34)

Eq. (2.23), witha andc from Eq. (2.34), decouples the set of differential equa-
tions. To find the general solution to Eqs. (2.18) to (2.22) weform a linear combi-
nation of allindependentsolutions, formed by takingp in the rangep = 0, . . . ,N:

Rn = X0+2
N

∑
p=1

Xpcos

[

pπ
N+1

(n+
1
2
)

]

. (2.35)

The factor 2 in front of the summation is only for reasons of convenience. Making
use of2

1
N+1

N

∑
n=0

cos

[

pπ
N+1

(n+
1
2
)

]

= δp0 (0≤ p < 2(N+1)), (2.36)

we may invert this to

Xp =
1

N+1

N

∑
n=0

Rncos

[

pπ
N+1

(n+
1
2
)

]

. (2.37)

The equations of motion then read

dXp

dt
= −3kBT

ζb2 4sin2
(

pπ
2(N+1)

)

Xp+Fp (2.38)
〈

Fp(t)
〉

= 0 (2.39)
〈

F0(t)F0(t
′)
〉

=
2D

N+1
Īδ(t− t ′) (2.40)

〈

Fp(t)Fq(t
′)
〉

=
D

N+1
Īδpqδ(t − t ′) (p+q > 0) (2.41)

2The validity of Eq. (2.36) is evident whenp = 0 or p= N+1. In the remaining cases the sum
may be evaluated using cos(na+c) = 1/2(einaeic +e−inae−ic). The result then is

1
N+1

N

∑
n=0

cos

[

pπ
N+1

(n+
1
2
)

]

=
1

2(N+1)

sin(pπ)

sin
(

pπ
2(N+1)

) ,

which is consistent with Eq. (2.36).
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2. THE ROUSE MODEL

wherep,q = 0, . . . ,N. Fp is a weighted average of the stochastic forcesfn,

Fp =
1

N+1

N

∑
n=0

fncos

[

pπ
N+1

(n+
1
2
)

]

, (2.42)

and is therefore itself a stochastic variable, characterised by its first and second
moments, Eqs. (2.39) - (2.41).

2.5 Rouse mode relaxation times and amplitudes

Eqs. (2.38) - (2.41) form a decoupled set of 3(N+1) stochastic differential equa-
tions, each of which describes the fluctuations and relaxations of a normal mode
(a Rouse mode) of the Rouse chain. It is easy to see that the zeroth Rouse mode,
X0, is the position of the centre-of-massRG = ∑nRn/(N + 1) of the polymer
chain. The mean square displacement of the centre-of-mass,gcm(t) can easily be
calculated:

X0(t) = X0(0)+

∫ t

0
dτ F0(τ) (2.43)

gcm(t) =
〈

(X0(t)−X0(0))2
〉

=

〈

∫ t

0
dτ
∫ t

0
dτ′ F0(τ) ·F0(τ′)

〉

=
6D

N+1
t ≡ 6DGt. (2.44)

So the diffusion coefficient of the centre-of-mass of the polymer is given byDG =
D/(N+1) = kBT/[(N+1)ζ]. Notice that the diffusion coefficient scales inversely
proportional to the length (and weight) of the polymer chain. All other modes
1 ≤ p ≤ N describe independent vibrations of the chain leaving the centre-of-
mass unchanged; Eq. (2.37) shows that Rouse modeXp descibes vibrations of
a wavelength corresponding to a subchain ofN/p segments. In the applications
ahead of us, we will frequently need the time correlation functions of these Rouse
modes. From Eq. (2.38) we get

Xp(t) = Xp(0)e−t/τp +
∫ t

0
dτ e−(t−τ)/τpFp(τ), (2.45)

where the characteristic relaxation timeτp is given by

τp =
ζb2

3kBT

[

4sin2
(

pπ
2(N+1)

)]−1

≈ ζb2(N+1)2

3π2kBT
1
p2 . (2.46)

The last approximation is valid for large wavelengths, in which casep≪ N. Mul-
tiplying Eq. (2.45) byXp(0) and taking the average over all possible realisations
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2. THE ROUSE MODEL

of the random force, we find

〈

Xp(t) ·Xp(0)
〉

=
〈

X2
p

〉

exp(−t/τp) . (2.47)

From these equations it is clear that the lower Rouse modes, which represent
motions with larger wavelengths, are also slower modes. Therelaxation time of
the slowest mode,p = 1, is often referred to as the Rouse timeτR.

