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ABSTRACT: Conditions of rapid processing often drive
polymers to adopt nonequilibrium molecular conformations,
which, in turn, can give rise to structural, dynamical, and
mechanical properties that are significantly different from
those in thermodynamic equilibrium. However, despite the
possibility to control the desired nonequilibrium properties of
polymers, a rigorous microscopic understanding of the
processing−property relations is currently lacking. In an
attempt to stimulate progress along this topical direction, we
focus here on three prototypical and apparently different
cases: spin-coated polymer films, rapidly drawn polymer
fibers, and sheared polymer melts. Inspired by the presence of
common observations in the chosen cases, we search for order parameters as, for example, topological correlations and
heterogeneities, which may allow characterizing the processing-induced behavior of polymers. We highlight that such
approaches, necessitating concerted efforts from theory, simulations, and experiments, can provide a profound understanding
leading to predictable and tunable properties of polymers.

■ INTRODUCTION

Polymers are an important class of materials with an ever-
growing market.1,2 Their low cost, ease of processing, and
broadly tunable properties are key reasons underlying their
tremendous applicability, ranging from ordinary household
items and packaging materials to high-tech fibers, medical
devices, and wearable electronics. For most purposes, and most
fabrication protocols, polymers are processed at rates much
higher than the inverse of the equilibration time, i.e., the

reptation time.3−7 While the reptation time might be the
longest relaxation time of individual entangled polymers,
collective behavior and structure formation processes may
involve time scales that are orders of magnitude longer. As a
consequence, polymers (in melts and in solutions) often fail to
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equilibrate on the time scale of a typical processing experiment,
causing the macromolecules to freeze into nonequilibrium
conformations. For example, rapid quenching can effectively
reduce the rotational degrees of freedom of polymer chains;
this, in turn, can give rise to structural, dynamical, and
mechanical material properties that differ strongly from those
in thermodynamic equilibrium. Nonequilibrium processing,
i.e., processing under conditions that do not allow for
equilibration, can thus offer a practical means to extend the
range of available properties for a given material composition,
holding enormous application potential for the development of
novel material functionalities. However, despite the exciting
possibility to control the molecular configuration space and
resultant material properties directly by the processing
protocol, a rigorous understanding of the processing−property
relations of polymers is still lacking.
Recent experiments,4−36 reflecting conditions also relevant

in industrial processing of polymers, provide intriguing
observations, which add to the feasibility of designing
macroscopic properties of polymers via nonequilibrium
processing: (1) The extent of deviations from equilibrium
conformations37 increases with increasing processing rates,
implying that the nonequilibrium nature of the material can be
directly controlled by the processing time scale. (2) After
processing, the system tends to attain a conformation that
minimizes the free energy. However, this equilibration kinetics
is often so slow that one can harness the desired non-
equilibrium deviation over time scales longer than those of
technological interest. Following such strategies, it is thus
possible to tune properties such as mechanical strength,10−17

thermal expansion,23,27 thermal conductivity,35 and viscos-
ity10,13,15 by designing appropriate nonequilibrium processing
protocols. (3) The above observations hold true for various
geometries, ranging from bulk to nanoconfined systems.
Importantly, such processing-induced nonequilibrium con-
formations have also resulted in novel applications. For
example, polyethylene fibers composed of highly stretched
molecules, whose conformations strongly deviate from those at
equilibrium, show extremely high mechanical strength,
enabling various uses ranging from bulletproof vests to cables
for towing ships.4,34 Despite such enormous application
potential, the current state-of-the-art relies on empirical
relations for obtaining desired properties. In order to
controllably target specific material structures and function-
alities, new concepts must be developed that directly relate
processing protocols to the molecular nonequilibrium
conformations and resultant macroscopic polymer properties.
The purpose of this article is to guide and stimulate

discussion on the design, synthesis, processing, and character-
ization of novel polymeric materials. In particular, our long-
term goal is to generate a fundamental understanding
providing answers to the following questions: (1) What are
the relevant molecular parameters that describe the non-
equilibrium state of a processed material? (2) How do
processing conditions affect material properties; that is, how
does the macromolecular structure affect the magnitude and
lifetime of deviations in chain conformations? (3) How can we
design materials with desired properties via nonequilibrium
processing pathways? To address these questions, among the
virtually endless number of nonequilibrium processing path-
ways, we focus here on three prototypical and apparently
different cases: spin-coated polymer films, rapidly drawn
polymer fibers, and sheared polymer melts. Our choice of

