
Chapter 3

The Zimm model

3.1 Hydrodynamic interactions in a Gaussian chain

In the previous chapter we have focused on the Rouse chain, which gives a good
description of the dynamics of unentangledconcentratedpolymer solutions and
melts. We will now add hydrodynamic interactions between the beads of a Gaus-
sian chain. This so-called Zimm chain, gives a good description of the dynamics
of unentangleddilutepolymer solutions.

The equations describing hydrodynamic interactions between beads, up to
lowest order in the bead separations, are given by

vi = −
N

∑
j=0

µ̄µµi j ·F j (3.1)

µ̄µµii =
1

6πηsa
Ī , µ̄µµi j =

1
8πηsRi j

(

Ī + R̂i j R̂i j
)

. (3.2)

Herevi is the velocity of beadi, F j the force exerted by the fluid on beadj, ηs the
solvent viscosity,a the radius of a bead, and̂Ri j = Ri j /Ri j , whereRi j = Ri −R j

is the vector from the position of beadj to the position of beadi. A derivation can
be found in Appendix A of this chapter.

In Eq. (3.1), the mobility tensors̄µµµ relate the bead velocities to the hydro-
dynamic forces acting on the beads. Of course there are also conservative forces
−∇∇∇kΦ acting on the beads because they are connected by springs. Onthe Smolu-
chowski time scale, we assume that the conservative forces make the beads move
with constant velocitiesvk. This amounts to saying that the forces−∇∇∇kΦ are ex-
actly balanced by the hydrodynamic forces acting on the beads k. In Appendix
B we describe the Smoluchowski equation for the beads in a Zimm chain. The
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3. THE ZIMM MODEL

Langevin equations corresponding to this Smoluchowski equation are

dR j

dt
= −∑

k

µ̄µµjk ·∇∇∇kΦ+kBT ∑
k

∇∇∇k · µ̄µµjk + f j (3.3)

〈

f j(t)
〉

= 0 (3.4)
〈

f j(t)fk(t
′)
〉

= 2kBTµ̄µµjkδ(t − t ′). (3.5)

The reader can easily check that these reduce to the equations of motion of the
Rouse chain when hydrodynamic interactions are neglected.

The particular form of the mobility tensor Eq. (3.2) (the Oseen tensor) has the
fortunate property

∑
k

∇∇∇k · µ̄µµjk = 0, (3.6)

which greatly simplifies Eq. (3.3).

3.2 Normal modes and Zimm relaxation times

If we introduce the mobility tensors Eq. (3.2) into the Langevin equations (3.3)
- (3.5), we are left with a completely intractable set of equations. One way out
of this is by noting that in equilibrium, on average, the mobility tensor will be
proportional to the unit tensor. A simple calculation yields

〈

µ̄µµjk

〉

eq
=

1
8πηs

〈

1
Rjk

〉

eq

(

Ī +
〈

R̂ jkR̂ jk
〉

eq

)

=
1

6πηs

〈

1
Rjk

〉

eq
Ī

=
1

6πηsb

(

6
π | j −k|

)
1
2

Ī (3.7)

The next step is to write down the equations of motion of the Rouse modes, using
Eqs. (2.35) and (2.37):

dXp

dt
= −

N

∑
q=1

µpq
3kBT

b2 4sin2
(

qπ
2(N+1)

)

Xq+Fp (3.8)

〈

Fp(t)
〉

= 0 (3.9)
〈

Fp(t)Fq(t
′)
〉

= kBT
µpq

N+1
Īδ(t− t ′), (3.10)
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3. THE ZIMM MODEL

where

µpq=
2

N+1

N

∑
j=0

N

∑
k=0

1
6πηsb

(

6
π | j −k|

)
1
2

cos

[

pπ
N+1

( j +
1
2
)

]

cos

[

qπ
N+1

(k+
1
2
)

]

.

(3.11)

Eq. (3.8) is still not tractable. It turns out however (see Appendix C for a proof)
that for largeN approximately

µpq =

(

N+1
3π3p

)
1
2 1

ηsb
δpq. (3.12)

Introducing this result in Eq. (3.8), we see that the Rouse modes, just like with
the Rouse chain, constitute a set of decoupled coordinates of the Zimm chain:

dXp

dt
= − 1

τp
Xp+Fp (3.13)

〈

Fp(t)
〉

= 0 (3.14)
〈

Fp(t)Fq(t
′)
〉

= kBT
µpp

N+1
Īδpqδ(t− t ′), (3.15)

where the first term on the right hand side of Eq. (3.13) equalszero whenp = 0,
and otherwise, forp≪ N,

τp ≈
3πηsb3

kBT

(

N+1
3πp

)
3
2

. (3.16)

Eqs. (3.13) - (3.15) lead to the same exponential decay of thenormal mode auto-
correlations as in the case of the Rouse chain,