We now calculate the equilibrium expectation values ofX2
p, i.e., the ampli-

tudes of the normal modes. To this end, first consider the statistical weight of a
configurationR0, . . . ,RN in Carthesian coordinates,

P(R0, . . . ,RN) =
1
Z

exp

[

− 3
2b2

N

∑
n=1

(Rn−Rn−1)
2

]

, (2.48)

whereZ is a normalization constant (the partition function). We can use Eq. (2.35)
to find the statistical weight of a configuration in Rouse coordinates. Since the
transformation to the Rouse coordinates is a linear transformation from one set
of orthogonal coordinates to another, the corresponding Jacobian is simply a con-
stant. The statistical weight therefore reads

P(X0, . . . ,XN) =
1
Z

exp

[

−12
b2 (N+1)

N

∑
p=1

Xp ·Xpsin2
(

pπ
2(N+1)

)

]

. (2.49)

[Exercise: show this] Since this is a simple product of independent Gaussians, the
amplitudes of the Rouse modes can easily be calculated:

〈

X2
p

〉

=
b2

8(N+1)sin2
(

pπ
2(N+1)

) ≈ (N+1)b2

2π2

1
p2 . (2.50)

Again, the last approximation is valid whenp ≪ N. Using the amplitudes and
relaxation times of the Rouse modes, Eqs. (2.50) and (2.46) respectively, we can
now calculate all kinds of dynamic quantities of the Rouse chain.

2.6 Correlation of the end-to-end vector

The first dynamic quantity we are interested in is the time correlation function of
the end-to-end vectorR. Notice that

R = RN −R0 = 2
N

∑
p=1

Xp{(−1)p−1}cos

[

pπ
2(N+1)

]

. (2.51)
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2. THE ROUSE MODEL

Figure 2.2: Molecular dynamics
simulation results for the orienta-
tional correlation function of the
end-to-end vector of a C120H242

polyethylene chain under melt con-
ditions (symbols), compared with
the Rouse model prediction (solid
line). J.T. Padding and W.J. Briels,
J. Chem. Phys.114, 8685 (2001). 0 1000 2000 3000 4000
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Because the Rouse mode amplitudes decay asp−2, our results will be dominated
by p values which are extremely small compared toN. We therefore write

R = −4
N

∑′

p=1
Xp, (2.52)

where the prime at the summation sign indicates that only terms with oddp should
occur in the sum. Then

〈R(t) ·R(0)〉 = 16
N

∑′

p=1

〈

Xp(t) ·Xp(0)
〉

=
8b2

π2 (N+1)
N

∑′

p=1

1
p2e−t/τp. (2.53)

The characteristic decay time at larget is τ1, which is proportional to(N+1)2.
Figure 2.2 shows that Eq. (2.53) gives a good description of the time correla-

tion function of the end-to-end vector of a real polymer chain in a melt (provided
the polymer is not much longer than the entanglement length).

2.7 Segmental motion

In this section we will calculate the mean square displacements gseg(t) of the
individual segments. Using Eq. (2.35) and the fact that different modes are not
correlated, we get for segmentn

〈

(Rn(t)−Rn(0))2
〉

=
〈

(X0(t)−X0(0))2
〉

+4
N

∑
p=1

〈

(Xp(t)−Xp(0))2
〉

cos2
[

pπ
N+1

(n+
1
2
)

]

. (2.54)
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2. THE ROUSE MODEL

Averaging over all segments, and introducing Eqs. (2.44) and (2.47), the mean
square displacement of a typical segment in the Rouse model is

gseg(t) =
1

N+1

N

∑
n=0

〈

(Rn(t)−Rn(0))2
〉

= 6DGt +4
N

∑
p=1

〈

X2
p

〉

(

1−e−t/τp

)

. (2.55)

Two limits may be distinguished. First, whent is very large,t ≫ τ1, the first term
in Eq. (2.55) will dominate, yielding

gseg(t)≈ 6DGt (t ≫ τ1) . (2.56)

This is consistent with the fact that the polymer as a whole diffuses with diffusion
coefficientDG.

