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Topological entanglement length in polymer melts and
nanocomposites by a DPD polymer model

Argyrios Karatrantos,a Nigel Clarke,*a Russell J. Compostob and Karen I. Wineyb

We investigate the topological constraints (entanglements) in polymer–nanorod nanocomposites in

comparison to polymer melts using dissipative particle dynamics (DPD) polymer model simulations. The

nanorods have a radius smaller than the polymer radius of gyration and an aspect ratio of 7.5. We

observe an increase in the number of entanglements (50% decrease of Ne with 11% volume fraction of

nanorods dispersed in the polymer matrix) in the nanocomposites as evidenced by larger contour

lengths of the primitive paths. The end-to-end distance is essentially unchanged with the nanorod

volume fraction (0–11%). Interaction between polymers and nanorods affects the dispersion of

nanorods in the nanocomposites.
I Introduction

The dynamics of long polymers is limited by entanglements,
which are topological constraints imposed by the other chains.
These can dramatically change the polymer viscosity, mechan-
ical and tribological properties. The addition of nanoparticles to
a polymer matrix can result in materials with improved elec-
trical, thermal, mechanical and tribological properties. In this
paper we explore how nanoparticles affect rheology by studying
the entanglements in polymer–nanoparticle nanocomposites in
the case when the polymer radius of gyration (Rg,polymer) is larger
than the nanorod radius (rller).1–5

Dissipative particle dynamics (DPD) is a mesoscopic simu-
lation method which has become a robust tool for the study of
so matter, including polymer solutions, melts, blends,
composites, and surfactants. It was rst developed by Hooger-
brugge and Koelman6 and reformulated by Groot and Warren.7

Later Espanol and Warren8 showed that DPD basically consists
of particles interacting with a “so” potential, coupled to a
thermostat. The thermostat is not dependent on the “so”
potential.9 In many DPD simulations, polymer chains behave as
phantom chains,10 due to the naturally so interactions
between particles (monomeric units), so that they can pass
freely through each other and obey Rouse dynamics, over the
full range of polymer lengths.

In polymer nanocomposites, the DPD method has been
applied to various problems, such as: investigating the role of
particle–particle interactions on the viscoelastic behaviour of
the nanocomposites,11,12 computing the morphology (dispersed
versity of Sheffield, Sheffield S3 7RH, UK.

ngineering, University of Pennsylvania,

Chemistry 2013
or aggregated nanoparticles) of polymer carbon nanotubes
nanocomposites13–17 and polymer clay nanocomposites,18

modelling the self assembly of nanoparticles19 in a polymer
matrix or nanorods in binary blends,20,21 and searching the
origins of reinforcement.22 To the best of our knowledge, in all
of the nanocomposite studies by DPD simulation, the polymer
chains behave as phantom chains, thus, quantitative predic-
tions regarding the dynamics, rheological, and mechanical
properties in dense entangled melts cannot be extracted.

In recent DPD polymer melt simulation studies different
polymer models have been developed to prevent polymer chain
crossing, by introducing an additional repulsive interaction
which is based on the distance of closest approach between two
bonds23–28 based on the ideas of Kumar and Larson29 and Pan
and Manke,30 or alternatively by introducing an efficient but
also computationally demanding algorithm (called the “Twen-
tanglement” algorithm) that detects and prevents unphysical
bond crossings31,32 by adding a rigid core around monomers,33

or nally using adaptive timestepping.34 It is still an open
question whether the above DPD polymer models can predict,
in addition to reptational dynamics35 (D0 z N�2, where D0 is the
polymer diffusivity, and N is the number of monomers per
chain), the explicit number of monomers between entangle-
ments Ne (the topological entanglement length36) in polymer
melts. In this article we use the entangled polymer model for
dissipative particle dynamics of Nikunen et al.,37 which has
already predicted polymer reptational dynamics,35 to investigate
the topological entanglement length (which provides a micro-
scopic measure of entanglements36), entanglements per chain
and primitive path (the shortest path connecting the two ends
of the polymer chain subject to the topological constraints) in
both polymer melts and nanocomposites by using topological
algorithms38–41 and applying different entanglements
estimators.40
Soft Matter, 2013, 9, 3877–3884 | 3877
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Table 1 Results for the computational efficiency of the potential used in a
polymer melt simulation (N ¼ 200, Np ¼ 300). The WCA potential56 was used in
the MD simulation (fully flexible Kremer–Grest (bead-spring) model,42 rc ¼ 21/6s,
s ¼ 1). (Single core CPU type used: AMD 2218HE, MD simulations performed
using GROMACS57–60)