these three cases allows us to discuss various phenomena, like
the deformation of polymers, reduced entanglement density,
structure formation, and crystallization at conditions far from
equilibrium, which are essential to various industrial processing
techniques like injection stretch blow molding of plastic bottles
and gel electrospinning of polymer fibers. Inspired by the
existence of common features in various nonequilibrium
processing pathways, we search for order parameters character-
izing the behavior of polymers induced through processing. We
highlight how the concerted effort from theory, simulations,
and experiments on polymers at controlled nonequilibrium
processing conditions can provide a profound understanding
leading to predictable and tunable properties.

■ KEY EXPERIMENTAL OBSERVATIONS
Spin-Coated Polymer Films. Spin coating is a widely

employed method to fabricate smooth polymer films of
precisely controllable thickness, even in the nanometer range.
Briefly, the technique amounts to depositing a polymer
solution onto a flat surface, which is then rotated at high
speed to spread the solution by centrifugal force. At the same
time the solvent is rapidly evaporateda key process that
induces a transition to a dry polymer film. Polymer
conformations are subjected to significant changes while
going from separated polymer coils dispersed in the solvent
(prior to spin coating) to a condensed phase upon vitrification
(a few seconds later) (Figure 1). In the course of solvent

evaporation, coils begin to overlap and to entangle. One might
expect that at the end of this process the entanglement density
would reach the equilibrium value typical of polymer melts.
However, various experiments suggest that this is not the
case.8−17,19

As long as sufficiently many solvent molecules are present in
the film, polymers will be able to relax and fully equilibrate.
However, upon evaporation, the relaxation time of polymers
progressively increases, inducing a “self-retardation” effect.
Eventually, the structural relaxation time of the polymer chain
will become longer than the time needed to evaporate the
remaining solvent molecules, thus making equilibration
effectively impossible. For some vitrifying polymers, this may
occur even at polymer concentrations of the order of 50%.

Figure 1. From isolated polymer coils to glassy polymers: In the
course of evaporation, the initially separated polymers in a dilute
solution begin to overlap, at a concentration37 c* ∼ N/Ve (where Ve is
the envelope volume of the polymer consisting of N monomers), then
interpenetrate, and entangle with each other. Above a threshold
concentration cc, the relaxation time of polymers becomes so high that
their dynamics is frozen.16 Continued evaporation induces a
deformation of coils along the z-direction. Finally, at c = 1, we obtain
dry glassy polymer films, with only partially interpenetrating polymers

with < ̅x N , where x is the number of interpenetrating chains in a
freshly spin-coated film and N̅ is the invariant degree of polymer-
ization, characterizing the number of neighboring chains contained
within the envelope volume of a reference chain.38 Different colors
were chosen to distinguish neighboring coils and emphasize
overlapping regions. Reproduced with permission from ref 18.
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Evaporating the still remaining solvent molecules from this
glassy polymer film will induce molecular deformations leading
to stresses within the film. It is likely that such nonequilibrated
coils interpenetrate only partially, in contrast to equilibrated

polymers. In the latter case, one expects an average of N̅
interpenetrating chains (neglecting prefactors) within the
envelope volume Ve of a polymer;37 a rapidly spin-coated
film is expected to exhibit a far lower degree of inter-

penetration ( ≪ ̅x N , Figure 1). We anticipate that the ratio

̅x N/ may serve as one order parameter characterizing some
aspects of the nonequilibrium polymer conformations and
concomitant correlations in freshly spin-coated polymer films.
Importantly, the nonequilibrium molecular conformations
achieved upon the rapid removal of solvent can give rise to
in-plane tensile stresses, which are related to the experimentally
measured preparation-induced residual stresses.8−12,15−17

