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ABSTRACT: I have calculated the dependence of the electrostatic persistence length on the Debye
screening length for semiflexible, strongly and weakly charged flexible polyelectrolytes. For semiflexible
and strongly charged flexible polyelectrolytes the electrostatic part of the chain persistence length is
proportional to the Debye screening length. This result is obtained by evaluating the bending angle
fluctuations and in the framework of the Gaussian variational principle. A polyelectrolyte chain with
linear dependence of the electrostatic persistence length on the Debye screening length has a lower free
energy than that of a chain with the Odijk-Skolnick-Fixman electrostatic persistence length. In the
case of weakly charged chains the electrostatic persistence length has a sublinear dependence on the
Debye screening length which is due to inverse logarithmic dependence of the linear charge density of
the chain of electrostatic blobs on the Debye screening length. This result was derived by applying a
coarse-graining procedure to an initially flexible polyelectrolyte chain by representing it as a chain of
electrostatic blobs. The blob size and chain persistence length are then found self-consistently by
minimizing the chain’s variational free energy.

1. Introduction
The problem of the electrostatic persistence length in

solutions of charged polymers is one of the most
controversial subjects of polymer physics. The formula-
tion of the problem is relatively simple since it considers
conformational properties of a single polyelectrolyte
chain with ionizable groups interacting via the screened
Debye-Huckel potential. This is a crude model of dilute
polyelectrolyte solutions in the presence of added
salt where electrostatic interactions are exponentially
screened by salt ions at the length scales larger than
the Debye screening length κ-1. However, despite the
exponential decay of the strength of the electrostatic
interactions, the covalent bonding of ionic groups into
polymer chains seems to be able to extend their range
beyond the Debye screening length leading to strong
orientational correlations between chain segments.
Thus, a bond’s orientational memory could propagate
far beyond the Debye screening length κ-1 inducing
extra chain stiffening.

The concept of the electrostatic persistence length was
introduced by Odijk1 and by Skolnick and Fixman2

(OSF), who considered a weak perturbation in confor-
mations of a stiff polyelectrolyte chain near a rodlike
conformation. They have showed that the persistence
length of a polyelectrolyte chain with the fraction of
charged monomers f in a salt solution in which the
charged monomers on polymer backbone interact with
each other through the screened Debye-Huckel poten-
tial with the Debye screening length κ-1 can be written
as a sum of the bare persistence length l0 and the
electrostatic persistence length lp

OSF

where b is the bond length and lB is the Bjerrum length
(lB ) e2/εkBT is the distance at which the Coulomb
interaction between two elementary charges e in a

dielectric medium with the dielectric constant ε is equal
to the thermal energy kBT). This equation shows that
chain flexibility could be adjusted by varying the salt
concentration.

The OSF approximation for the screened Debye-
Huckel interactions between charged monomers was
removed by Le Bret3 and Fixman.4 In these papers the
Poisson-Boltzmann equation describing distribution of
the electrostatic potential was solved numerically for a
curved, cylindrical polyelectrolyte of a finite thickness.
For conducting boundary conditions these numerical
calculations have shown perfect agreement with the
OSF result. However, in the case of a toroidal polyion
with a nonconducting surface the results for the elec-
trostatic persistence length deviate from the OSF
expression (eq 1) at high ionic strengths.3 The results
of numerical calculations by Le Bret3 for nonconducting
polyions are in better agreement with the experimental
data than the original OSF expression (eq 1) but still
overestimate the electrostatic persistence length at low
salt concentrations in comparison with experimental
data by Hagerman5 while underestimate it at higher
ionic strengths as compared to the data of Kam et al.6

Odijk7 used eq 1 to describe solution properties of
flexible strongly charged polyelectrolytes with the elec-
trostatic interaction parameter uf 2 ≈ 1, where u is the
ratio of the Bjerrum length lB to the bond size b, u )
lB/b. In this case the electrostatic contribution to the
chain persistence length lp

OSF is the main factor con-
trolling a chain’s bending rigidity. For these polyelec-
trolytes the additional chain stiffening could occur at
distances substantially larger than the Debye screening
length κ-1. The Odijk result was extended to flexible
weakly charged polyelectrolytes with uf 2 , 1 by
Khokhlov and Khachaturian8 by considering electro-
static blobs of size De with g monomers9,10 as new
effective monomers

lp ≈ l0 + lp
OSF ≈ l0 +

lBf 2

4(κb)2
(1)

lp
KK ≈ 1

κ
2De

(2)
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These unexpected results for the quadratic depen-
dence of the electrostatic persistence length on the
Debye screening length had a significant impact on the
development of the theory of polyelectrolytes11 over the
past three decades and influenced our understanding
of dynamics and thermodynamics of polyelectrolyte
solutions, adsorption of charged polymers, complexation
of DNA with proteins, and colloid stabilization by
polyelectrolytes.

Since 1977 there have been a series of attempts to
derive an expression for the electrostatic persistence
length, lp

OSF, using different methods.12-20 Schmidt17

used a variation of the Flory approach to calculate the
chain size and persistence length. In this approach the
electrostatic energy of the chain was evaluated using
the wormlike chain distribution function for the average
mean-square distance between monomers. The numer-
ical minimization shows a weaker than κ-2 dependence
without a pure scaling regime. At high salt concentra-
tions the electrostatic persistence length seems to
approach asymptotically a κ-1 dependence. Barrat and
Joanny18 applied the variational approach with a trial
function describing a chain under tension. They found
a κ-1 dependence for the electrostatic persistence length.
In a series of papers,19,20 Ha and Thirumalai applied
the Edwards and Singh21 variational principle which
utilizes the optimization of the error in the chain mean-
square end-to-end distance between trial chain and
actual polymer chain. The results of the minimization
procedure depend on the value of the parameter uf 2.
For weakly charged chains with uf 2 , 1 the electro-
static persistence length is proportional to κ-2. However,
in the limit uf 2 ∼ 1 the κ-1 dependence of the electro-
static persistence length was recovered. Manghi and
Netz12 have recently argued that Ha and Thirumalai’s
result19,20 for the κ-1 dependence of the electrostatic
persistence length is a result of incorrect elimination
of divergence in the chain’s entropy term. The κ-1

dependence of the electrostatic persistence length was
also derived by Muthukumar et al.22,23 Netz and Or-
land15 and Manghi and Netz12 have applied a Gaussian
variational principle considering electrostatic persis-
tence length as an adjustable parameter. This approach
leads to κ-2 dependence of the electrostatic persistence
length, and for weakly charged chains Khokhlov-
Khachaturian’s result8 is reproduced. Computer simula-
tions of weakly charged polyelectrolyte chains24-30 and
some experiments31-37 indicate that the exponent for
the dependence of the electrostatic persistence length
on the Debye screening length is closer to 1 rather than
to 2. The recent computer simulations38-40 have shown
that, in order to distinguish between two expressions
for the electrostatic persistence length, one has to go to
very long chains (N > 512). For shorter chains there is
no significant difference between quadratic and linear
dependence of the electrostatic persistence length on
salt concentration. For longer chains there is deviation
from the linear dependence but not sufficient to rule it
out completely. However, the analysis of the data was
done by assuming two pure asymptotic regimes for
electrostatic persistence length lp