Model-potential Density (r) Steps dt (s) CPU time (sec)

DPD: so – eqn (1) 1 105 0.01 0.02375
DPD: so – eqn (1) 1 2 � 105 0.005 0.024375
Bead-spring: WCA 0.85 105 0.01 0.04714
Bead-spring: WCA 0.85 2 � 105 0.005 0.047265
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The rest of this paper is organized as follows. In Section II,
we present the general features of the simulation methodology
and the simulation details that were used to investigate the
primitive path of polymers in melts and nanocomposites.
Subsequently, in Section III, the theoretical background is given
for the entanglement analysis that is implemented in polymer
melts and polymer nanocomposites. In Section IV, we discuss
the primitive path and entanglements of the DPD polymer melt
in comparison to the calculations from molecular dynamics
simulations (fully exible Kremer–Grest model42). In polymer
nanocomposites, we investigate the entanglements as a func-
tion of polymer molecular weight, volume fraction of ller
(nanorods), interaction strength of polymers with llers
(nanorods), and nanorod radius in comparison to theoretical
relations. Finally, in Section V, conclusions are presented.
II DPD simulations methodology

The rst unique feature of DPD concerns the nature of the
conservative force FC

ij , which is acting along the line between the
centres of mass of two particles, and is not a Lennard Jones
force43,44 (as in molecular dynamics) but decreases linearly with
increasing pair distance:

FC
ij ¼ aij

�
1� rij

rc

�
rij (1)

where aij is the maximum repulsion between particle i and
particle j (for monomer–monomer repulsion a ¼ 10037), rij
represents the distance between particles i and j, and rij is the
unit vector pointing from particle j to particle i. This simple
analytic form results in fast computation per time step, and also
can allow a time step orders of magnitude larger than the typical
time steps employed in molecular dynamics simulations.
During a molecular dynamics simulation, the most time-
consuming part is the calculation of the forces due to non-
bonded interactions.44 Since a “so” harmonic potential is used
(linear conservative force – eqn (1)), the forces cannot be arbi-
trarily large, thus we can reduce computing times. This so
linear conservative force between particles is deployed in
combination with Andersen thermostat45 following the idea by
Lowe.46 The time evolution of the interacting particles is
governed by Newton's equation of motion:

dri
dt

¼ vi (2)

dvi
dt

¼ f i (3)

The total force on particle i, fi, is given by the sum of two
terms, each due to the pairwise additive interactions with other
particles in the system.

f i ¼
X
isj

�
FC

ij þ FS
ij

�
(4)

All these forces are taken to be zero beyond a certain cut off
radius rc ¼ 1. Also, the monomers were connected using
harmonic springs:
3878 | Soft Matter, 2013, 9, 3877–3884
FS
i ¼

X
j

k
�
r0 � rij

�
(5)

where the sum is over all particles j to which particle i is con-
nected. The equilibrium bond length was set to r0 ¼ 0.95, and
k ¼ 200.37

Simulations details

The simulations were performed at a monomer density r ¼
(Nm/V)¼ 1 (where Nm is the total number of monomeric units in
the system and V is the volume of the system). The length of the
simulation cell was always larger than the end-to-end distance
of the polymer chains. To set the temperature at T* ¼ kBT/3 ¼ 1,
the Andersen thermostat45 was used. The equations of motion
were integrated using the velocity Verlet algorithm with a time
step equal to 0.02s, where s ¼ (mrc

2/kBT)
1/2 is the time unit, and

m ¼ 1. In MD simulations the Lennard Jones potential used
enforces a smaller time step. In all the previous studies of
polymer melts with MD simulations and a DPD9,47–51 or Lange-
vin52–55 thermostat, the time step used (dt ¼ 0.005–0.012s) used
was smaller than that in our work. All the systems were started
from random ight initial congurations, and equilibrated for
107, 5 � 105, 1.5 � 105 time steps for N ¼ 200, N ¼ 75, 100 and
N ¼ 10, 20, 25, 40 respectively. The same methodology of
equilibration has been reported previously.37 The duration of
the simulation runs were between 2.5 and 20 � 106 steps
depending on the length of molecules. The simulations run
long enough such that the polymer chains (for N ¼ 200, at f ¼
11%) moved approximately 2Rg distance. Details (number of
polymers Np, number of monomers N in a polymer chain,
length of the cubic simulation cell L, end-to-end vector distance,
primitive path dimensions as calculated from the Z1 topological
algorithm38–41) of the polymer melt simulated systems are given
in Table 2. Also in order to have an idea of the computational
efficiency of the “so” harmonic potential used in our work we
calculated the CPU time needed for a single time step dt. We
present the CPU time in Table 1.