〈

Xp(t) ·Xp(0)
〉

=
〈

X2
p

〉

exp(−t/τp) , (3.17)

but with a different distribution of relaxation timesτp. Notably, the relaxation

time of the slowest mode,p = 1, scales asN
3
2 instead ofN2. The amplitudes of

the normal modes, however, are the same as in the case of the Rouse chain,

〈

X2
p

〉

≈ (N+1)b2

2π2

1
p2 . (3.18)

This is because both the Rouse and Zimm chains are based on thesame static
model (the Gaussian chain), and only differ in the details ofthe friction, i.e. they
only differ in their kinetics.
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3. THE ZIMM MODEL

3.3 Dynamic properties of a Zimm chain

The diffusion coefficient of (the centre-of-mass of) a Zimm chain can easily be
calculated from Eqs. (3.13) - (3.15). The result is

DG =
kBT

2
µ00

N+1
=

kBT
6πηsb

√

6
π

1
(N+1)2

N

∑
j=0

N

∑
k=0

1

| j −k|
1
2

≈ kBT
6πηsb

√

6
π

1
N2

∫ N

0
d j

∫ N

0
dk

1

| j −k|
1
2

=
8
3

kBT
6πηsb

√

6
πN

. (3.19)

The diffusion coefficient now scales withN−1/2, in agreement with experiments
on dilute polymer solutions.

The similarities between the Zimm chain and the Rouse chain enable us to
quickly calculate various other dynamic properties. For example, the time corre-
lation function of the end-to-end vector is given by Eq. (2.53), but now with the
relaxation timesτp given by Eq. (3.16). Similarly, the segmental motion can be
found from Eq. (2.55), and the shear relaxation modulus (excluding the solvent
contribution) from Eq. (2.79). Hence, for dilute polymer solutions, the Zimm
model predicts an intrinsic viscosity given by

[η] =
η−ηs

ρηs
=

NAvkBT
Mηs

N

∑
p=1

τp

2
=

NAv

M
12π

[

(N+1)b2

12π

]

3
2 N

∑
p=1

1

p
3
2

, (3.20)

whereρ is the polymer concentration andM is the mol mass of the polymer. The
intrinsic viscosity scales withN1/2 (remember thatM ∝ N), again in agreement
with experiments on dilute polymer solutions.

Problems

3-1. Proof the last step in Eq. (3.7) [Hint: the Zimm chain is a Gaussian chain].
3-2. Check Eq. (3.18) explicitly from Eqs. (3.12) and (3.16) and by noting that

0 =
d
dt

〈

Xp(t) ·Xp(t)
〉

= − 2
τp

〈

Xp(t) ·Xp(t)
〉

+2
〈

Fp(t) ·Xp(t)
〉

in equilibrium, where the last term is equal to

2
∫ t

0
dτ e−(t−τ)/τp

〈

Fp(t) ·Fp(τ)
〉

=

∫ ∞

−∞
dτ e−|t−τ|/τp

〈

Fp(t) ·Fp(τ)
〉

.

3-3. Proof the first step in Eq. (3.19). [Hint: remember that the centre-of-mass is
given byX0].
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3. THE ZIMM MODEL

Appendix A: Derivation of hydrodynamic interactions
in a suspension of spheres

In Appendix A of chapter 2 we calculated the flow field in the solvent around a
singleslowly moving sphere. When more than one sphere is present inthe system,
this flow field will be felt by the other spheres. As a result these spheres experience
a force which is said to result from hydrodynamic interactions with the original
sphere.

We will assume that at each time the fluid flow field can be treated as a steady
state flow field. This is true for very slow flows, where changesin positions and
velocities of the spheres take place over much larger time scales than the time it
takes for the fluid flow field to react to such changes. The hydrodynamic problem
then is to find a flow field satisfying the stationary Stokes equations,

ηs∇2v = ∇∇∇P (A.1)

∇∇∇ ·v = 0, (A.2)

together with the boundary conditions

v(Ri +a) = vi ∀i, (A.3)

whereRi is the position vector andvi is the velocity vector of thei’th sphere, and
a is any vector of lengtha. If the spheres are very far apart we may approximately
consider any one of them to be alone in the fluid. The flow field isthen just the
sum of all flow fields emanating from the different spheres

v(r) = ∑
i

v(0)
i (r −Ri), (A.4)

where, according to Eq. (A.13),

v(0)
i (r −Ri) = vi

3a
4|r −Ri |

[

1+
a2

3(r −Ri)2

]

+(r −Ri)((r −Ri) ·vi)
3a

4|r −Ri |3
[

1− a2

(r −Ri)2

]

. (A.5)

We shall now calculate the correction to this flow field, whichis of lowest order
in the sphere separation.