Secondly, whent ≪ τ1 the sum overp in Eq. (2.55) dominates. IfN ≫ 1
the relaxation times can be approximated by the right hand side of Eq. (2.46), the
Rouse mode amplitudes can be approximated by the right hand side of Eq. (2.50),
and the sum can be replaced by an integral,

gseg(t) =
2b2

π2 (N+1)

∫ ∞

0
dp

1
p2

(

1−e−t p2/τ1

)

=
2b2

π2 (N+1)
∫ ∞

0
dp

1
τ1

∫ t

0
dt ′ e−t ′p2/τ1

=
2b2

π2

(N+1)

τ1

1
2

√
πτ1

∫ t

0
dt ′

1√
t ′

=

(

12kBTb2

πζ

)1/2

t1/2 (τN ≪ t ≪ τ1, N ≫ 1) . (2.57)

So, at short times the mean square displacement of a typical segment is subdiffu-
sive with an exponent 1/2, and is independent of the number ofsegmentsN in the
chain.

Figure 2.3 shows the mean square displacement of monomers (circles) and
centre-of-mass (squares) of an unentangled polyethylene chain in its melt. Ob-
serve that the chain motion is in agreement with the Rouse model prediction, but
only for displacements larger than the square statistical segment lengthb2.

2.8 Stress and viscosity

We will now calculate the viscosity of a solution or melt of Rouse chains. To
this end we will first introduce the macroscopic concepts of stress and shear flow.
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2. THE ROUSE MODEL

Figure 2.3: Molecular dynamics
simulation results for the mean
square displacements of a C120H242

polyethylene chain under melt con-
ditions (symbols). The dotted and
dot-dashed lines are Rouse predic-
tions for a chain with an infinite
number of modes and for a finite
Rouse chain, respectively. The hor-
izontal line is the statistical segment
length b2. J.T. Padding and W.J.
Briels, J. Chem. Phys.114, 8685
(2001).
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Then we will show how the viscosity can be calculated from a microscopic model
such as the Rouse model.

2.8.1 The stress tensor

Suppose the fluid velocity on a macroscopic scale is described by the fluid velocity
field v(r). When two neighbouring fluid volume elements move with different
velocities, they will experience a friction force proportional to the area of the
surface between the two fluid volume elements. Moreover, even without relative
motion, the volume elements will be able to exchange momentum through the
motions of, and interactions between, the constituent particles.

All the above forces can conveniently be summarized in the stress tensor. Con-
sider a surface element of size dA and normal̂t. Let dF be the force exerted by
the fluid below the surface element on the fluid above the fluid element. Then we
define the stress tensorS̄by

dFα = −∑
β

Sαβt̂βdA = −
(

S̄· t̂
)

α dA, (2.58)

whereα andβ run from 1 to 3 (orx, y, andz). It is easy to show that the total
forceF on a volume elementV is given by

F = V∇∇∇ · S̄. (2.59)

In the case of simple fluids the stress tensor consists of one part which is inde-
pendent of the fluid velocity, and a viscous part which depends linearly on the
instantaneousderivatives∂vα/∂rβ. In Appendix A we elaborate on this, and cal-
culate the velocity field and friction on a sphere moving in a simple liquid. In the
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Figure 2.4: Shear flow in thexy-
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more general case of complex fluids, the stress tensor depends on thehistoryof
fluid flow (the fluid has a memory) and has both viscous and elastic components.

2.8.2 Shear flow and viscosity

Shear flows, for which the velocity components are given by

vα (r , t) = ∑
β

καβ (t) rβ, (2.60)

are commonly used for studying the viscoelastic propertiesof complex fluids. If
the shear ratesκαβ (t) are small enough, the stress tensor depends linearly onκ̄κκ(t)
and can be written as

Sαβ (t) =

∫ t

−∞
dτ G(t− τ)καβ (τ) , (2.61)

whereG(t) is called the shear relaxation modulus.G(t) contains the shear stress
memory of the complex fluid. This becomes apparent when we consider two
special cases, depicted in Fig. 2.4:

(i) Sudden shear strain. At t = 0 a shear strainγ is suddenly applied to a
relaxed system. The velocity field is given by

vx(t) = δ(t)γry (2.62)

vy(t) = 0 (2.63)

vz(t) = 0 (2.64)

The stress tensor component of interest isSxy, which now reads

Sxy(t) = γG(t). (2.65)