III Estimators for topological entanglement
length Ne

In polymer melts of sufficiently long exible chain molecules,
neighbouring chains strongly interpenetrate and entangle with
each other.35 The motion of the polymers is dominated by the
restriction that chains may slide past but not through each
This journal is ª The Royal Society of Chemistry 2013
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Table 2 Number of polymers in the simulation cell (Np), monomers in a polymer
chain (N), length of the simulation cell (L), square end-to-end vector distance
hRee2i, Lpp, hLpp2i, number of kinks hZi for polymer melt systems studied in the
present simulations

Np N L Ree
2 Lpp Lpp

2 Z

576 10 17.926 11.587 3.257 11.975 0.018
4000 15 39.148 18.914 4.201 20.041 0.049
3000 20 39.148 26.329 5.056 29.178 0.126
2400 25 39.148 33.757 5.851 39.152 0.224
2000 30 39.148 41.311 6.624 50.167 0.338
1024 50 37.133 75.971 9.543 105.16 0.837
1000 60 39.148 87.1 10.96 135.494 1.068
800 75 26.777 111.207 13.084 191.991 1.444
288 80 28.455 116.905 13.614 207.798 1.531
665 90 28.455 133.377 15.058 252.838 1.773
512 100 37.133 148.421 16.406 298.608 1.994
512 128 40.317 192.47 20.052 441.958 2.554
384 150 38.619 222.929 23.061 578.9 3.033
300 200 39.148 299.523 29.845 957.981 4.086

Fig. 1 DPD polymer model simulations yield Ne estimated from N e(N) using eqn
(6) (blue), eqn (8) (green), and eqn (7) (red) for polymer melts. Dashed lines
interpolating between filled data points have been added to guide the eye. For
comparison, MD simulations40 of fully flexible Kremer–Grest model42 (squares) are
included.
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other. Thus, the motion of polymers whose degree of polymer-
ization becomes larger than the “entanglement length” Ne is
conned to a tubelike region.

Let us now discuss Ne as determined by the estimator of
Everaers et al.61 (which we denote as classical S-coil), evaluated
using the geometrical Z1 algorithm.38–41 This Ne estimator is
determined by statistical properties of the primitive path as a
whole coil and evaluated for a given N as follows:

N eðNÞ ¼ ðN � 1Þ
�
Ree

2
	

�
Lpp

	2 (6)

where Ree is the end-to-end vector distance of a polymer chain
and Lpp is the contour length of its primitive path, the averages
are taken over the ensemble of chains.

Another estimator for the entanglement length can be used
by measuring the number of interior “kinks”38,39 which is
considered to be proportional to the number of entanglements.
The estimator on the number of kinks, hZi is denoted here as
classical S-kink is given by:38

N eðNÞ ¼ NðN � 1Þ
ZðN � 1Þ þN

(7)

Differences between the Z1 algorithm and the primitive path
analysis52,61 and the difference between Ne estimated from kinks
and coils has been discussed previously.39,40 It is known that
using the classical S-coil and S-kink estimators eqn (6)
following61 one underestimates Ne. However, it is known that
Ne h limN/NN e(N) (N-independent quantity).

In addition, there are modied estimators that provide an
upper bound for Ne, such as the modied S-coil,40 but they tend
to overestimate Ne for weakly entangled chains:

N eðNÞ ¼ ðN � 1Þ
 �

Lpp
2
	

�
Re

2
	 � 1

!�1

(8)

However, in all these single chain estimators for the Ne, the
non-Gaussian statistics of chains and primitive paths produce
systematic errors.40 In order to eliminate the systematic errors
that appear in the previous estimators and to obtain an accurate
N-independent value, we use an ideal Ne estimator (M-coil),40

which requires simulation of multiple chain lengths, using coil
properties: �

CðxÞ
x

�
x¼N eðNÞ

¼ d

dN

 �
Lpp

	2
RRW

2ðNÞ

!
(9)

where C(x) h hRee
2i/RRW

2(x) is the characteristic ratio62 for a
chain with x monomers, and RRW

2(x) ¼ (x � 1)r0
2 is the refer-

ence mean squared end-to-end distance of a random walk. The
derivative of eqn (9) means that the hLppi needs to be measured
as function of N.