We shall first discuss the situation for only two spheres in the fluid. In the
neighbourhood of sphere one the velocity field may be writtenas

v(r) = v(0)
1 (r −R1)+

3a
4|r −R2|

[

v2+
(r −R2)

|r −R2|
(r −R2)

|r −R2|
·v2

]

, (A.6)
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3. THE ZIMM MODEL

where we have approximatedv(0)
2 (r −R2) to terms of ordera/ |r −R2|. On the

surface of sphere one we approximate this further by

v(R1+a) = v(0)
1 (a)+

3a
4R21

(

v2 + R̂21R̂21 ·v2
)

, (A.7)

whereR̂21 = (R2 −R1)/ |R2−R1|. Becausev(0)
1 (a) = v1, we notice that this

result is not consistent with the boundary conditionv(R1 + a) = v1. In order to
satisfy this boundary condition we subtract from our results so far, a solution of
Eqs. (A.1) and (A.2) which goes to zero at infinity, and which on the surface
of sphere one corrects for the second term in Eq. (A.7). The flow field in the
neighbourhood of sphere one then reads

v(r) = vcorr
1

3a
4|r −R1|

[

1+
a2

3(r −R1)2

]

+(r −R1)((r −R1) ·vcorr
1 )

3a

4|r −R1|3
[

1− a2

(r −R1)2

]

+
3a

4R21

(

v2+ R̂21R̂21 ·v2
)

(A.8)

vcorr
1 = v1−

3a
4R21

(

v2+ R̂21R̂21 ·v2
)

. (A.9)

The flow field in the neighbourhood of sphere two is treated similarly.
We notice that the correction that we have applied to the flow field in order to

satisfy the boundary conditions at the surface of sphere oneis of ordera/R21. Its
strength in the neighbourhood of sphere two is then of order(a/R21)

2, and need
therefore not be taken into account when the flow field is adapted to the boundary
conditions at sphere two.

The flow field around sphere one is now given by Eqs. (A.8) and (A.9). The
last term in Eq. (A.8) does not contribute to the stress tensor (the gradient of a
constant field is zero). The force exerted by the fluid on sphere one then equals
−6πηsavcorr

1 . A similar result holds for sphere two. In full we have

F1 = −6πηsav1+6πηsa
3a

4R21

(

Ī + R̂21R̂21
)

·v2 (A.10)

F2 = −6πηsav2+6πηsa
3a

4R21

(

Ī + R̂21R̂21
)

·v1, (A.11)

whereĪ is the three-dimensional unit tensor. Inverting these equations, retaining
only terms up to ordera/R21, we get

v1 = − 1
6πηsa

F1−
1

8πηsR21

(

Ī + R̂21R̂21
)

·F2 (A.12)

v2 = − 1
6πηsa

F2−
1

8πηsR21

(

Ī + R̂21R̂21
)

·F1 (A.13)
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3. THE ZIMM MODEL

When more than two spheres are present in the fluid, corrections resulting
from n-body interactions (n≥ 3) are of order(a/Ri j )

2 or higher and need not be
taken into account. The above treatment therefore generalizes to

Fi = −
N

∑
j=0

ζ̄ζζi j ·v j (A.14)

vi = −
N

∑
j=0

µ̄µµi j ·F j , (A.15)

where

ζ̄ζζii = 6πηsaĪ , ζ̄ζζi j = −6πηsa
3a

4Ri j

(

Ī + R̂i j R̂i j
)

(A.16)

µ̄µµii =
1

6πηsa
Ī , µ̄µµi j =

1
8πηsRi j

(

Ī + R̂i j R̂i j
)

. (A.17)

µ̄µµi j is generally called the mobility tensor. The specific form Eq. (A.17) is known
as the Oseen tensor.

Appendix B: Smoluchowski equation for the Zimm
chain

For sake of completeness, we will describe the Smoluchowskiequation for the
beads in a Zimm chain. The equation is similar to, but a generalized version of,
the Smoluchowski equation for a single bead treated in Appendix B of chapter 2.

Let Ψ(R0, . . . ,RN; t) be the probability density of finding beads 0, . . . ,N near
R0, . . . ,RN at timet. The equation of particle conservation can be written as

∂Ψ
∂t

= −
N

∑
j=0

∇∇∇ j ·J j , (B.1)

whereJ j is the flux of beadsj. This flux may be written as

J j = −∑
k

D̄ jk ·∇∇∇kΨ−∑
k

µ̄µµjk · (∇∇∇kΦ)Ψ. (B.2)