OSF ∼ κ-2 and κ-1

neglecting logarithmic corrections. The origin of loga-
rithmic correction to the chain size dependence on the
Debye screening length appears because of chain stretch-
ing at length scales smaller than the Debye screening
length and due to the effective excluded volume between
sections of the chain of length lp interacting through the

screened Coulomb potential. The logarithmic corrections
could be important for longer chains with N ) 1024,
2048, and 4096 repeat units. The importance of loga-
rithmic corrections due to local chain stretching was
recently confirmed by molecular simulations of dilute
salt-free polyelectrolyte solutions by Liao et al.41 These
simulations have established that the chain size grows
faster than linear with chain degree of polymerization
N.

In this paper I will show that the origin of the
additional chain rigidity appearing in the OSF and KK
expressions for the electrostatic persistence length is
circular conformation used for evaluation of the chain
bending energy. This deformation mode overestimates
electrostatic energy penalty due to chain bending. There
are other, softer, deformation modes with lower elec-
trostatic energies that lead to linear dependence of the
electrostatic persistence length on the Debye screening
length. This solution corresponds to the lower chain free
energy than that obtained for a polyelectrolyte chain
with the OSF persistence length. The rest of the paper
is organized as follows. In section 2, I will overview
discrete model of a semiflexible chain. Section 3 presents
critique of the OSF derivation of the electrostatic
persistence length and alternative derivation based on
the average electrostatic energy fluctuations. This method
leads to linear dependence of the electrostatic persis-
tence length on the Debye screening length. In section
4, I apply the Gaussian variational principle to the case
of weakly charged flexible polyelectrolytes. In this case
the local stretching of a polyelectrolyte chain leads to
an additional logarithmic correction to the electrostatic
persistence length weakening its linear increase with
the Debye screening length.

2. A Brief Overview of the Discrete Model of
Semiflexible Chain

Consider a semiflexible chain with degree of polym-
erization N and with bond length b. Chain conforma-
tions are described by a set of bond angles θi and torsion
angles φi (see Figure 1). The potential energy of a
semiflexible chain in a given conformation with a set of
torsion and bond angles {φi,θi} is given by

where ε̃bend is a bending energy in terms of the thermal
energy kBT. A bending potential (eq 3) imposes restric-
tions on the accessible values of the bond angles θi but
allows torsion angles to assume any value from the
interval -π e φi e π. The partition function of a polymer
chain with this bending potential is written as follows:

Figure 1. Conformation of a chain with the arbitrary
distribution of torsion angles φi and bending angles θi.

Ubend
0 ({θi}) ) kBTε̃bend ∑

i)1

N-1

(1 - cos(θi)) (3)
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where Z1 is the single bond partition function.

For a polymer chain with the bending potential given
by eq 3 the orientational memory between two vectors
bi and bi+n is passed along the chain of bonds connecting
bonds bi and bi+n. Because of free rotations of the torsion
angle φi+n the component of the vector bi+n normal to
the vector bi+n-1 averages out to zero. The only correla-
tion between the bond vectors being transmitted is the
component of the bond vector bi+n along the vector
bi+n-1. It is equal to b〈cos(θ)〉. Again vector bi+n-1 passes
correlations down to vector bi+n-2, but again only
projection of the bond vector bi+n-1 onto bi+n-2 survives
due to free rotation of torsion angle φi+n-1. This reduces
correlations between vector bi+n and vector bi+n-2 by the
factor 〈cos(θ)〉2. Thus, the correlations between bond
vectors bi and bi+n are reduced by the factor 〈cos(θ)〉n

due to independent rotation of n torsion angles between
them

where brackets 〈 〉 denote the average over torsion
angles φi and bond angles θi, and the average value of
the cos(θ) is equal to

In the derivation of eq 6 it is assumed that the typical
values of the bond angle θ are small such that cos(θ)
can be approximated by its power series, cos(θ) ≈ 1 -
θ2/2. This assumption is true for large values of the
bending energy ε̃bend (see eq 7). In this approximation
the correlations between bond vectors bi and bi+n decay
exponentially with the number of bonds n between
them. The characteristic length scale of the orientational
correlations is equal to 2/〈θ2〉. The mean-square average
value of the angle θ(n) between any two bond vectors
separated by n bonds along the polymer backbone is
equal to n〈θ2〉 (〈θ(n)2〉 ≈ n〈θ2〉) which is a direct result of
the randomness in the distribution of the torsion angles.
One can say that the bond vectors of a semiflexible
polymer chain perform a random walk in the bond

orientational space with a step length equal to x〈θ2〉.
The mean-square average distance between two mono-

mers of this chain separated by n bonds is

At short distances along the polymer backbone, n〈θ2〉
, 1, the conformation of the chain for small angles θ is
close to rodlike with average mean-square distance

At larger distances along the polymer backbone, n〈θ2〉
. 1, the orientational memory is lost, and the mean-
square distance between two monomers scales linearly
with the number of bonds n between them

At these length scales a chain behaves as an ideal chain
with the persistence length

The persistence length of a chain with the bending
potential energy given by the eq 3 scales linearly with
the reduced bending energy ε̃bend and is proportional to
the bond length b. Thus, in the case of small deforma-
tions, θ , 1, the chain persistence length can be
estimated from the coefficient in front of the θ2 term in
the power series of the chain’s potential energy (eq 3)
with respect to the bond angle θ. In the case of the large
bending energies the discrete chain model reduces to
the wormlike model of a semiflexible chain.