The averages in our analysis are taken over the ensemble of
all chains at each time step. Then the time average is taken for
250 saved congurations (at a time larger than the disentan-
glement time, (t > se), in which the polymer chains have diffused
at least an end-to-end distance). In order to obtain an error bar
for the Ne values in eqn (9), we solve the M-coil estimator again
This journal is ª The Royal Society of Chemistry 2013
for the lower and upper limits of Ree (end-to-end vector
distance) and Lpp (contour length of primitive path) as these are
extracted from the Z1 algorithm.38–41
IV Results and discussion
A Polymer melt

The chain and primitive path dimensions as calculated from
the Z1 algorithm38–41 for the polymer melts studied are pre-
sented in Table 2. We depict the behaviour of modied S-coil,
classical S-coil, and classical S-kink (eqn (6), (8), and (7),
respectively) for the DPD entangled polymer model37 in Fig. 1 in
comparison with the molecular dynamics simulations40 of the
fully exible Kremer–Grest model.42 Very good agreement is
found between the DPD polymer melt data and the molecular
dynamics data. The upper and lower bounds of Ne for the
Soft Matter, 2013, 9, 3877–3884 | 3879
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Fig. 2 DPD polymer model simulations yield Ne estimated from N e(N) using the
M-coil estimator (eqn (9)) for polymer melts. Dashed lines interpolating between
data points have been added to guide the eye. Inset: contour length of the
primitive path Lpp for different number of monomers per chain, N. For compar-
ison, MD simulations40 of fully flexible Kremer–Grest model42 (squares) are
included.

Table 3 Nanorod volume fraction (%), number of nanorodsNrod, bond length of
nanorod atoms r0 (force constant is set to k¼ 400), average diameter of nanorods
Drod, for nanocomposite systems studied in the present simulations. Aspect ratio
of nanorods: L/D z 7.5. Nonbonded interactions, according to eqn (1), are
considered between all atom pairs

Volume%

Nrod Nrod

r0 ¼ 0.7, Drod ¼ 1.52 r0 ¼ 0.8, Drod ¼ 1.68

0.6875 24 18
2.75 96 72
5.5 192 144
11 384 288
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polymer melt are 91 and 66, respectively, as shown by the black
lines in Fig. 1.

In Fig. 2, we depict the M-coil estimator eqn (2) for the DPD
polymer model. Again there is very good agreement (also, for
the contour length of the primitive path Lpp: inset of Fig. 2) with
the calculations from molecular dynamics simulations40 for the
fully exible Kremer–Grest model.42 From Fig. 2, it can be
extracted that Ne z 90.52 (with a lower limit: 87.6 and upper
limit 92), which coincides with that of Kremer–Grest model.
Also, Ne ˛ [66, 91] from the S-coils, which is comparable with
previous studies that found Ne z 8540,63 (for the fully exible
Fig. 3 Snapshot of hexagonal nanorods. Polymer chains are not shown. Inset:
cross-section of the nanorod used in this work.

3880 | Soft Matter, 2013, 9, 3877–3884
Kremer–Grest model42). The error bar is of the order of 3%, thus
our simulations performed in this study can predict a reliable
Ne value. The excellent agreement between our DPD and the MD
simulations may be coincidental given the difference in
monomer density.

B Nanocomposites

For nanocomposites, we consider systems of hexagonal nano-
rods (see Fig. 3 and its inset: cross-section of nanorods has an
hcc structure) in a dense polymer melt of entangled polymers.
In all of the systems studied, a total number of Nt ¼ 60 000
monomers were used in a cubic box, increasing the length of
the simulation cell L according to the volume fraction of the
nanorods in order to have a monomer density r ¼ 1; this
maintains a constant free volume in the polymer melt. The
polymer–nanorod interaction is set to aij ¼ 25. Details of the
nanocomposite systems studied (volume fraction, number,
nanorod bond distance, and diameter of nanorods) are
summarized in Table 3. In such systems we consider the case of
the primitive path analysis for both the frozen particle limit,
Fig. 4 Ne estimated from N e(N) using eqn (6) (filled symbols) and eqn (8) (open
symbols) for polymer–nanorod nanocomposites. (i) 0.6875% (black triangles), (ii)
2.75% (blue squares), (iii) 5.5% (green diamonds). Dashed lines interpolating
between data points have been added to guide the eye. The same trends are
followed for 11% volume fraction (results not shown for clarity). Inset: Ne esti-
mation, where prior to the primitive path analysis the nanorods are removed
(replaced with vacancies).