The first term in Eq. (B.2) is the flux due to the random displacements of all beads,
which results in a flux along the negative gradient of the probability density. The
second term results from the forces−∇∇∇kΦ felt by all the beads. On the Smolu-
chowski time scale, these forces make the beads move with constant velocitiesvk,
i.e., the forces−∇∇∇kΦ are exactly balanced by the hydrodynamic forces acting on
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3. THE ZIMM MODEL

the beadsk. Introducing these forces into Eq. (A.15), we find the systematic part
of the velocity of beadj:

v j = −∑
k

µ̄µµjk · (∇∇∇kΦ) . (B.3)

Multiplying this byΨ, we obtain the systematic part of the flux of particlej.
At equilibrium, each fluxJ j must be zero and the distribution must be equal to

the Boltzmann distributionΨeq = Cexp[−βΦ]. Using this in Eq. (B.2) it follows
that

D̄ jk = kBTµ̄µµjk, (B.4)

which is a generalization of the Einstein equation.
Combining Eqs. (B.1), (B.2), and (B.4) we find the Smoluchowski equation

for the beads in a Zimm chain:

∂Ψ
∂t

= ∑
j
∑
k

∇∇∇ j · µ̄µµjk · (∇∇∇kΦ+kBT∇∇∇k lnΨ)Ψ. (B.5)

Using techniques similar to those used in Appendix B of chapter 2, it can be shown
that the Langevin Eqs. (3.3) - (3.5) are equivalent to the above Smoluchowski
equation.

Appendix C: Derivation of Eq. (3.12)

In order to derive Eq. (3.12) we write

µpq =
2

N+1
1

6πηsb

√

6
π

N

∑
j=0

cos

[

pπ
N+1

( j +
1
2
)

]

×

j

∑
k= j−N

cos

[

qπ
N+1

( j −k+
1
2
)

]

1
√

|k|

=
2

N+1
1

6πηsb

√

6
π

N

∑
j=0

cos

[

pπ
N+1

( j +
1
2
)

]

cos

[

qπ
N+1

( j +
1
2
)

]

×

j

∑
k= j−N

cos

(

qπk
N+1

)

1
√

|k|

+
2

N+1
1

6πηsb

√

6
π

N

∑
j=0

cos

[

pπ
N+1

( j +
1
2
)

]

sin

[

qπ
N+1

( j +
1
2
)

]

×

j

∑
k= j−N

sin

(

qπk
N+1

)

1
√

|k|
. (C.1)
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3. THE ZIMM MODEL

Figure 3.1: Contour for integration in
the complex plane, Eq. (C.4). Part I is
a line along the real axis fromx = 0 to
x = R, part II is a semicirclez= Reiφ,
whereφ ∈ ]0,π/4], and part III is the
diagonal linez = (1+ i)x, wherex ∈
]0,R/

√
2].

R

I

IIIII

We now approximate

j

∑
k= j−N

cos

(

qπk
N+1

)

1
√

|k|
≈

∫ ∞

−∞
dk cos

(

qπk
N+1

)

1
√

|k|

= 4
∫ ∞

0
dx cos

(

qπx2

N+1

)

=

√

2(N+1)

q
(C.2)

j

∑
k= j−N

sin

(

qπk
N+1

)

1
√

|k|
≈

∫ ∞

−∞
dk sin

(

qπk
N+1

)

1
√

|k|
= 0. (C.3)

The result of Eq. (C.3) is obvious because the integrand is anodd function ofk.
The last equality in Eq. (C.2) can be found by considering thecomplex function
f (z) = exp(iaz2) for any positive real numbera on the contour given in Fig. 3.1.
Becausef (z) is analytic (without singularities) on all points on and within the
contour, the contour integral off (z) must be zero. We now write

0 =
∮

dzeiaz2 =
∫

(I)
dzeiaz2 +

∫

(II)
dz eiaz2 +

∫

(III )
dzeiaz2

=

∫ R

0
dx eiax2

+

∫ π/4

0
dφ iReiφ+iaR2e2iφ

+

∫ 0

R/
√

2
dx (1+ i)eia[(1+i)x]2

=
∫ R

0
dx eiax2

+
∫ π/4

0
dφ iReiφ+iaR2cos2φ−aR2 sin2φ − (1+ i)

∫ R/
√

2

0
dx e−2ax2

(C.4)

Taking the limitR→ ∞ the second term vanishes, after which the real part of the
equation yields

∫ ∞

0
dx cos(ax2) =

∫ ∞

0
dx e−2ax2

=

√

π
8a

. (C.5)

Introducing Eqs. (C.2) and (C.3) into Eq. (C.1) one finds Eq. (3.12). As a
technical detail we note that in principle diagonal terms inEq. (3.11) should have

43



3. THE ZIMM MODEL

been treated separately, which is clear from Eq. (A.17). Since the contribution of
all other terms is proportional toN1/2, however, we omit the diagonal terms.
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Chapter 4

The tube model

4.1 Entanglements in dense polymer systems

In the Rouse model we have assumed that interactions betweendifferent chains
can be treated through some effective friction coefficient.As we have seen, this
model applies well to melts of short polymer chains. In the Zimm model we have
assumed that interactions between different chains can be ignored altogether, and
only intrachain hydrodynamic interactions need to be taken into account. This
model applies well to dilute polymer systems.