Hence, by exploiting the competition between solvent
evaporation and polymer relaxationand thus the extent of
deviations from equilibriumit becomes possible to directly
tune the mechanical properties of the film. Indeed, by using for
example films obtained at different evaporation rates,16,17 one
can vary the residual stresses by several orders of magnitude.
The degree of observed nonequilibrium dynamics, as encoded
in the residual stresses and the corresponding (long) relaxation
times, can also be associated with a dimensionless “processing
parameter”, which is defined by the ratio of the time scale of
molecular relaxation to evaporation time.16−18 This parameter,
analogous to the Deborah number or the Weissenberg number,
thus offers a practical means to quantitatively control the
degree of nonequilibrium, and the resulting mechanical
properties of the material, directly via the processing protocol.
Future efforts from simulations and theory may help to

understand the microscopic mechanisms underlying deviations
from equilibrium caused by preparation-induced residual
stresses. These studies should also take into account the vast
number of experiments performed on spin-coated polymer
films, which have revealed a large number of intriguing
properties induced by preparation. For example, the glass
transition temperature Tg of these films shows changes by 10−
50 K,39−41 which may translate to changes in the relaxation
time by several orders of magnitude. In fact, experiments42−45

yield a broad distribution of relaxation times in spin-coated
polymer films, suggesting temporal and spatial variations in
polymer dynamics and, possibly, differences in local structures.
Can we relate these intriguing observations with processing-
induced changes in properties? A series of recent experiments
demonstrate that the extent of deviations in Tg decreases upon
annealing films at a temperature T > Tg for times much longer
than the time scales associated with the relaxation of
equilibrated polymer melts,21,22,41,46 highlighting the meta-
stable character of the observed deviations. Interestingly,
variations in Tg with changes in annealing time are attributed
to concomitant changes in the extent of polymer adsorption to
the substrate. This, in turn, is related to the equilibration of the
whole spin-coated film, which is facilitated via concerted
rearrangements of a few segments.18,47 Such rearrangements
increase the number of interpenetrating chains at the interface

(and in the bulk) to approach the equilibrium value of N̅
(Figure 2), corresponding to an increase in the number of
chains adsorbed per unit surface.48 We argue that a better
understanding of the link between this molecular picture and
the emergent macroscopic mechanical properties will be key in

designing and optimizing new processing pathways to harness
nonequilibrium behavior for the development of novel
functional materials.

Highly Stretched Polymer Fibers. Polymer fibers,
consisting of stretched and aligned chains, and their enhanced
mechanical properties represent a trademark example for
“processing pathways deciding polymer properties”.4,34,49−51

The essential step here is to stretch polymers to their full
extension, such that the macroscopic material properties
strongly differ from those in equilibrium. The chain extension
can be characterized by the maximum draw ratio at a molecular
level, λ ∼ N

Nmax .52 In practice, the draw ratio λ is defined as

the ratio of the final to the initial length of the macroscopic
sample.49 Various techniques including gel spinning, electro-
spinning, and melt spinning have been developed for achieving
high draw ratios and high elongational stresses in order to
increase the extent of polymer stretching.4,34,49,50,53 In
addition, such strong stretching of polymers significantly
affects structure formation of crystallizable polymers, which
decides their macroscopic properties.4,29,34 Fibers of poly-
ethylene obtained at a draw ratio of around 100 have yielded
an elastic modulus of ≈ 200 GPa, i.e., a factor of 300 higher
than the Young’s modulus of polyethylene in the bulk.4,34

Importantly, the specific strength, i.e., the tensile strength
normalized by mass density, of such commercially available
polyethylene fibers is a factor of around 10 higher than that of
stainless steel.4 Currently, our understanding of these
observations is largely empirical.4,34 Unfortunately, such
empirical relations lack connections to the underlying
processing-induced nonequilibrium conformations, hampering
progress in the rational design of fully optimized processing
pathways. For instance, if we were able to generalize and
translate processing strategies, which have been successful in
gel spinning/electrospinning of polymer fibers, to other
polymeric products, we may anticipate advancements in
various technologies, for example, through mechanically
resilient yet lightweight materials. In analogy to the spin-
coated polymer films discussed above, in which the processing
parameter is defined by the ratio of the evaporation time to the
time characterizing the intrinsic dynamics, the fabrication of
highly stretched fibers can also be characterized by
dimensionless processing parameters.50,53 Such parameters