SoG(t) is simply the stress relaxation after a sudden shear strain.
(ii ) Sudden shear flow. At t = 0 a shear flow is suddenly switched on:

vx(t) = Θ(t) γ̇ry (2.66)

vy(t) = 0 (2.67)

vz(t) = 0 (2.68)
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2. THE ROUSE MODEL

HereΘ(t) is the Heaviside function anḋγ is the shear rate. NowSxy is given by

Sxy(t) = γ̇
∫ t

0
dτ G(t − τ) , (2.69)

In the case of simple fluids, the shear stress is the product ofshear rate and the
shear viscosity, a characteristic transport property of the fluid (see Appendix A,
Eq. (A.3)). Similarly, in the case of complex fluids, the shear viscosity is defined
as the ratio of steady-state shear stress and shear rate,

η = lim
t→∞

Sxy(t)

γ̇
= lim

t→∞

∫ t

0
dτ G(t− τ) =

∫ ∞

0
dτ G(τ) . (2.70)

The limit t → ∞ must be taken because during the early stages elastic stresses are
built up. This expression shows that the integral over the shear relaxation modulus
yields the (low shear rate) viscosity.

2.8.3 Microscopic expression for the viscosity and stress tensor

Eq. (2.70) is not very useful as it stands because the viscosity is not related to the
microscopic properties of the molecular model. Microscopic expresions for trans-
port properties such as the viscosity can be found by relating the relaxation of
a macroscopic disturbance to spontaneous fluctuations in anequilibrium system.
Close to equilibrium there is no way to distinguish between spontaneous fluctua-
tions and deviations from equilibrium that are externally prepared. Since one can-
not distinguish, according to the regression hypothesis ofOnsager, the regression
of spontaneous fluctuations should coincide with the relaxation of macroscopic
variables to equilibrium. A derivation for the viscosity and many other transport
properties can be found in Statistical Mechanics text books. The result for the
viscosity is

η =
V

kBT

∫ ∞

0
dτ
〈

σmicr
xy (τ)σmicr

xy (0)
〉

, (2.71)

whereV is the volume in which the microscopic stress tensorσ̄σσmicr is calculated.
Eq. (2.71) is sometimes referred to as the Green-Kubo expression for the viscosity.
Using Onsager’s regression hypothesis, it is possible to relate also the integrand
of Eq. (2.71) to the shear relaxation modulusG(t) in the macroscopic world:

G(t) =
V

kBT

〈

σmicr
xy (t)σmicr

xy (0)
〉

(2.72)

The microscopic stress tensor in Eqs. (2.71) and (2.72) is generally defined as

σ̄σσmicr = − 1
V

Ntot

∑
i=1

[Mi (V i −v)(V i −v)+RiFi ] , (2.73)
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whereMi is the mass andV i the velocity of particlei, andFi is the force on particle
i. Eqs. (2.71) and (2.72) are ensemble averages under equilibrium conditions. We
can therefore set the macroscopic fluid velocity fieldv to zero. If furthermore we
assume that the interactions between the particles are pairwise additive, we find

σ̄σσmicr = − 1
V

(

Ntot

∑
i=1

MiV iV i +
Ntot−1

∑
i=1

Ntot

∑
j=i+1

(

Ri −R j
)

Fi j

)

, (2.74)

whereFi j is the force that particlej is exerting on particlei.
The sums in Eqs. (2.73) and (2.74) must be taken over allNtot particles in the

system, including the solvent particles. At first sight, it would be a tremendous
task to calculate the viscosity analytically. Fortunately, for most polymers there is
a large separation of time scales between the stress relaxation due to the solvent
and the stress relaxation due to the polymers. In most cases we can therefore treat
the solvent contribution to the viscosity, denoted byηs, separately from the poly-
mer contribution. Moreover, because the velocities of the polymer segments are
usually overdamped, the polymer stress is dominated by the interactions between
the beads. The first (kinetic) part of Eq. (2.73) or (2.74) maythen be neglected.

2.8.4 Calculation for the Rouse model

Even if we can treat separately the solvent contribution, the sum overi in Eq.
(2.74) must still be taken over all beads of all chains in the system. This is why
in real polymer systems the stress tensor is a collective property. In the Rouse
model, however, there is no correlation between the dynamics of one chain and
the other, so one may just as well analyze the stress relaxation of a single chain
and make an ensemble average over all initial configurations.