The free energy of the polymer chain as a function of
a bending energy is equal to

It depends logarithmically on the value of the reduced
bending energy ε̃bend or on the ratio of the chain
persistence length l0 to the bond length b. This loga-
rithmic dependence is a result of the constraints im-
posed on the values of the bond angles by the bending
potential eq 3. One can obtain expression 12 by evaluat-
ing the change of the bond orientational entropy due to
its localization within the solid angle πθmax

2. The value
of the bond angle θmax can be estimated from the
condition that the typical energy fluctuations of the
bending energy per bond kBTε̃bendθmax

2 are on the order
of the thermal energy kBT. This leads to the typical
value of the bond angle θmax to be on the order of 1/
xε̃bend. The number of states Ω(θ) available to a bond is
proportional to the solid angle πθmax

2 and is inversely
proportional to the reduced bending energy ε̃bend, Ω(θ)
≈ π/ε̃bend. Using the relation between the number of
states and the bond orientational entropy, Sbond ∝ kB ln
Ω(θ), and multiplying it by the number of bonds per
chain N - 1, one arrives at eq 12.

In the next sections I will use this discrete model of
a semiflexible chain to obtain an expression for the
electrostatic persistence length.

3. Electrostatic Persistence Length of
Semiflexible and Strongly Charged Flexible
Polyelectrolytes

Let us now consider a semiflexible polyelectrolyte
chain with the degree of polymerization N and with the
value of the electrostatic interaction parameter uf 2 e1.
Once again, chain conformations are described by a set
of bond θi and torsion φi angles (see Figure 1). The
potential energy of a semiflexible polyelectrolyte chain

ZSF )

∫∏
i)1

N-1sin (θi) dθi dφi

4π
exp(-

Ubend
0 ({θi})

kBT ) ) Z1
N-1 (4)

Z1 ) 1
2∫0

π
dθ sin(θ) exp(- ε̃bend(1 - cos(θ))) )

exp(- ε̃bend) sinh(ε̃bend)
ε̃bend

(5)

〈(bi‚bi+n)〉 ) b2〈cos(θ(n))〉 ) b2(〈cos(θ)〉)n ≈
b2 exp(-n〈θ2〉/2) (6)

〈cos(θ)〉 ) coth(ε̃bend) - ε̃bend
-1 ≈

ε̃bend.1
1 - ε̃bend

-1 (7)

〈r(n)2〉 ≈ 8b2

〈θ2〉2(exp(-
n〈θ2〉

2 ) +
n〈θ2〉

2
- 1) (8)

〈r(n)2〉 ≈ b2n2 (9)

〈r(n)2〉 ≈ 4b2n
〈θ2〉

≈ 2l0bn (10)

l0 ) 2b
〈θ2〉

≈ bε̃bend (11)

FSF ) -kBT(N - 1) ln(Z1) ≈
ε̃bend.1

kBTN ln(ε̃bend) ≈

kBTN ln(l0

b) (12)
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in a given conformation includes the bending energy
given by eq 3 and the electrostatic energy

where |rij| is the distance between monomers i and j on
the polymer backbone and the Debye screening length
κ-1 depends on the parameters of the system as κ2 )
8πlBcs, where cs is the salt concentration.

The calculation of the chain’s persistence length is
based on the evaluation of the correlation function 〈bi‚
bi+n〉 describing the decay of the orientational memory
between bond vectors bi and bi+n separated by n bonds
along the polymer backbone. The averaging of the
correlation function 〈bi‚bi+n〉 should be done over all
orientations of the bond vectors with corresponding
Boltzmann weights. The exact analytical calculation of
this correlation function for the system with long-range
electrostatic interactions is an impossible task. The
theoretical evaluation of the persistence length of the
polyelectrolyte chain is usually done by one of two
different methods. In the first approach the chain
persistence length is evaluated from the deformation
energy fluctuations in the chain conformation for which
it is easy to obtain the dependence of the deformation
energy on the magnitude of the bond angle θ. In the
second approach, the chain with electrostatic interac-
tions and bending rigidity is mapped into a semiflexible
chain with an effective bending potential energy. The
effective bending energy is then found self-consistently
using either Gaussian or Edwards-Singh variational
methods.

The approach based on the evaluation of the chain
deformation energy was introduced by Odijk1 and by
Skolnick and Fixman2 (OSF). In this method1,2 one
estimates the change of chain electrostatic energy as
its conformation deviates from a straight line. This is
done by bending a polyelectrolyte chain into a circle with
radius Rc ) b/(2 sin(θ/2)) (see Figure 2). In such a
conformation all torsion angles are equal to π, and the
distance between two monomers separated by n bonds
along the polymer backbone is

The difference between the chain electrostatic energy
per monomer in the circular and rodlike conformations
is

Equation 15 is obtained by substituting the expression
for r(n) (eq 14) into the right-hand side of eq 15 and
expanding it into a power series over the bond angle θ.
For a semiflexible polyelectrolyte chain there is an
additional bending energy contribution ∆Ubend(θ) to the
chain’s deformation energy per bond

where l0 is the bare persistence length of a chain
without electrostatic interactions (see eq 11). The total
deformation energy per bond is equal to

In the OSF derivation it was assumed that the persis-
tence length of the semiflexible polyelectrolyte chain is
proportional to the coefficient in front of the θ2 term in
the chain deformation energy per bond eq 17. This leads
to the following expression for the persistence length

In a circular conformation there is a directed walk in
the bond orientational space with the angle θ(n) between
two bond vectors separated by n bonds along the
polymer backbone being equal to θ(n) ≈ nθ. Thus, a
chain makes a turn after np ∝ θ-1 steps instead of np ∝
θ-2 as it is in the case of unrestricted torsion angles (see
section 2). Using the relations np ∝ θ-1 and lp ≈ bnp,
one can show that for the OSF persistence length (eq
18) the change of the electrostatic and bending energy
per persistence length, np∆Ubond(θ), is on the order of
the thermal energy kBT and the optimal value of the
bond (bending) angle θ in a circular conformation is
equal to (l0/b + uf 2/(4κb)2)-1. This shows that the OSF
approach is only dealing with the energy optimization
in a particular conformation and completely ignores the
change in the chain conformational entropy associated
with the additional penalty for the bond alignment on
the length scales smaller than the chain persistence
length.