Figure 2. Equilibrating polymer conformations at an adsorbing
interface: Schematic illustration of possible variations in polymer
conformations at the substrate interface as a function of annealing
time at temperatures T > Tg, where Tg is the glass transition
temperature. Immediately after spin coating, polymers at the interface
are frozen with rather flat conformations and hence exhibit a reduced

interpenetration with other chains at the interface ( ≪ ̅x Ni , where
xi is the number of interpenetrating chains at the substrate interface in
a freshly spin-coated film). Upon annealing, changes in conformation
and further adsorption are only possible by the reorganization of
already adsorbed chains, which is a possible reason behind the

observation that equilibrium ( ∼ ̅x N ) is only possible for annealing
times that are much longer than the time scale associated with the
relaxation of equilibrated melts.37 Reproduced with permission from
ref 21. Copyright 2011 Nature Publishing Group.
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validate our central hypothesis that quantitative experiments
performed under controlled nonequilibrium conditions
provide strategies to design properties of polymers at the
molecular level.
Flow-Induced Crystallization of Polymers. During

processing, the application of large shear or extensional flow
rates will stretch and align polymers with respect to the flow
direction (Figure 3). As these aligned polymers lack positional

long-range order, the local molecular structure resembles those
of nematic liquid crystals.54−57 Even after the cessation of flow,
it takes extraordinarily long waiting times for polymers to
equilibrate, i.e., to change from processing-induced non-
interpenetrating chains to the equilibrium entanglement
density (Figure 3a). Such long-living memory effects are
often dubbed as flow-induced memory. Interestingly, even at
relatively high temperatures above the nominal melting
temperature Tm, experiments reveal the presence of flow-
induced structures.29,31,32,58 After subsequent cooling to T <
Tm, these aligning chains are found to ease nucleation and,
hence, accelerate the crystallization kinetics (Figure 3b).

Remarkably, crystals formed by cooling of flow-induced
precursors exhibit morphologies otherwise not achievable
from an equilibrated melt. Various continuum ap-
proaches59−62based on Schneider rate equationshave
been proposed to model such flow-induced changes in the
crystallization kinetics. However, these macroscopic models
cannot predict the nucleation rate for a given chain
deformation but rather require this as an input for modeling
(see the review by Graham for more details62). In addition, the
absence of molecular details severely limits their applicability
to understand various intriguing processing-induced observa-
tions. For instance, complementary experiments31 show that
the lifetime of flow-induced precursors increases rapidly upon
decreasing temperature, yielding high activation energies. Such
an increase in activation energy is commonly associated with a
cooperative motion of segmentsa condition expected for
aligned segments of flow-induced precursors. A large degree of
alignment among polymer chains might also be formed under
other processing conditions. High flow rates can, for example,
also be obtained when polymers slip rapidly on solid
substrates, as in the case of dewetting.15 Thus, we expect the
occurrence of flow-induced polymer alignment during
dewetting of thin polymer films at T > Tm. Indeed, recent
dewetting experiments on isotactic polystyrene15 show a
temperature-dependent shear thickening behavior, accompa-
nied by a relatively high activation energy. Both features hint at
the presence of flow-induced structures. Importantly, in
contrast to isotactic polystyrene, atactic polystyrenepoly-
styrene with irregularly arranged side groupsdoes not show
high activation energies. Thus, it seems possible to harness the
viscoelastic response of polymers by dialing in a certain
regularity in the arrangement of side groups and by controlling
the flow conditions during processing.
The experimental observations described above clearly

demonstrate that rapid processing conditions, inducing
significant changes in molecular conformations, play a key
role in determining various macroscopic properties of
polymers. Many of these so improved properties cannot be
achieved from equilibrated polymer melts. Interestingly,
nonequilibrated polymers obtained via different processing
pathways exhibit dynamics of correlated polymers varying
locally in space and time. The presence of common features in
different experiments, such as the topological correlations

between segments and the transition from N̅ interpenetrat-
ing chains in equilibrium to no interpenetration between the

Figure 3. Stretching polymer chains and its consequence on
crystallization: (a) Schematic illustration of flow-induced stretching
of polymers, where a transition from equilibrium interpenetration to
no interpenetration of a test chain (shown in red) with neighboring
chains (shown in black) is depicted. (b) Optical micrographs
capturing the influence of the state of the initial melt on the resulting
nucleation density of isotactic polystyrene crystals obtained at 180 °C.
Prior to crystallization, the sample was sheared at 250 °C for 10 s at a
shear rate of γ̇ = 30 s−1 followed by waiting for different times tw at
250 °C, as indicated in the figure. The nominal melting point of
isotactic polystyrene is Tm = 230 °C. Micrographs are adapted from
ref 31.