Using Eqs. (2.35) and (2.74), the microscopic stress tensorof a Rouse chain
in a specific configuration, neglecting also the kinetic contributions, is equal to

σ̄σσmicr =
1
V

3kBT
b2

N

∑
n=1

(Rn−1−Rn)(Rn−1−Rn)

=
1
V

48kBT
b2

N

∑
n=1

N

∑
p=1

N

∑
q=1

XpXqsin

(

pπn
N+1

)

sin

(

pπ
2(N+1)

)

×

sin

(

qπn
N+1

)

sin

(

qπ
2(N+1)

)

=
1
V

24kBT
b2 N

N

∑
p=1

XpXpsin2
(

pπ
2(N+1)

)

. (2.75)
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Combining this with the expression for the equilibrium Rouse mode amplitudes,
Eq. (2.50), this can be written more concisely as

σ̄σσmicr =
3kBT

V

N

∑
p=1

XpXp
〈

X2
p

〉 . (2.76)

The correlation of thexy-component of the microscopic stress tensor att = 0 with
the one att = t is therefore

σmicr
xy (t)σmicr

xy (0) =

(

3kBT
V

)2 N

∑
p=1

N

∑
q=1

Xpx(t)Xpy(t)Xqx(0)Xqy(0)
〈

X2
p

〉〈

X2
q

〉 . (2.77)

To obtain the shear relaxation modulus, according to Eq. (2.72), the ensemble
average must be taken over all possible configurations att = 0. Now, since the
Rouse modes are Gaussian variables, all the ensemble averages of products of an
odd number ofXp’s are zero and the ensemble averages of products of an even
number ofXp’s can be written as a sum of products of averages of only twoXp’s.
For the even term in Eq. (2.77) we find:

〈

Xpx(t)Xpy(t)Xqx(0)Xqy(0)
〉

=
〈

Xpx(t)Xpy(t)
〉〈

Xqx(0)Xqy(0)
〉

+
〈

Xpx(t)Xqy(0)
〉〈

Xpy(t)Xqx(0)
〉

+
〈

Xpx(t)Xqx(0)
〉〈

Xpy(t)Xqy(0)
〉

.(2.78)

The first four ensemble averages equal zero because, for a Rouse chain in equi-
librium, there is no correlation between different cartesian components. The last
two ensemble averages are nonzero only whenp = q, since the Rouse modes are
mutually orthogonal. Using the fact that all carthesian components are equivalent,
and Eq. (2.47), the shear relaxation modulus (excluding thesolvent contribution)
of a Rouse chain can be expressed as

G(t) =
kBT
V

N

∑
p=1

[

〈Xk(t) ·Xk(0)〉
〈

X2
k

〉

]2

=
ckBT
N+1

N

∑
p=1

exp(−2t/τp) , (2.79)

wherec = N/V is the number density of beads.
In concentrated polymer systems and melts, the stress is dominated by the

polymer contribution. The shear relaxation modulus calculated above predicts a
viscosity, at constant monomer concentrationc and segmental frictionζ, propor-
tional toN:

η =

∫ ∞

0
dtG(t)≈ ckBT

N+1
τ1

2

N

∑
p=1

1
p2

≈ ckBT
N+1

τ1

2
π2

6
=

cζb2

36
(N+1). (2.80)
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This has been confirmed for concentrated polymers with low molecular weight.3

Concentrated polymers of high molecular weight give different results, stressing
the importance of entanglements. We will deal with this in Chapter 4.

In dilute polymer solutions, we do not neglect the solvent contribution to the
stress. The shear relaxation modulus Eq. (2.79) must be augmented by a very
fast decaying term, the integral of which is the solvent viscosityηs, leading to the
following expression for the intrinsic viscosity:

[η] ≡ lim
ρ→0

η−ηs

ρηs
≈ NAv

M
1
ηs

ζb2

36
(N+1)2. (2.81)

Here,ρ = cM/(NAv(N+1)) is the polymer concentration;M is the mol mass of
the polymer, andNAv is Avogadro’s number. Eq. (2.81) is at variance with exper-
imental results for dilute polymers, signifying the importance of hydrodynamic
interactions. These will be included in the next chapter.