The circular conformation is only one of many possible
conformations of the chain with the fixed bond angles.
While the values of the bond angles are fixed, the values
of the torsion angles can assume any value from the
interval - π e φi e π (see Figure 1). In fact, the
electrostatic part of the chain deformation energy at
given value of the bond angle θ depends on the particu-

Figure 2. Schematic representation of conformation of poly-
electrolyte chain for calculation of OSF electrostatic persistence
length.

r(n) ) 2Rc sin(nθ/2) )
b sin(nθ/2)

sin(θ/2)
≈

θ,1

bn(1 - n2θ2/24) (14)

∆Uelectr(θ)

kBT
≈

lBf 2∑
n)1

∞ ( exp(-κr(n))

r(n)
-

exp(-κbn)

bn ) ≈
κb,1

uf 2

8κ
2b2

θ2 (15)

∆Ubend(θ) ) kBTε̃bend(1 - cos(θ)) ≈
θ,1

kBTl0θ2/2b (16)

∆Ubond

kBT
≈ l0θ2

2b
+ uf 2θ2

8κ
2b2

(17)

lp ≈ l0 +
lBf 2

4(κb)2
(18)

Uelectr({φi,θi})

kBT
)

lBf 2

2
∑
i*j

N exp(-κ|rij({φi,θi})|)
|rij({φi,θi})|

(13)
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lar set of the torsion angles {φi}. To make it only a
function of the deformation (bond) angle θ, one has to
average electrostatic energy over the torsion angles at
fixed value of the bond angle θ. Let us perform averag-
ing of the electrostatic energy per bond over the
distribution of torsion angles at a given value of the
bond angle θ.

In averaging the electrostatic interactions in eq 19 over
the torsion angles, I use the integral representation for
the screened Coulomb potential.

In the case of unrestricted torsion angles and fixed value
of the bond angle θ the mean-square average distance
〈r(n)2〉φ between two monomers separated by n bonds
along the polymer backbone is given by eq 8 where one
has to substitute 〈θ2〉 by θ2. In this case the distance
between these two monomers is approximated as

Substituting eq 20 into eq 19, evaluating the sum over
n, and extracting the term proportional to θ2, one
obtains the following expression for the difference
between the average electrostatic energy per bond with
a given value of the bond angle θ and that for a
polyelectrolyte chain in a rodlike conformation

By comparing eq 21 and eq 15, one can see that the
circular conformation has stronger dependence of the
electrostatic energy (see eq 15) on the Debye screening
length than the average electrostatic energy (see eq 21),
and for similar bending angles θ it has a larger value
of the electrostatic energy. The weaker dependence of
the average electrostatic energy on the Debye screening
length (see eq 21) indicates that there are other, softer,
deformation modes that have lower electrostatic ener-
gies and provide dominant contributions to the chain
partition function. Thus, by allowing fluctuations of the
torsion angles, one increases the separation between

ionic groups and lows chain electrostatic energy. The
circular conformation used in the OSF approach over-
estimates the electrostatic energy penalty due to chain
deformation.

The average electrostatic energy in eq 21 does not
depend on the values of the torsion angles φi. In this
case one can use the relation between the chain defor-
mation energy per bond and the persistence length lp.
The typical mean-square average bond angle fluctua-
tions 〈θ2〉 correspond to the values of the chain deforma-
tion energy per bond

to be on the order of the thermal energy kBT. Therefore,
the persistence length of semiflexible polyelectrolyte
chain is estimated as

The electrostatic part of the chain persistence length
(the second term on the right-hand side of eq 23a) shows
a linear dependence on the Debye screening length
instead of the quadratic dependence as it is in the OSF
expression. There is very simple interpretation of the
electrostatic contribution to the chain persistence length.
It is proportional to the reduced energy of electrostatic
interactions between two chain segments with length
on the order of the Debye screening length κ-1 carrying
f/(κb) charged monomers and separated by a typical
distance κ-1, ε̃elect ≈ lB(f/(κb))2κ ≈ uf 2/(κb). Thus, both
terms in eq 23a can be rewritten as the bond length b
times the typical energy penalty in terms of thermal
energy kBT for chain bending, lp

WLC ≈ b(ε̃bend + ε̃elect).
The chain persistence length is controlled by the elec-
trostatic repulsion between charged monomers if the
Debye screening length κ-1 is larger than l0/uf 2.

This expression is also applicable to the case of strongly
charged flexible polyelectrolytes with uf 2 ≈ 1 and ε̃bend
) 0.

It is interesting to point out that one can derive eq
23 for the chain persistence length by optimizing
entropic and energetic penalties for the chain bending.
By imposing the angular constraint, one changes the
number of available states in the bond’s orientational
space. For a chain with the bare persistence length b
the entropy change due to imposed angular constraint
depends logarithmically on the value of angle θ (see
discussion after eq 12)

Thus, the free energy change per bond of a chain with
electrostatic and bending interactions is equal to

Minimization of this expression with respect to angle θ
leads to the typical values of the bending angle θ to be
on the order of (l0/2 + 0.16uf 2/κ)-1/2 and to eq 23 for the

〈Uelectr(θ)〉φ

kBT
) lBf 2∑

n)1

∞ 〈exp(-κr(n))

r(n) 〉
φ

≈

lBf 2∑
n)1

∞ exp(-κx〈r(n)〉φ
2)

x〈r(n)〉φ
2

(19)

〈exp(-κr)
r 〉 ≈ 2

π1/2∫0

∞
dy 〈exp(-y2r2 - κ

2

4y2)〉 ≈

2
π1/2∫0

∞
dy exp(-y2〈r2〉 - κ

2

4y2)

x〈r(n)2〉φ ≈
nθ2,1

bn(1 - nθ2

12 ) (20)

〈∆Uelectr(θ)〉φ

kBT
≈

lBf 2∑
n)1

∞ (exp(-κx〈r(n)〉φ
2)

x〈r(n)〉φ
2

-
exp(-κbn)

bn ) ≈
κb,1

0.16
lBf 2θ2

κb2
(21)

〈∆Ubond〉φ
kBT

≈ l0θ2

2b
+ 0.16uf 2θ2

κb
(22)

lp
WLC ) 2b

〈θ2〉
≈ l0 + 0.32uf 2

κ
-1 (23a)

lp
WLC ≈ 0.32uf 2

κ
-1 (23b)

Sbond(θ) ≈ kB ln(θ2) (24)

F(θ)
kBT

≈ -ln(θ2) +
l0θ2

2b
+ 0.16uf 2θ2

κb
+ const (25)
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chain persistence length. The optimization of the bond
conformational entropy and bending energy is a basis
of the Gaussian variational principle for calculation of
the bending rigidity of a polyelectrolyte chain. The
details of this method are described in Appendix A.