This journal is ª The Royal Society of Chemistry 2013
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Fig. 5 Dependence of Ne(f)/Ne ratio with filler volume fraction in nano-
composites for different fillers: (i) DPD simulations with nanorod (D ¼ 1.52) fillers
(green symbols), (ii) DPD simulations with nanorod (D ¼ 1.68) fillers (blue
symbols), (iii) MD simulations with spherical fillers (open symbols).74 Inset: Ne

estimated from N e(N) using the M-coil estimator (eqn (9)) for polymer nano-
composites (D ¼ 1.52) from DPD simulations: (i) 0.6875% (black triangles), (ii)
5.5% (green diamonds), (iii) 11% (red circles). Dashed lines interpolating between
data points have been added to guide the eye. The same trend is followed for
2.75% volume fraction (results not shown for clarity).
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where nanoparticles with xed coordinates are explicitly in the
entanglement analysis, and phantom particle limit where
nanoparticles are replaced with vacancies prior to the entan-
glement analysis.

1 Effect of volume fraction. Similar to the polymer melt,
the S-coil estimators are used for each nanocomposite system
studied and their predictions are depicted in Fig. 4. It clearly
shows the effect of the volume fraction on the behaviour of the
Ne: the addition of nanorods decreases theNe from themodied
S-coil and increases Ne from the classical S-coil. Moreover, in
the phantom particle limit, the volume fraction of nanorods
Fig. 6 Contour length of primitive path Lpp (diamonds) and end-to-end distance
Ree (squares) (N¼ 200) in nanocomposites for different nanorod volume fractions.
Inset: contour length of the primitive path Lpp (D ¼ 1.52) for different number of
monomers per chain, N: (i) 0.6875% (black triangles), (ii) 5.5% (green diamonds),
(iii) 11% (red circles).

This journal is ª The Royal Society of Chemistry 2013
does not really alter Ne for the volume fractions studied, as can
be seen in the inset of Fig. 4. In addition, the M-coil estimator of
Ne is used for each nanocomposite system in order to have an N-
independent estimation of Ne, and is depicted in the inset of
Fig. 5. Clearly, increasing volume fraction of nanorods reduces
Ne and also Lpp increases, as can be seen in the Fig. 6.

The concept of entanglement length is useful because it
relates changes in structure to rheological properties.52,61,64 For
polymer melts, a temperature and concentration dependent
material constant, the plateau shear modulus G0

N, which is of
the order of 106 Pa, or ve orders of magnitude smaller than the
shear modulus of the ordinary solids, is related to Ne by eqn
(10).52,61,65,66

G0
N ¼ 4

5

rkBT

Nrheo
e

(10)

where, r is the monomer density, Nrheo
e is the rheological

entanglement length.36 G0
N is also inversely proportional to p3,

where p is the packing length, a characteristic length scale at
which polymers start to interpenetrate.

In polymer nanocomposites the validity of eqn (10) is
unclear, however, a dependence of the plateau modulus
G0
N(F) ¼ G0

N(F ¼ 0) � f (F) on the ller degree F has been
observed for repulsive systems with Rg,polymer > rller (such as
PEP-POSS, PI-POSS).67–69

f(F) ¼ 1 + [h]bF + a2(bF)
2 + a3(bF)

3 + . (11)

where, h ¼ 2.5,70,71 a2 ¼ 14.1,72 and b is an effectiveness factor.73

The ratio of Ne(f)/Ne(f ¼ 0), in our simulations, decreases with
the nanorod volume fraction, specically at 11% volume frac-
tion the ratio decreases 50%.