Figure 4. Representative nonequilibrium conformations: Schematic illustration of a test chain (shown in red) adopting different representative
nonequilibrium conformations: (a) polymers, with local stretching along the direction of pulling force, resembling stems and flowers,63 (b)
completely stretched chains in the shish of shish-kebab structures,29,31,32,58 (c) knots,64 and (d) polymer films with strong adsorption near the
surface.41
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chains out of equilibrium, hints toward the possibility that
general concepts may exist for predicting processing-induced
nonequilibrium behavior of polymers.

■ PERSPECTIVES AND OUTLOOK

For a quantitative understanding of preparation-induced
material properties, we need to consider the ever-changing
structures and properties of nonequilibrated polymers on all
relevant length and time scales. Such considerations could take
advantage of the novel experiments65−68 and sophisticated
simulation techniques that have recently been reviewed by
Gartner and Jayaraman.69 For instance, in Figure 4 we have
shown different representative nonequilibrium conformations
and key parameters that might help modeling the non-
equilibrium structure developed. One goal may be to derive
quantitative structure−processing relations that account for
path- and time-dependent properties of polymers during
processing. As demonstrated earlier, any processing-induced
deviations in molecular conformations defined for example via
deviations from a Gaussian distribution of chain conformations
may induce transient order. Such order arises from temporal
correlations between monomers or polymer segments,
potentially reflected in variable static and dynamic hetero-
geneities. Therefore, a comprehensive understanding of such
volatile molecular correlations and heterogeneities may shed
light on the mechanisms underlying the processing induced
deviations in polymer properties. As highlighted by the three
chosen examples, we hypothesize that an appropriate metric of
such correlations could serve as a possible order parameter
characterizing the behavior of polymers induced through
processing. The three examples focused on one-component
polymer solutions and melts where nonequilibrium chain
conformations and intermolecular packing immediately dictate
system properties. These nonequilibrium molecular aspects,
however, also impact collective structure formation in more
complex polymer systems. For instance, (i) the as-cast
structure of glassy copolymer films features frozen-in
composition fluctuations that may impact microphase
separation after heating above the glass transition temperature,
(ii) the highly stretched chain conformations during roll
casting70−73 dictate the final orientation of the copolymer
morphology, and (iii) shear flow has been successfully
employed to direct the orientation of self-assembled
structures.74−76 Additionally, these multicomponent systems
feature nonequilibrium structures, such as, for example, defects
in directed self-assembly that arise from processing (i.e., the
kinetics of structure formation) but that are not directly related
to nonequilibrium chain conformations.77

To explore and identify the presence of order parameters, we
believe it is important to address the following fundamental
questions: Under which conditions (for example, the extent of
local vs global stretching, local order vs long-range orientation,
and spatial and temporal fluctuations in the degree of
entanglements) can we create the transient order? How can
we bridge from such transient and variable molecular
correlations to concepts based on entropic or enthalpic
interactions established for equilibrium systems? Can we
borrow ideas on heterogeneities and correlations from the
complex dynamics78−83 experienced by various materials on
approaching dynamical arrest? Can local correlations of
monomers propagate through chain connectivity and induce
long-ranged interactions between topological constraints? In

the following, we propose various simulations and experiments
that may allow addressing these questions.
Experiments indicate that the time allowed for equilibration