We will now treat the case of long polymer chains at high concentration or
in the melt state. Studies of the mechanical properties of such systems reveal a
nontrivial molecular weight dependence of the viscosity and rubber-like elastic
behavior on time scales which increase with chain length. The observed behavior
is rather universal, independent of temperature or molecular species (as long as the
polymer is linear and flexible), which indicates that the phenomena are governed
by the general nature of polymers. This general nature is, ofcourse, the fact
that the chains are intertwined and can not penetrate through each other: they
are “entangled” (see Fig. 4.1). These topological interactions seriously affect the
dynamical properties since they impose constraints on the motion of the polymers.

Figure 4.1: A simplified picture of
polymer chains at high density. The
chains are intertwined and cannot
penetrate through each other.
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d

new

old

ti
m

e

Figure 4.2: Representation of a poly-
mer in a tube. The tube is due to sur-
rounding chains, i.e. entanglements,
so that the polymer can only reptate
along the tube.

4.2 The tube model

In the tube model, introduced by De Gennes and further refinedby Doi and Ed-
wards, the complicated topological interactions are simplified to an effective tube
surrounding each polymer chain. In order to move over large distances, the chain
has to leave the tube by means of longitudinal motions. This concept of a tube
clearly has only a statistical (mean field) meaning. The tubecan change by two
mechanisms. First by means of the motion of the central chainitself, by which
the chain leaves parts of its original tube, and generates new parts. Secondly, the
tube will fluctuate because of motions of the chains which build up the tube. It is
generally believed that tube fluctuations of the second kindare unimportant for ex-
tremely long chains. For the case of medium long chains, subsequent corrections
can be made to account for fluctuating tubes.

Let us now look at the mechanisms which allow the polymer chain to move
along the tube axis, which is also called the primitive chain.

The chain of interest fluctuates around the primitive chain.By some fluctua-
tion it may store some excess mass in part of the chain, see Fig. 4.2. This mass
may diffuse along the primitive chain and finally leave the tube. The chain thus
creates a new piece of tube and at the same time destroys part of the tube at the
other side. This kind of motion is calledreptation. Whether the tube picture is
indeed correct for concentrated polymer solutions or meltsstill remains a matter
for debate, but many experimental and simulation results suggest that reptation is
the dominant mechanism for the dynamics of a chain in the highly entangled state.

It is clear from the above picture that the reptative motion will determine the
long time motion of the chain. The main concept of the model isthe primitive
chain. The details of the polymer itself are to a high extent irrelevant. We may
therefore choose a convenient polymer as we wish. Our polymer will again be
a Gaussian chain. Its motion will be governed by the Langevinequations at the
Smoluchowski time scale. Our basic chain therefore is a Rouse chain.
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4. THE TUBE MODEL

4.3 Definition of the model

The tube model consists of two parts. First we have the basic chain, and secondly
we have the tube and its motion. So:

• Basic chain
Rouse chain with parametersN, b andζ.

• Primitive chain

1. The primitive chain has contour lengthL, which is assumed to be
constant. The position along the primitive chain will be indicated by
the continuous variables∈ [0,L]. The configurations of the primitive
chain are assumed to be Gaussian; by this we mean that

〈

(

R(s)−R(s′)
)2

〉

= d
∣

∣s−s′
∣

∣ , (4.1)

whered is a new parameter having the dimensions of length. It is the
step length of the primitive chain, or the tube diameter.

2. The primitive chain can move back and forth only along itself with
diffusion coefficient

DG =
kBT

(N+1)ζ
, (4.2)

i.e., with the Rouse diffusion coefficient, because the motion of the
primitive chain corresponds to the overall translation of the Rouse
chain along the tube.

The Gaussian character of the distribution of primitive chain conformations is
consistent with the reptation picture, in which the chain continuously creates new
pieces of tube, which may be chosen in random directions withstep lengthd.

Apparently we have introduced two new parameters, the contour lengthL and
the step lengthd. Only one of them is independent, however, because they are
related by the end-to-end distance of the chain,

〈

R2
〉

= Nb2 = dL, where the first
equality stems from the fact that we are dealing with a Rouse chain, and the second
equality follows from Eq. (4.1).

4.4 Segmental motion

We shall now demonstrate that according to our model the meanquadratic dis-
placement of a typical monomer behaves like in Fig. (4.3). This behaviour has
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Figure 4.3: Logarithmic plot of the seg-
mental mean square displacement, in
case of the reptation model (solid line)
and the Rouse model (dashed line).

been qualitatively verified by computer simulations. Of course the final regime
should be simple diffusive motion. The important prediction is the dependence of
the diffusion constant onN.