The addition of nanorods in the polymer melt decreases the
Ne value, thus the “predicted” plateau shear modulus G0

N

increases since it is inverse proportional to Nrheo
e (Nrheo

e ¼ 2Ne

for loosely entangled polymer chains).36 For low volume fraction
of nanorods the zero shear viscosity ratio is analogous to that of
the plateau shear modulus (h0(f)/h0(f ¼ 0) ¼ G0

N(f)/G
0
N(f ¼ 0)),

thus it will be increased by the addition of nanoparticles.
Moreover, the polymer chain dynamics is also affected by the
ller volume fraction. Since by increasing the number of
nanorods and retaining the same free volume in the nano-
composite systems there are more topological constraints
created, the polymer chain dynamics is hindered.

Instead, in nanocomposites systems with repulsive spherical
nanoparticles74 in which Rg,polymer z rller, the Ne increases with
the volume fraction of the nanoparticles due to the decrease of
the Lpp. As a result, the entangled polymer chains gradually
disentangle upon the addition of the spherical nanoparticles.74

However in nanocomposites systems with attractive spherical
nanoparticles75 of same size to74 the Ne does not change from
the bulk value, at least in the case of f ¼ 11%.

2 Effect of nanorod radius. Increasing the radius of the
nanorods at a constant nanorod length and volume fraction
decreases the surface area to volume ratio of the nanorods,
and there is a larger depletion layer formed around the
nanorods' surface.3,4 The effect of the nanorod radius on the
Soft Matter, 2013, 9, 3877–3884 | 3881
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Ne(f)/Ne(f ¼ 0) ratio from the DPD simulations is depicted in
Fig. 5. As can be seen, for the larger radius, the ratio is slightly
higher. Also we calculated the entanglements in the phantom
particle limit and found that the polymer–polymer path
network is not altered (Ne is independent on the nanorod radius
and nanorod volume fraction according to the inset of Fig. 4),
which is in agreement with molecular dynamics data.76 The
dimensions of Ree and Lpp, for polymers of N ¼ 200, as a func-
tion of the volume fraction of the nanorods are shown in Fig. 6.
It can be seen that Ree is essentially unchanged, in comparison
to its melt value and independent on nanotube radius, with the
volume fraction of nanorods in this system with non-attractive
Fig. 7 Nanorod morphology for different polymers–nanorod interaction
strength at 2.75% volume fraction (from top to bottom aij ¼ 25, 50, 75). Polymer
chains are not shown.
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nanorods. This contrasts with previous studies for attractive
spherical nanoparticles77,78 where there is an increase up to 15%
in polymer dimensions. However, Lpp increases with the addi-
tion of nanorods due to more topological constraints being
created.

Furthermore, a disentanglement effect does not appear in
the vicinity of nanorod, as was recently reported, for thin poly-
mer lms,79 on a bare at surface80 and on large spherical
nanoparticles.74 The disentanglement effect in such systems is
due to the fact that polymers in the vicinity of the surface only
have neighbouring chains on one side and no chains to
entangle with on the other side, thus they have a smaller total
number of entanglements.

3 Effect of polymer–nanorod interaction strength. By
tuning the polymer–nanorod interaction aij of eqn (1), the
dispersion and aggregation behaviour (which takes place in
polymer–SWCNT nanocomposites81) and mechanisms of the
nanorods in nanocomposites can be explored. While these
mechanisms have been studied in nanocomposites with
spherical nanoparticles, by molecular dynamics simulation,82

its effect on the entanglements has not been investigated. In
addition, the investigation of such mechanisms by molecular
dynamics presents limitations such as nite size effects, simu-
lations of only weakly entangled polymers, equilibration time,
which can be overcome by the implementation of DPD
simulations.

By increasing the aij parameter we were able to produce
systems with an increased degree of nanorod–nanorod aggre-
gation. Thus aij can alter the morphology of the nanorods in the
polymer melt as can be seen in Fig. 7.
V Conclusions

The topological constraints of polymers in melts and nano-
composites with nanorods were investigated using a DPD
polymer model. We applied different estimators N e(N) and
extracted the N-independent topological entanglement length
Ne. We found that the DPD polymer model used can describe Ne

accurately in comparison to molecular dynamics simulations of
the fully exible Kremer–Grest model. We investigated polymer
nanocomposites for the rst time using an entangled DPD
polymer model. We observe that the entanglement length
decreases signicantly with volume fraction of hexagonal
nanorods. This decrease of Ne in the polymer melt with nano-
rods originates from the polymer/nanorod entanglements,
because the contour length of the primitive path, Lpp, increases
with the addition of nanorods, while the Ree is essentially
unchanged in comparison to its value in polymer melts. Finally,
the polymer–nanorod interaction alters the morphology of the
nanocomposites.
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N. Clarke, Macromolecules, 2012, 45, 7274.