Problems

2-1. Why is it obvious that the expression for the end-to-end vector R, Eq. (2.52),
should only contain Rouse modes of odd mode numberp?
2-2. Show that the shear relaxation modulusG(t) of a Rouse chain at short times
decays liket−1/2 and is given by

G(t) =
ckBT
N+1

√

πτ1

8t
(τN ≪ t ≪ τ1).

3A somewhat strongerN dependence is often observed because the density and, more impor-
tant, the segmental friction coefficient increase with increasingN.
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Appendix A: Friction on a slowly moving sphere

We will calculate the fluid flow field around a moving sphere andthe resulting
friction. To formulate the basic equations for the fluid we utilize the conservation
of mass and momentum. The conservation of mass is expressed by the continuity
equation

Dρ
Dt

= −ρ∇∇∇ ·v, (A.1)

and the conservation of momentum by the Navier-Stokes equation

ρ
D
Dt

v = ∇∇∇ · S̄. (A.2)

Hereρ(r , t) is the fluid density,v(r , t) the fluid velocity, D/Dt ≡ v ·∇∇∇+∂/∂t the
total derivative, and̄S is the stress tensor.

We now have to specify the nature of the stress tensorS̄. For a viscous
fluid, friction occurs when the distance between two neighbouring fluid elements
changes, i.e. they move relative to each other. Most simple fluids can be described
by a stress tensor which consists of a part which is independent of the velocity,
and a part which depends linearly on the derivatives∂vα/∂rβ, i.e., where the fric-
tion force is proportional to theinstantaneousrelative velocity of the two fluid
elements.4 The most general form of the stress tensor for such a fluid is

Sαβ = ηs

{

∂vα
∂rβ

+
∂vβ

∂rα

}

−
{

P+

(

2
3

ηs−κ
)

∇∇∇ ·v
}

δαβ, (A.3)

whereηs is the shear viscosity,κ the bulk viscosity, which is the resistance of the
fluid against compression, andP the pressure.

Many flow fields of interest can be described assuming that thefluid is incom-
pressible, i.e. that the density along the flow is constant. In that case∇∇∇ · v = 0,
as follows from Eq. (A.1). Assuming moreover that the velocities are small, and
that the second order non-linear termv ·∇∇∇v may be neglected, we obtain Stokes

4The calculations in this Appendix assume that the solvent isan isotropic, unstructured fluid,
with a characteristic stress relaxation time which is much smaller than the time scale of any flow
experiment. The stress response of such a so-called Newtonian fluid appears to beinstantaneous.
Newtonian fluids usually consist of small and roughly spherical molecules, e.g., water and light
oils. Non-Newtonian fluids, on the other hand, usually consist of large or elongated molecules.
Often they are structured, either spontaneously or under the influence of flow. Their characteristic
stress relaxation time is experimentally accessible. As a consequence, the stress between two non-
Newtonian fluid elements generally depends on thehistoryof relative velocities, and contains an
elastic part. Examples are polymers and self-assembling surfactants.
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equation for incompressible flow

ρ
∂v
∂t

= ηs∇2v−∇∇∇P (A.4)

∇∇∇ ·v = 0. (A.5)

Now consider a sphere of radiusa moving with velocityvS in a quiescent liq-
uid. Assume that the velocity field is stationary. Referringall coordinates and
velocities to a frame which moves with velocityvS relative to the fluid transforms
the problem into one of a resting sphere in a fluid which, at large distances from
the sphere, moves with constant velocityv0 ≡ −vS. The problem is best consid-
ered in spherical coordinates (see Fig. 2.5),5 v(r) = vr êr + vθêθ + vφêφ, so that
θ = 0 in the flow direction. By symmetry the azimuthal component of the fluid
velocity is equal to zero,vφ = 0. The fluid flow at infinity gives the boundary
conditions

vr = v0cosθ
vθ = −v0sinθ

}

for r → ∞. (A.6)

Moreover, we will assume that the fluid is at rest on the surface of the sphere (stick
boundary conditions):

vr = vθ = 0 for r = a. (A.7)

5In spherical coordinates the gradient, Laplacian and divergence are given by

∇∇∇ f = êr
∂
∂r

f +
1
r

êθ
∂

∂θ
f +

1
r sinθ

êφ
∂

∂φ
f

∇2 f =
1
r2

∂
∂r

(

r2 ∂
∂r

f

)

+
1

r2sinθ
∂

∂θ

(

sinθ
∂

∂θ
f

)