In Fig. (4.3),τR is the Rouse time which is equal toτ1 in Eq. (2.46). The
meaning ofτe andτd will become clear in the remaining part of this section. We
shall now treat the different regimes in Fig. (4.3) one afteranother.

i) t ≤ τe

At short times a Rouse bead does not know about any tube constraints. According
to Eq. (2.57) then

gseg(t) =

(

12kTb2

πζ

)

1
2

t
1
2 . (4.3)

Once the segment has moved a distance equal to the tube diameter d, it will feel
the constraints of the tube, and a new regime will set in. The time at which this
happens is given by the entanglement time

τe =
πζ

12kBTb2d4. (4.4)

Notice that this is independent ofN.

ii) τe < t ≤ τR

On the time and distance scale we are looking now, the bead performs random
motions, still constrained by the fact that the monomer is a part of a chain because
t ≤ τR. Orthogonally to the primitive chain these motions do not lead to any
displacement, because of the constraints implied by the tube. Only along the
primitive chain the bead may diffuse free of any other constraint than the one
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implied by the fact that it belongs to a chain. The diffusion therefore is given by
the 1-dimensional analog of Eq. (2.57) or Eq. (4.3),

〈

(sn(t)−sn(0))2〉 =
1
3

(

12kTb2

πζ

)

1
2

t
1
2 , (4.5)

wheresn(t) is the position of beadn along the primitive chain at timet. It is
assumed here that for timest ≤ τR the chain as a whole does not move, i.e. that
the primitive chain does not change. Using Eq. (4.1) then

gseg(t) = d

(

4kBTb2

3πζ

)

1
4

t
1
4 , (4.6)

where we have assumed〈|sn(t)−sn(0)|〉 ≈
〈

(sn(t)−sn(0))2
〉

1
2 .

iii) τR < t ≤ τd

The bead still moves along the tube diameter. Now howevert > τR, which means
that we should use the 1-dimensional analog of Eq. (2.56):

〈(sn(t)−sn(0))2〉 = 2DGt. (4.7)

Again assuming that the tube does not change appreciably during timet, we get

gseg(t) = d

[

2kBT
(N+1)ζ

]
1
2

t
1
2 . (4.8)

From our treatment it is clear thatτd is the time it takes for the chain to create
a tube which is uncorrelated to the old one, or the time it takes for the chain to
get disentangled from its old surroundings. We will calculate the disentanglement
timeτd in the next paragraph.

iv) τd < t

This is the regime in which reptation dominates. On this timeand space scale we
may attribute to every bead a definite value ofs. We then want to calculate

ϕ(s, t) = 〈(R(s, t)−R(s,0))2〉, (4.9)

whereR(s, t) is the position of beads at timet. In order to calculateϕ(s, t) it is
useful to introduce

ϕ(s,s′; t) =
〈

(R(s, t)−R(s′,0))2〉 , (4.10)
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Figure 4.4: Motion of the
primitive chain along its
contour.

i.e. the mean square distance between beads at timet and beads′ at time zero.
According to Fig. (4.4), for alls, excepts= 0 ands= L, we have

ϕ(s,s′; t +∆t) =
〈

ϕ(s+∆ξ,s′; t)
〉

, (4.11)

where∆ξ according to the definition of the primitive chain in section4.3 is a
stochastic variable. The average on the right hand side has to be taken over the
distribution of∆ξ. Expanding the right hand side of Eq. (4.11) we get

〈

ϕ(s+∆ξ,s′; t)
〉

≈ ϕ(s,s′; t)+ 〈∆ξ〉 ∂
∂s

ϕ(s,s′; t)+
1
2

〈

(∆ξ)2〉 ∂2

∂s2ϕ(s,s′; t)

= ϕ(s,s′; t)+DG∆t
∂2

∂s2ϕ(s,s′; t). (4.12)

Introducing this into Eq. (4.11) and taking the limit for∆t going to zero, we get

∂
∂t

ϕ(s,s′; t) = DG
∂2

∂s2ϕ(s,s′; t). (4.13)

In order to complete our description of reptation we have to find the boundary
conditions going with this diffusion equation. We will demonstrate that these are
given by

ϕ(s,s′; t)|t=0 = d|s−s′| (4.14)
∂
∂s

ϕ(s,s′; t)|s=L = d (4.15)

∂
∂s

ϕ(s,s′; t)|s=0 = −d. (4.16)
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The first of these is obvious. The second follows from

∂
∂s

ϕ(s,s′; t)|s=L = 2

〈

∂R(s, t)
∂s

|s=L · (R(L, t)−R(s′,0))