To choose between linear and quadratic dependences
of the chain’s persistence length on the Debye screening
length, one has to establish which one corresponds to
lower chain free energy. The energetic contribution to
the chain free energy for a polyelectrolyte chain with
OSF persistence length is on the order of the thermal
energy kBT per each persistence length (see discussion
after eq 18) while for the chain model with unrestricted
torsion angles (WLC) it is on the order of kBT per each
bond (see eq 22). The conformational part of the chain
free energy is associated with the penalty for the bond
alignment on the length scales smaller than the chain
persistence length and depends logarithmically on the
chain persistence length (see eq 12). Combining together
conformational and energetic contributions, one can
write the total free energy of a semiflexible polyelec-
trolyte chain as follows

where one has to use eqs 18 and 23 for the persistence
length lp and eqs 17 and 22 for ∆Ubond. In both cases
the chain free energy is dominated by its conformational
part (logarithmic term on the right-hand side of eq 26).
By comparing expressions in eq 26, one can see that the
polyelectrolyte chain in a circular configuration used in
the OSF calculation of the electrostatic persistence
length has higher chain free energy due to an additional
factor (κb)-1 in front of the electrostatic part of the
persistence length than that for polyelectrolyte chain
with unrestricted torsion angles (WLC). This should not
be surprising because in the OSF approach one only
optimizes chain deformation energy while for the chain
deformation modes with unrestricted torsion angles the
optimal value of the bond angle corresponds to the
minimum of the free energy per bond. Thus, the bending
of a polyelectrolyte chain will occur in such a way to
optimize both entropic and energetic penalties due to
chain bending leading to linear dependence of the chain
persistence length on the Debye screening length (eq
23). In the next section I will describe bending rigidity
of the weakly charged flexible polyelectrolyte chain.

4. Weakly Charged Flexible Polyelectrolytes
The weakly charged flexible polyelectrolyte chain has

a zero bending energy ε̃bend and the value of the
interaction parameter uf 2 being much smaller than
unity, uf 2 < 1. In this case a polyelectrolyte chain can
be viewed as an array of electrostatic blobs. At the
length scales smaller than the electrostatic blob size De
the electrostatic interactions between charged mono-
mers are too weak to perturb chain conformations while
at the length scales larger than the electrostatic blob
size the electrostatic interactions control chain deforma-
tion.9,10 For a θ-solvent for the uncharged polymer
backbone, the relation between the electrostatic blob
size and the number of original monomers in it is
expected to be De ≈ bg1/2.9,10 These blobs represent new

effective “monomers” (see Figure 3). In salt solutions
when the Debye radius becomes smaller than the chain
size, the middle of the polyelectrolyte chain is under
constant tension created by electrostatic repulsion
between charged monomers. These electrostatic blobs
have the same size. However, the blobs start growing
in size close to the ends of the polyelectrolyte chain
within the distance of the order of the Debye screening
length from both ends of a chain. Below, I will ignore
these weak variations in the number of monomers inside
the electrostatic blob and will assume that all blobs have
the same size. In this approximation the number of
blobs per chain is equal to kg ) N/g.

By representing a weakly charged polyelectrolyte
chain as chain of electrostatic blobs, one separates two
different length scales. At the length scales smaller than
electrostatic blob size the orientational correlations
between bonds decay very fast. However, at the length
scales larger than the electrostatic blob size the contour
of chain of blobs weakly fluctuates allowing description
of these fluctuations in terms of the bending rigidity of
the effective bond vectorssend-to-end vectors of the
electrostatic blobs (see Figure 3). This separation of the
length scales is done by coarse-graining polyelectrolyte
chain and representing it as a chain of electrostatic
blobs. This procedure reduces the integration over the
original monomers in the chain partition function

to integration over the coordinates describing the chain
of electrostatic blobs. The details of this procedure are
given in Appendix B. Here I will only present the final
result for the chain free energy as the function of the
electrostatic blob size De and the variational parameter
λ describing the bending rigidity of the chain of elec-
trostatic blobs.

The optimal values of the electrostatic blob size De and
the variational parameter λ are obtained by minimizing
eq 28 with respect to both of them. Minimization of eq
28 with respect to the parameter λ leads to

F
NkBT

≈ ln(lp/b) +
∆Ubond

kBT
≈

{ln(l0/b + 0.25uf 2/(κb)2) for OSF
ln(l0/b + 0.32uf 2/(κb)) for WLC

(26)

Figure 3. Schematic representation of weakly charged poly-
electrolyte chain as chain of blobs.

Z ) ∫∏
i)1

N sin(θi) dθi dφi

4π
exp(-

Uelect({φi,θi})

kBT ) (27)

F(De,λ)
kBT

≈ kg[32 De
2

b2g
- 3

2
ln(eDe

2

b2g ) + ln(λ) +

0.32
lBf 2g2

De
2
κλ

+
lBf 2g2

De
ln( 1

κDe
)] (28)
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By minimizing eq 28 with respect to electrostatic blob
size De, one obtains

To transform eq 30, I substitute optimal value of the
variational parameter λ from eq 29. All terms in eq 30
are of the same order of magnitude when

The electrostatic blob size De has additional logarithmic
correction in comparison with the expression for the
electrostatic blob size obtained in the framework of the
scaling model.9,10 The smaller blob size is a result of the
electrostatic repulsion between charged monomers within
the Debye screening length leading to stronger chain
stretching. These interactions are ignored in the scaling
model of the polyelectrolyte chain. The electrostatic
persistence length in the case of weakly charged poly-
electrolyte is equal to