+
1

r2sin2 θ
∂2

∂φ2 f

∇∇∇ ·v =
1
r2

∂
∂r

(

r2vr
)

+
1

r sinθ
∂

∂θ
(sinθvθ)+

1
r sinθ

∂
∂φ

vφ.
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It can easily be verified that the solution of Eqs. (A.4) - (A.5) is

vr = v0cosθ
(

1− 3a
2r

+
a3

2r3

)

(A.8)

vθ = −v0sinθ
(

1− 3a
4r

− a3

4r3

)

(A.9)

p− p0 = −3
2

ηsv0a
r2 cosθ. (A.10)

We shall now use this flow field to calculate the friction forceexerted by the fluid
on the sphere. The stress on the surface of the sphere resultsin the following force
per unit area:

f = S̄· êr = êrSrr + êθSθr = −êr p|(r=a) + êθηs
∂vθ
∂r

∣

∣

∣

∣

(r=a)

=

(

−p0 +
3ηsv0

2a
cosθ

)

êr −
3ηsv0

2a
sinθêθ. (A.11)

Integrating over the whole surface of the sphere, only the component in the flow
direction survives:

F =

∫

dΩ a2
[(

−p0 +
3ηsv0

2a
cosθ

)

cosθ+
3ηsv0

2a
sin2 θ

]

= 6πηsav0. (A.12)

Transforming back to the frame in which the sphere is moving with velocity
vS = −v0 through a quiescent liquid, we find for the fluid flow field

v(r) = vS
3a
4r

(

1+
a2

3r2

)

+ êr (êr ·vS)
3a
4r

(

1− a2

r2

)

, (A.13)

and the friction on the sphere

F = −ζvS = −6πηsavS. (A.14)

F is known as the Stokes friction.
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Appendix B: Smoluchowski and Langevin equations

The Smoluchowski equation describes the time evolution of the probability den-
sity Ψ(r , r0; t) to find a particle at a particular positionr at a particular timet,
given it was atr0 at t = 0. It is assumed that at every instant of time the particle
is in thermal equilibrium with respect to its velocity, i.e., the particle velocity is
strongly damped on the Smoluchowski timescale. A flux will exist, given by

J(r , r0, t) = −D∇∇∇Ψ(r , r0; t)− 1
ζ

Ψ(r , r0; t)∇∇∇Φ(r). (B.1)

The first term in Eq. (B.1) is the flux due to the diffusive motion of the parti-
cle; D is the diffusion coefficient, occurring in

〈

(r(t)− r0)
2
〉

= 6Dt. The second
term is the flux in the “downhill” gradient direction of the external potentialΦ(r),
damped by the friction coefficientζ. At equilibrium, the flux must be zero and the
distribution must be equal to the Boltzmann distribution

Ψeq(r) = Cexp[−βΦ(r)] , (B.2)

whereβ = 1/kBT andC a normalization constant. Using this in Eq. (B.1) while
settingJ(r , t) = 0, leads to the Einstein equation (2.13). In general, we assume
that no particles are generated or destroyed, so

∂
∂t

Ψ(r , r0; t) = −∇∇∇ ·J(r , r0, t). (B.3)

Combining Eq. (B.1) with the above equation of particle conservation we arrive
at the Smoluchowski equation

∂
∂t

Ψ(r , r0; t) = ∇∇∇ ·
[

1
ζ

Ψ(r , r0; t)∇∇∇Φ(r)
]

+∇∇∇ · [D∇∇∇Ψ(r , r0; t)] (B.4)

lim
t→0

Ψ(r , r0; t) = δ(r − r0). (B.5)

The Smoluchowski equation describes how particle distribution functions change
in time and is fundamental to the non-equilibrium statistical mechanics of over-
damped particles such as colloids and polymers.