〉

= 2

〈

∂R(s, t)
∂s

|s=L · (R(L, t)−R(s′, t))
〉

+2

〈

∂R(s, t)
∂s

|s=L · (R(s′, t)−R(s′,0))

〉

= 2

〈

∂R(s, t)
∂s

|s=L · (R(L, t)−R(s′, t))

〉

=
∂
∂s

〈

(R(s, t)−R(s′, t))2〉 |s=L =
∂
∂s

d|s−s′|s=L. (4.17)

Condition Eq. (4.16) follows from a similar reasoning.
We now solve Eqs. (4.13)–(4.16), obtaining

ϕ(s,s′; t) = |s−s′|d+2DG
d
L

t

+4
Ld
π2

∞

∑
p=1

1
p2(1−e−t p2/τd)cos

( pπs
L

)

cos

(

pπs′

L

)

, (4.18)

where

τd =
L2

π2DG
=

1
π2

b4

d2

ζ
kBT

N3. (4.19)

We shall not derive this here. The reader may check that Eq. (4.18) indeed is the
solution to Eq. (4.13) satisfying (4.14)-(4.16).

Notice thatτd becomes much larger thanτR for largeN, see Eq. (2.46). If the
number of steps in the primitive chain is defined byZ = Nb2/d2 = L/d, then the
ratio betweenτd andτR is 3Z.

Taking the limits→ s′ in Eq. (4.18) we get

〈

(R(s, t)−R(s,0))2〉 = 2DG
d
L

t +4
Ld
π2

∞

∑
p=1

cos2
( pπs

L

)

(1−e−t p2/τd)
1
p2 . (4.20)

For t > τd we get diffusive behaviour with diffusion constant

D =
1
3

DG
d
L

=
1
3

d2

b2

kBT
ζ

1
N2 . (4.21)

Notice that this is proportional toN−2, whereas the diffusion coefficient of the
Rouse model was proportional toN−1. The reptation result,N−2, is confirmed
by experiments which measured the diffusion coefficients ofpolymer melts as a
function of their molecular weight.

51



4. THE TUBE MODEL
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Figure 4.5: Schematic logaritmic
plot of the time behaviour of the
shear relaxation modulusG(t) as
measured in a concentated poly-
mer solution or melt;N1 < N2.

4.5 Viscoelastic behaviour

Experimentally the shear relaxation modulusG(t) of a concentrated polymer so-
lution or melt turns out to be like in Fig. 4.5. We distinguishtwo regimes.

i) t < τe

At short times the chain behaves like a 3-dimensional Rouse chain. Using Eq. (2.79)
we find

G(t) =
ckBT
N+1

N

∑
p=1

exp(−2t/τp)

≈ ckBT
N+1

∫ ∞

0
dp exp

(

−2p2t/τR
)

=
ckBT
N+1

√

πτR

8t
, (4.22)

which decays ast−
1
2 . At t = τe this possibility to relax ends. The only way for the

chain to relax any further is by breaking out of the tube.

ii) t > τe

The stress that remains in the system is caused by the fact that the chains are
trapped in twisted tubes. By means of reptation the chain canbreak out of its
tube. The newly generated tube contains no stress. So, it is plausible to assume
that the stress at any timet is proportional to the fraction of the original tube that
is still part of the tube at timet. We’ll call this fractionΨ(t). So,

G(t) = G0
NΨ(t) . (4.23)

On the reptation time scale,τe is practically zero, so we can setΨ(τe) = Ψ(0)= 1.
To make a smooth transition from the Rouse regime to the reptation regime, we
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match Eq. (4.22) with Eq. (4.23) att = τe, yielding

G0
N =

ckBT
N+1

√

πτR

8τe
=

ckBT√
2π

b2

d2 . (4.24)

Notice that the plateau valueG0
N is independent of the chain lengthN. The numer-

ical prefactor of 1/
√

2π in Eq. (4.24) is not rigorous because in reptation theory
the timeτe, at which the Rouse-like modulus is supposed to be instantaneously
replaced by the reptation-like modulus, is not defined in a rigorous manner. A
more precise calculation based on stress relaxation after alarge step strain gives a
numerical prefactor of 4/5, i.e.

G0
N =

4
5

ckBTb2

d2 =
4
5

ckBT
Ne

. (4.25)

In the last equation we have defined the entanglement lengthNe. In most exper-
iments the entanglement length (or more precisely the entanglement molecular
weight) is estimated from the value of the plateau modulus, using Eq. (4.25).