It is still proportional to the Debye screening length κ-1

but with a logarithmic correction. This logarithmic
correction is a difference between eq 32 and Barrat-
Joanny result.18 A logarithmic correction becomes sig-
nificant at low salt concentrations and should show
slower than linear increase of the chain stiffness with
decreasing the salt concentration. The explanation of
the weaker than linear dependence of the electrostatic
persistence length on the Debye screening length is very
simple. With decreasing salt concentration, the tension
of the chain increases leading to a decreasing of the
number of monomers in the electrostatic blobs. This
results in lower linear charge density along the polymer
backbone fg/De and weaker electrostatic interactions
between blobs. However, the presented above calcula-
tion of the electrostatic persistence length is only correct
if there is more than one monomer in the electrostatic
blob, g > 1. In the case of g ∼ 1 and De ∼ b the
electrostatic persistence length scales linearly with the
Debye screening length (see eq 23b). The crossover
between these two regimes takes place at

The size of weakly charged polyelectrolyte chain with
persistence length given by eq 32 is equal to

With decreasing salt concentration (increasing of the

Debye screening length) chain becomes stiffer which
leads to increasing of the chain size. The crossover from
wormlike chain regime to salt-free regime occurs when
the chain size Re

WC(κ) becomes comparable with size of
the weakly charged polyelectrolyte chain in a salt-free
regime

This occurs at the value of the Debye screening length

With increasing salt concentration, the wormlike chain
regime continues until the electrostatic repulsion be-
tween remote along polymer backbone persistence seg-
ments start swelling the chain. To take into account the
electrostatic interactions between remote along the
polymer backbone chain segments, I will treat polyelec-
trolyte chain as a chain of NDe/(glp

WC) segments of
thickness κ-1. The excluded volume between segments
is on the order of υ ≈ (lp

WC)2κ-1 and square root of the
mean-square end-to-end distance of the chain with this
excluded volume is estimated as

The weakly charged polyelectrolyte chain begins to swell
when the interaction parameter zint becomes on the
order of unity.

Thus, the weakly charge polyelectrolyte chain exhibits
wormlike chain behavior within the narrow interval of
the Debye screening lengths

Outside of this interval the chain size follows either the
salt-free dependence given by eq 34 or the swollen chain
dependence given by eq 36. Note that for strongly
charged polyelectrolyte chains with uf 2 ≈ 1 this interval
of wormlike chain behavior disappears and with in-
creasing salt concentration chain directly enters the
swollen chain regime as soon as the Debye screening
length becomes comparable with the chain size.

However, in the case of semiflexible polyelectrolytes
discussed in section 3 there is a wide enough interval
of wormlike chain behavior. To show this, let us consider
the case when electrostatic interactions only slightly
perturb the bare persistence length l0, l0 > uf 2κ-1. In
this case the electrostatic excluded volume between
chain’s segments of length l0 is on the order of υ ≈ l0

2κ-1.
The interaction parameter zint for semiflexible polyelec-
trolyte chain is equal to

λ ≈ 0.32
lBf 2g2

De
2
κ

(29)

3De

b2g
- 3

De
- 0.64

lBf 2g2

De
3
κλ

-
lBf 2g2

De
2

ln( 1
κDe

) ≈

3De

b2g
- 5

De
-

lBf 2g2

De
2

ln( 1
κDe

) ≈ 0 (30)

De ≈ bg1/2 and De ≈ b(uf 2)-1/3[ln( 1
κDe

)]-1/3
(31)

lp
WC ) λDe ≈ 0.32

lBf 2g2

Deκ
≈ κ

-1 ln-1((κDe)
-1) (32)

κcr
-1 ≈ b exp(1/uf 2)

Re
WC(κ) ≈ xlp

WCNDe/g ≈
(uf 2)1/6N1/2b(κb)-1/2 ln-1/3( 1

κDe
) (33)

Re ≈ (uf 2)1/3Nb[ln(eN/g)]1/3 (34)

(κSFb)-1 ≈ (uf 2)1/3N ln2/3( 1
κSFDe

) ln2/3(Ng ) (35)

Re
F(κ) ≈ lp

WC( υ
(lp

WC)3)1/5(NDe

glp
WC)3/5

≈

(uf 2)1/5N3/5b(κb)-2/5 (36)

zint ≈ ( υ
(lp

WC)3)(NDe

glp
WC)1/2

≈

(uf 2)1/6N1/2(κb)1/2 ln5/3( 1
κDe) ≈ 1 (37)

(uf 2)1/3N ln10/3( 1
κDe

) e (κb)-1 e

(uf 2)1/3N ln2/3( 1
κDe

) ln2/3(Ng ) (38)
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In the wormlike chain regime the interaction parameter
zint is smaller than unity. This leads to the following
inequality for the Debye screening length

Thus, below this threshold value a semiflexible poly-
electrolyte chain can be viewed as wormlike chain with
the persistence length given by eq 23a.

5. Conclusions
In this paper I have shown that the quadratic

dependence of the electrostatic persistence length of
semiflexible and strongly charged flexible polyelectro-
lytes on the Debye screening length is a specific feature
of the circular deformation mode with bending angles
θi being equal to θ and torsion angles φi ) π utilized in
the OSF derivation. Effectively, the OSF approach
corresponds to evaluation of the electrostatic persistence
length of a 2-D polyelectrolyte, which charged monomers
interact via screened Coulomb potential. In this con-
formation the charges on polymer backbone are in the
closest possible proximity from each other and chain has
the largest possible increase in the electrostatic energy
with increasing the value of the bending angle θ. This
extremely high electrostatic penalty for chain bending
is counterbalanced by small values of the equilibrium
bending angles, resulting in larger than necessary
persistence length. By allowing fluctuations of the
torsion angles φi, the distances between charged mono-
mers can be increased and electrostatic energy penalty
for chain bending can be lowered (see eqs 15 and 21).
This results in shorter persistence length and lower
chain free energy than that of a chain with the OSF
persistence length (see eq 26).

In the case of a weakly charged chain, the electrostatic
persistence length has a sublinear dependence on the
Debye screening length which is due to the variation of
the linear charge density of a chain of electrostatic blobs
with salt concentration. This result was derived by
applying a coarse-graining procedure to initially flexible
polyelectrolyte chain by representing it as a chain of
electrostatic blobs. The blob picture of weakly charged
polyelectrolyte chain is a way to separate two different
length scales at which a chain contour is strongly and
weakly fluctuating. At the distances larger than the
electrostatic blob size the contour of the chain of blobs
is weakly fluctuating. Thus, it can be described in terms
of the effective bending rigidity. The blob size and chain
persistence length are then found self-consistently by
minimizing the chain’s free energy.