6 P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett.,
1992, 19, 155.

7 R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107, 4423.
8 P. Espanol and P. Warren, Europhys. Lett., 1995, 30, 191.
9 T. Soddemann, B. Dünweg and K. Kremer, Phys. Rev. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2003, 68,
046702.

10 N. A. Spenley, Europhys. Lett., 2000, 49, 534.
11 G. Raos, M. Moreno and S. Elli, Macromolecules, 2006, 39,

6744.
12 V. Pryamitsyn and V. Ganesan, Macromolecules, 2006, 39,

844.
13 A. Maiti, J. Wescott and P. Kung, Mol. Simul., 2005, 31, 143.
14 A. Maiti, Microelectron. J., 2008, 39, 208.
15 M. Ionita, I. V. Branzoi and L. Pilan, Surf. Interface Anal.,

2010, 42, 987.
16 Y. C. Wang, S. P. Ju, J. Z. Cheng, J. M. Lu and H. H. Wang, J.

Phys. Chem. C, 2010, 114, 3376.
17 Y. C. Wang, S. P. Ju, T. J. Huang and H. H. Wang, Nanoscale

Res. Lett., 2011, 6, 433.
18 G. Scocchi, P. Posocco, A. Danani, S. Pricl and M. Fermeglia,

Fluid Phase Equilib., 2007, 261, 366.
19 S. W. Hu, Y. J. Sheng and H. K. Tsao, J. Phys. Chem. C, 2012,

116, 1789.
20 M. J. A. Hore and M. Laradji, J. Chem. Phys., 2008, 128,

054901.
21 L. T. Yan, E. Maresov, G. A. Buxton and A. C. Balazs, So

Matter, 2011, 7, 595.
22 G. Raos and M. Casalegno, J. Chem. Phys., 2011, 134, 054902.
23 S. P. Holleran and R. G. Larson, Rheol. Acta, 2008, 47, 3.
24 F. Lahmar, C. Tzoumanekas, D. N. Theodorou and

B. Rousseau, Macromolecules, 2009, 42, 7474.
25 F. Goujon, P. Malfreyt and D. J. Tildesley, J. Chem. Phys.,

2008, 129, 034902.
26 F. Goujon, P. Malfreyt and D. J. Tildesley, Macromolecules,

2009, 42, 4310.
27 M. Yamanoi, O. Pozo and J. M. Maia, J. Chem. Phys., 2011,

135, 044904.
28 T. W. Sirk, Y. R. Sliozberg, J. K. Brennan, M. Lisal and

J. W. Andzelm, J. Chem. Phys., 2012, 136, 134903.
29 S. Kumar and R. G. Larson, J. Chem. Phys., 2001, 114, 6937.
30 G. Pan and C. W. Manke, Int. J. Mod. Phys. B, 2003, 17, 231.
31 J. T. Padding andW. J. Briels, J. Chem. Phys., 2003, 118, 10276.
32 T. Padding and W. J. Briels, J. Chem. Phys., 2001, 115, 2846.
33 H. Liu, Y. H. Xue, H. J. Qian, Z. Y. Lu and C. C. Sun, J. Chem.

Phys., 2008, 129, 024902.
This journal is ª The Royal Society of Chemistry 2013
34 N. Hoda and R. G. Larson, J. Rheol., 2010, 54, 1061.
35 M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,

Clarendon Press, Oxford, 1986.
36 R. Everaers, Phys. Rev. E: Stat., Nonlinear, So Matter Phys.,

2012, 86, 022801.
37 P. Nikunen, M. Karttunen and I. Vattulainen, Phys. Rev. E:

Stat., Nonlinear, So Matter Phys., 2007, 75, 036713.
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74 Y. Li, M. Kröger and W. K. Liu, Phys. Rev. Lett., 2012, 109,
118001.

75 J. T. Kalathi, G. S. Grest and S. K. Kumar, Phys. Rev. Lett.,
2012, 109, 198301.

76 G. N. Toepperwein, N. C. Karayiannis, R. A. Riggleman,
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