We will now calculateΨ(t). Take a look at

〈

u
(

s′, t
)

·u(s,0)
〉

≡
〈

∂R(s′, t)
∂s′

· ∂R(s,0)

∂s

〉

. (4.26)

The vectoru(s′, t) is the tangent to the primitive chain, at segments′ at time t.
Because the primitive chain has been parametrized with the contour length, we
have from Eq. (4.1)〈u·u〉 = 〈∆R ·∆R〉/(∆s)2 = d/∆s ; the non-existence of the
limit of △sgoing to zero is a peculiarity of a Gaussian process. Using Eqs. (4.10)
and (4.18) we calculate

〈

u
(

s′, t
)

·u(s,0)
〉

= −1
2

∂2

∂s∂s′
ϕ

(

s′,s; t
)

= dδ
(

s−s′
)

− 2d
L

∞

∑
p=1

(1−e−t p2/τd)sin
( pπs

L

)

sin

(

pπs′

L

)

=
2d
L

∞

∑
p=1

e−t p2/τd sin
( pπs

L

)

sin

(

pπs′

L

)

, (4.27)

where we have used

2
L

∞

∑
p=1

sin
( pπs

L

)

sin

(

pπs′

L

)

= δ
(

s−s′
)

. (4.28)

Using this last equation, we also find
〈

u
(

s′,0
)

·u(s,0)
〉

= dδ
(

s−s′
)

. (4.29)

53



4. THE TUBE MODEL

0 L

s
L/2

0

1

½

Y
(

,
)

s 
t

t/ = 1.0td

0.5

0.1

0.01

Figure 4.6: Development ofΨ(s, t)
in time.

This equation states that there is no correlation between the tangents to the primi-
tive chain at a segments, and at another segments′. If we consider〈u(s′, t) ·u(s,0)〉
as a function ofs′, at timet, we see that the original delta function has broadened
and lowered. However, the tangentu(s′, t) can only be correlated tou(s,0) by
means of diffusion of segments′, during the time interval[0, t], to the place where
s was at timet = 0, and still lies in the original tube. So,1

d 〈u(s′, t) ·u(s,0)〉 is
the probability density that, at timet, segments′ lies within the original tube at
the place wheres was initially. Integrating overs′ gives us the probabilityΨ(s, t)
that at timet anysegment lies within the original tube at the place where segment
s was initially. In other words, the chance that the original tube segments is still
up-to-date, is

Ψ(s, t) =
1
d

∫ L

0
ds′

〈

u
(

s′, t
)

·u(s,0)
〉

=
4
π

∞

∑′

p=1

1
p

sin
( pπs

L

)

e−t p2/τd , (4.30)

where the prime at the summation sign indicates that only terms with oddp should
occur in the sum. We have plotted this in Fig. 4.6. The fraction of the original
tube that is still intact at timet, is therefore given by

Ψ(t) =
1
L

∫ L

0
ds Ψ(s, t)

=
8
π2

∞

∑′

p=1

1
p2e−t p2/τd. (4.31)

This formula shows whyτd is the time needed by the chain to reptate out if its
tube; fort > τd, Ψ(t) is falling to zero quickly.

In conclusion we have found results that are in good agreement with Fig. 4.5.
We see an initial drop proportional tot−1/2; after that a plateau valueG0

N indepen-
dent ofN; and finally a maximum relaxation timeτd proportional toN3.
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Finally, we are able to calculate the viscosity of a concentrated polymer solu-
tion or melt of reptating chains. Using Eq. 2.70 we find

η =
∫ ∞

0
dτ G(τ) = G0

N
8
π2

∞

∑′

p=1

1
p2

∫ ∞

0
dτ e−τp2/τd

= G0
N

8
π2τd

∞

∑′

p=1

1
p4 =

π2

12
G0

Nτd. (4.32)

SinceG0
N is independent ofN, the viscosity, likeτd, is proportional toN3. This

is close to the experimentally observed scalingη ∝ N3.4. The small discrepancy
may be removed by introducing other relaxation modes in the tube model, which
is beyond the scope of these lecture notes.

Problems

4-1. In Eq. (4.22) we have shown that, at short times, the shear relaxation modulus
G(t) decays ast−

1
2 . We know, however, thatG(t) must be finite att = 0. Explain

how the stress relaxes at extremely short times. Draw this inFig. 4.5.
4-2. In the tube model we have assumed that the primitive chain hasa fixed
contour lengthL. In reality, the contour length of a primitive chain can fluctuate
in time. Calculations of a Rouse chain constrained in a straight tube of lengthL
show that the average contour length fluctuation is given by

∆L̄ =
〈

∆L2〉
1
2 ≈

(

Nb2

3

)

1
2

.

Show that therelativefluctuation of the contour length decreases with increasing
chain length, i.e. that the fixed contour length assumption is justified for extremely
long chains.
4-3. Can you guess what the effect of contour length fluctuations will be on
the disentanglement times of entangled, but not extremely long, polymer chains?
[Hint: See the first equality in Eq. (4.19)]. What will be the consequence for the
viscosity of such polymer chains compared to the tube model prediction?
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