This dependence of the electrostatic persistence length
on the Debye screening length is also in disagreement
with quadratic dependence derived in refs 12 and 15.
It is important to point out that the expression in eqs
21 and 28 for the average value of intrachain electro-
static energy per monomer (or per blob in the case of
weakly charged chain) has the same scaling dependence
on the variational parameter λ and the Debye screening
length κ-1 as one derived in ref 12. The difference in
the chain’s variational free energy appeared to be in the
expression for the chain’s orientational entropy. The
discrete model of the polymer chain used in this paper
leads to a logarithmic dependence of the chain confor-

mational free energy on the variational parameter λ
instead of a power law dependence, -kBTλ-1/2, as
advocated in ref 12 (see eq 32 in ref 12 in which one
has to substitute le/ê ) λ). The logarithmic dependence
of the free energy of an ideal semiflexible chain on the
chain’s persistence length is obtained by direct calcula-
tion of chain’s free energy (see eq 12). A discrete model
of a semiflexible polymer chain or discrete chain of blobs
is free from the divergences that appear in the continu-
ous chain models at small length scales. Thus, the
logarithmic dependence of the chain’s free energy on the
persistence length is not a result of short length scales
cutoff but a property of the discrete chain model. The
absence of the logarithmic term in the expression of the
free energy obtained in refs 12 and 15 is due to incorrect
normalization of the functional integrals describing a
polymer chain with effective bending rigidity. Without
correct normalization factor the continuous and discrete
models of an ideal semiflexible chain results in different
expressions for the chain partition function. In fact, the
correct normalization of the functional integral is usu-
ally obtained by matching results for discrete and
continuous models (see for discussion of this subject refs
43 and 44). It is important to remember that a continu-
ous chain model is only an approximation of a discrete
chain model. Furthermore, in the case of semiflexible
polyelectrolyte chain the authors of ref 12 incorrectly
eliminated divergence in the conformational part of the
chain free energy (see eq 39 of ref 12).

Another inconsistency of the results of ref 12 that I
would like to point out here is associated with the
electrostatic energy penalty per electrostatic blob due
to chain bending, ∆Ubend ∝ kBTκDe , kBT, which is
much smaller than the typical energy fluctuations on
the scale of the electrostatic blob. Thus, one should
expect that the fluctuations in the chain tension and
bending on these length scales destroy such energeti-
cally weak chain alignment. Note that the electrostatic
energy penalty per electrostatic blob due to chain
bending obtained in this paper is on the order of the
thermal energy kBT, ∆Ubend ≈ kBT(lBf 2g2/De

2κλ) ≈ kBT
(see eq 29 for equilibrium λ) and chain stiffening occurs
at the length scales larger than the electrostatic blob
size.

The linear dependence of the electrostatic persistence
length is in agreement with the results of variational
calculations that introduce internal chain stiffening by
considering a polyelectrolyte chain as semiflexible poly-
mer with adjustable persistence length. All these meth-
ods based on optimization of conformational and elec-
trostatic contributions to chain’s free energy. It is also
important to point out that the Gaussian and the
Edwards-Singh’s variational principles are utilized in
the PRISM45-48 and field-theoretical49,50 theories of
polyelectrolytes. In these methods a multichain system
is approximated by a system of chains in the effective
medium. In this medium monomers on the polymer
chain interact via the bare interaction potential and self-
consistently determined medium-induced interaction
potential. Thus, the chain persistence length in the
PRISM method is proportional to the screening length
of the effective medium potential.

In this paper I have ignored the effect of counterion
condensation, which is important at high linear charge
densities along the polymer backbone. The crossover to
the counterion condensation regime occurs when the
linear charge number density becomes larger than lB

-1.

zint ≈ ( υ
l0

3)(Nb
l0 )1/2 ≈ N1/2b1/2l0

-3/2
κ

-1 (39)

(κb)-1 e (l0/b)3/2N-1/2 (40)
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For higher charge densities the effective charge on the
chain is reduced to its crossover value. The fraction of
condensed counterions depends on both salt and poly-
mer concentrations, thus leading to an additional con-
centration-dependent factor in the electrostatic persis-
tence length and further weakening the net concentration
dependence of the electrostatic persistence length. I will
address this problem in future publications.
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Appendix A
The variational approach to calculation of the elec-

trostatic persistence length of semiflexible strongly
charged polyelectrolytes utilizes a trial function method
to evaluate a chain partition function

Since electrostatic interactions between monomers lead
to additional stiffening of the polyelectrolyte chain, the
trial function should describe the additional energy
penalty associated with deviation of the chain contour
from the straight line (directional memory effect). To
impose a restriction on the chain bending, I will assume
that combination of bending and electrostatic interac-
tions can be reduced to the effective chain with the
bending rigidity described by the potential energy

where kBTλ is the bending energy and θi is the angle
between bond vectors bi and bi+1 (see Figure 1). For
large λ values the typical θ-angle fluctuations about zero
are small, and cos(θi) can be approximated by its power
series up to quadratic term. In this case eq A2 reduces
to the well-known expression for the bending energy in
the wormlike chain model with mean-square value of
the bending angle 〈θ2〉 equal to 2/λ. The chain partition
function is evaluated as follows

where the brackets 〈 〉bend denote the angular average
with the Boltzmann weights of the chain with the
potential energy given by eq A2 and Zbend(λ) is the
partition function of a chain with bending rigidity

The parameter λ is an adjustable parameter which value
minimizes the difference between the actual electro-

static energy of the chain, the bending energy, and
entropy loss due to chain stiffening. The averaging of
the electrostatic energy is similar to the averaging in
eq 19. The expression for the variational free energy of
semiflexible polyelectrolyte chain is written as

The expression for 〈r(n)2〉bend is identical to eq 8 if one
substitutes 〈θ2〉/2 by λ-1. The expression for the chain
free energy can be simplified in the limit of large values
of the parameter λ (λ . 1)

where the last term describes the electrostatic interac-
tions in the reference rodlike state of the chain which
does not depend on the value of the variational param-
eter λ. There is a very simple interpretation of the first
two terms in the chain free energy (eq A6). The first
term describes an entropic penalty experienced by the
polymer chain due to imposed bending constraints, and
the second one is the excess of the average intrachain
electrostatic interactions of a chain with given bending
rigidity. The optimal value of the parameter λ corre-
sponds to a minimum of the chain free energy. Mini-
mization of the eq A6 with respect to parameter λ leads
to a linear relation between the optimal value of this
parameter and the Debye screening length κ-1.