Sometimes it is more advantageous to have explicit equations of motion for the
particles instead of distribution functions. Below we shall show that the Langevin
equations which lead to the above Smoluchowski equation are:

dr
dt

= −1
ζ

∇∇∇Φ+∇∇∇D+ f (B.6)

〈f(t)〉 = 0 (B.7)
〈

f(t)f(t ′)
〉

= 2DĪδ(t − t ′). (B.8)
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whereĪ denotes the 3-dimensional unit matrix Iαβ = δαβ.
The proof starts with the Chapman-Kolmogorov equation, which in our case

reads

Ψ(r , r0; t +∆t) =
∫

dr ′ Ψ(r , r ′;∆t)Ψ(r ′, r0; t). (B.9)

This equation simply states that the probability of finding aparticle at positionr
at timet +∆t, given it was atr0 at t = 0, is equal to the probability of finding that
particle at positionr ′ at timet, given it was at positionr0 at timet = 0, multiplied
by the probability that it moved fromr ′ to r in the last interval∆t, integrated over
all possibilities forr ′ (we assumeΨ is properly normalized). In the following
we assume that we are always interested inaverages

∫

dr F(r)Ψ(r , r0; t) of some
functionF(r). According to Eq. (B.9) this average att +∆t reads

∫

dr F(r)Ψ(r , r0; t +∆t) =

∫

dr
∫

dr ′ F(r)Ψ(r , r ′;∆t)Ψ(r ′, r0; t). (B.10)

We shall now perform the integral with respect tor on the right hand side. Because
Ψ(r , r ′;∆t) differs from zero only whenr is in the neighbourhood ofr ′, we expand
F(r) aroundr ′,

F(r) = F(r ′)+∑
α

(rα− r ′α)
∂F(r ′)

∂r ′α
+

1
2 ∑

α,β
(rα− r ′α)(rβ− r ′β)

∂2F(r ′)
∂r ′α∂r ′β

(B.11)

whereα andβ run from 1 to 3. Introducing this into Eq. (B.10) we get
∫

dr F(r)Ψ(r , r0; t +∆t) =

∫

dr ′
{

∫

dr Ψ(r , r ′;∆t)

}

Ψ(r ′, r0; t)F(r ′)+

∑
α

∫

dr ′
{

∫

dr (rα− r ′α)Ψ(r , r ′;∆t)

}

Ψ(r ′, r0; t)
∂F(r ′)

∂r ′α
+

1
2 ∑

α,β

∫

dr ′
{

∫

dr (rα − r ′α)(rβ− r ′β)Ψ(r , r ′;∆t)

}

Ψ(r ′, r0; t)
∂2F(r ′)
∂r ′α∂r ′β

.

(B.12)

Now we evaluate the terms between brackets:
∫

dr Ψ(r , r ′;∆t) = 1 (B.13)
∫

dr (rα − r ′α)Ψ(r , r ′;∆t) = −1
ζ

∂Φ
∂r ′α

∆t +
∂D
∂r ′α

∆t (B.14)
∫

dr (rα− r ′α)(rβ− r ′β)Ψ(r , r ′;∆t) = 2Dδαβ∆t, (B.15)

33



2. THE ROUSE MODEL

which hold true up to first order in∆t. The first equation is obvious. The last two
easily follow from the Langevin equations (B.6) - (B.8). Introducing this into Eq.
(B.12), dividing by∆t and taking the limit∆t → 0, we get

∫

dr F(r)
∂
∂t

Ψ(r , r0; t) =

∑
α

∫

dr ′
{[

−1
ζ

∂Φ
∂r ′α

+
∂D
∂r ′α

]

∂F(r ′)
∂r ′α

+D
∂2F(r ′)

∂r ′2α

}

Ψ(r ′, r0; t) (B.16)

Next we change the integration variabler ′ into r and perform some partial inte-
grations. Making use of lim|r|→∞ Ψ(r , r0; t) = 0 and∇2(DΨ) = ∇∇∇ · (Ψ∇∇∇D)+∇∇∇ ·
(D∇∇∇Ψ), we finally obtain

∫

dr F(r)
∂
∂t

Ψ(r , r0; t)

= ∑
α

∫

dr F(r)
∂

∂rα

[

1
ζ

Ψ(r , r0; t)
∂Φ
∂rα

]

+

∑
α

∫

dr F(r)
{

∂
∂rα

[

−Ψ(r , r0; t)
∂D
∂rα

]

+
∂2

∂r2
α

[DΨ(r , r0; t)]

}

=
∫

dr F(r)
{

∇∇∇ ·
[

1
ζ

Ψ(r , r0; t)∇∇∇Φ(r)
]

+∇∇∇ · [D∇∇∇Ψ(r , r0; t)]

}

. (B.17)

Because this has to hold true for all possibleF(r) we conclude that the Smolu-
chowski equation (B.4) follows from the Langevin equations(B.6) - (B.8).
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