It is interesting to point out that in the case of neutral
polymer chain with u ) 0 the variational parameter λ
is equal to ε̃bend, and the variational principle reproduces
expression eq 11 for chain persistence length, lp ) bλ ≈
bε̃bend.

Figure 4 shows the result of numerical minimization
of the chain free energy (eq A5) with respect to the
parameter λ at different values of the parameter κ and
ε̃bend ) 0. As one can see, the value of the optimal

Z ) ∫∏
i)1

N sin(θi) dθi dφi

4π
×

exp(-
Uelect({φi,θi}) + Ubend

0 ({θi})

kBT ) (A1)

Ubend({θi})

kBT
) λ∑

i)1

N-1

(1 - cos(θi)) (A2)

Z(κ,λ) ≈ Zbend(λ) ×

exp(-
〈Uelect({φi,θi}) + Ubend

0 ({θi}) - Ubend({θi})〉bend

kBT )
(A3)

Zbend(λ) ) ( exp(-λ) sinh(λ)
λ )N

(A4)

Figure 4. Dependence of the parameter λ corresponding to a
minimum of the chain free energy (eq A.5) on the value of the
Debye screening length for lB ) b, εbend ) 0, and f ) 1.

F(λ)

NkBT
≈ -ln(Zbend(λ)) + (ε̃bend - λ)(λ-1 - coth(λ) +

1) + lBf 2∑
n)1

N (1 -
n

N) exp(-κx〈r(n)2〉bend)

x〈r(n)2〉bend

(A5)

F(λ)
NkBT

∝ ln(λ) + 0.32
lBf 2

κb2λ
+

ε̃bend

λ
+

Uelec
rod

kBT
(A6)

λ ≈ ε̃bend + 0.32uf 2(κb)-1 (A7)
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parameter λ scales linearly with the Debye screening
length κ-1. For these calculations we choose N ) 10 000
to minimize the finite N effect. The persistence length
for this chain model is defined as lp ) λb which leads to

Thus, the Gaussian variational principle gives the same
linear dependence of the electrostatic persistence length
on the Debye screening length as the method based on
evaluation of the bending angle fluctuations discussed
in the previous section (see eqs 23).

Appendix B

Let us introduce a set of radius vectors rm that are
end-to-end vectors connecting sections of the chain with
the original g monomers starting from an end of the
chain (see Figure 3). In these new variables the chain
partition function is written as

where Uelect({rm}) is the electrostatic energy of the chain
written in terms of coordinates of electrostatic blobs. By
performing integration over orientations of the original
bonds, one has

To evaluate the partition function eq B2, I will use a
variational approach. The interaction between blobs
leads to stiffening of the chain at length scales larger
than the blob size. This constraint can be introduced
by imposing an additional energy penalty associated
with deviation of the contour of chain of blobs from the
straight line. I also will assume that each electrostatic
blob has an average size De, 〈|rm|2〉 ) De

2. The potential
energy of a trial chain of electrostatic blobs with size
De and with bending rigidity has the following form

where nm is a unit vector pointing along the direction
of the blob end-to-end vector rm. Using the trial function

eq B3, one can estimate the chain partition function eq
B2 as follows

where the brackets 〈 〉trial denote averaging over all
orientations and amplitude of the vectors rm with
Boltzmann weights of the chain with potential energy
given by eq B3 and Ztrial(λ,De) is the partition function
of the chain of blobs with bending rigidity

The parameters λ and De are adjustable parameters
which values minimize the difference between the
actual energy of the polyelectrolyte chain and the energy
of a chain of electrostatic blobs with bending rigidity.
The variational free energy of a polyelectrolyte chain is
written as follows

where the expression for 〈r(s)2〉trial is identical to eq 13
in which one has to substitute b by 〈rm〉. For the trial
function eq B3 this average 〈rm〉 is equal to (4/x6π)De
≈ 0.92De. Since discussion below is done on the scaling
level, I will ignore this factor and use 〈rm〉 ≈ De. In the
limit when the Debye screening length κ-1 is much

lp
WLC ) bλ ) bε̃bend + 0.32uf 2

κ
-1 (A8)

Z ) ∫∏
m)0

kg-1

drm δ(rm - ∑
k)1

g

bmg+k) ∫∏
i)1

N sin(θi) dθi dφi

4π
×

exp(-
Uelect({rm})

kBT ) (B1)

Z ≈ ( 3

2πb2g
)3kg/2

∫∏
m)0

kg-1

drm ×

exp(- ∑
m)0

kg-1 3rm
2

2b2g
-

Uelect({rm})

kBT ) (B2)

Utrial({rm})

kBT
) λ ∑

m)0

kg-2

(1 - (nm‚nm+1)) +
3

2De
2
∑
m)0

kg-1

rm
2

(B3)

Z ) ( 3

2πb2g
)3kg/2

∫∏
m)0

kg-1

drm exp(- ∑
m)0

kg-1 3rm
2

2b2g
-

Uelect({rm}) + Utrial({rm}) - Utrial({rm})

kBT ) )

( 3

2πb2g
)3kg/2

Ztrial(λ,De)〈exp(- ∑
m)0

kg-1 3rm
2

2b2g
-

Uelect({rm}) - Utrial({rm})

kBT )〉
trial

≈

( 3

2πb2g
)3kg/2

Ztrial(λ,De) exp(-〈 ∑
m)0

kg-1 3rm
2

2b2g
+

Uelect({rm}) - Utrial({rm})

kBT 〉
trial

) (B4)

Ztrial(λ,De) ) ∫∏
m)0

kg-1

drm exp(-
Utrial({rm})

kBT ) )

(2πDe
2

3 )3kg/2(exp(-λ) sinh(λ)

λ )kg-1

(B5)

F(De,λ)

kBT
≈ kg[-ln(Ztrial(λ,De)) +

3

2

De
2

b2g
-

3

2
+

λ(coth(λ) - λ-1 - 1) +
lBf 2g2

De

+

lBf 2g2∑
s)1

kg (1 -
sg

N) exp(-κx〈r(s)2〉trial)

x〈r(s)2〉trial
] (B6)
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larger than the electrostatic blob size De eq B6 can be
simplified
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