during sample preparation, such as the evaporation time in the
fabrication of polymer films16,17 or the adsorption time in the
case of further annealing,21,22 is an important control
parameter characterizing the deviations in the resultant
properties of polymer films. This time parameter may be a
good starting point for simulations.84,85 Simulations that mimic
experimental conditions (e.g., spinning rate and solvent
evaporation rate) can provide unique molecular-level insight
into the variations in chain conformations and entanglement
density of systems such as freshly coated films or stretched
polymer fibers. However, in comparison with experiments,
simulated systems are often much smaller and the accessible
time scales are typically much shorter. Therefore, it would
already be a great success if one could obtain a qualitative
agreement for some features, for example, changes of the
thickness23,27 and different material properties as viscosity and
glass transition temperature upon annealing.21,22,41 Apart from
reproducing experimental results, simulations may also identify
new experimentally testable regimes. Molecular conformations
can be directly, and continuously, monitored in simulations,
and their contribution to the (local) stress field (defined via a
virial expression) can be determined. With such simulations, it
might be possible to understand the origin of residual stresses
and the length and time scales over which effects related to
metastable states persist. Furthermore, simulations may shed
light on the length scales and the extent of spatial
heterogeneities in the mechanical properties of such non-
equilibrated polymer films.86−88 On the other hand, recent
advances68 in the current state of the art of neutron scattering
experiments (and data analysis) show promises to track the
relaxation pathways as expressed through changes in polymer
conformations on approaching equilibrium.
A powerful solving strategy to understand how non-

equilibrium local structures affect macroscopic properties
could come from experiments and simulations aiming at a
rational understanding of nonequilibrium conformations
resulting from polymer adsorption to a substrate. Equilibration
of thin films prepared by spin coating seems to be driven by
density fluctuations of monomers near the adsorbing inter-
face.47 As a starting point, we may utilize concepts developed
through a simple analytical model89 which highlights the
importance of entropic (free energy) frustration and its
thermodynamic consequences on the adsorption of a single
chain. This model shows that if a polymer is adsorbed initially
with a wrong sequence (e.g., a high-energy state), then any
effort to minimize energy requires trajectories departing further
away from the equilibrium state. Such topologically quenched
states could kinetically freeze polymers almost indefinitely out
of equilibrium. Using similar ideas for many interacting
polymers in a crowded environment, as in the adsorption of
polymer melts, we may anticipate a stronger topological
frustration, a more complex free energy landscape, and much
larger length scales of cooperative motion. Hence, minimizing
the free energy at the adsorbing interface might require
concerted rearrangements of several molecules. Furthermore,
we could consider experiments where adsorption is driven over
specific sites (e.g., on patterned surfaces), which would allow
controlling nonequilibrium interfacial conformations. We
would then explore how macroscopic quantities are affected
by the adsorbed chains. In both cases, density variations of the
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adsorbed chains (or segments)a collective quantity charac-
terizing the configuration of the systemcould serve as an
order parameter for the process of adsorption.
To understand the heterogeneous character of nonequili-

brated polymers, experiments (e.g., nonlinear dielectric
spectroscopy90) and simulations could focus on higher-order
nonlinear susceptibilities. These quantities, as already verified
in the case of small molecules,91,92 provide signatures of the
nature and the length scale of dynamic heterogeneities.
Extending the investigation to star-shaped polymers or other
nonlinear architectures of polymers is highly recommended as
these systems are inherently heterogeneous in terms of both
density and dynamics.93−96 Notably, recent experiments26,93,96

show that glassy star-shaped polymers age at a significantly
lower rate than the corresponding linear chains, suggesting the
importance of macromolecular architecture for tuning the
lifetime of the processing-induced deviations in conformations.
Finally, we might gain information on processing-induced
nonequilibrium states by considering analogies with super-
cooled liquids, i.e., the precursors of glasses, which are arguably
the most widely studied nonequilibrium materials. As is well-
established from simulations of bulk glass formers, the rapid
increase in the relaxation time of liquids approaching the glass
transition temperature may be associated with the appearance
of so-called locally preferred structures,78−83 quantifying a
form of growing structural order within an amorphous
material. Here, we may ask whether the experimentally
observed long relaxation times of processing-induced non-
equilibrium conformations of polymers are also accompanied
by a growing degree of locally preferred structural motifs.
Given a proper and unique definition, this “transient order”
could serve as a reliable order parameter of nonequilibrium
conformations.
To summarize, processing-induced nonequilibrium con-

formations, and the thereby created correlations between
variable number of polymer segments, provide access to novel
structural, dynamical, and mechanical properties. To design
polymers or polymeric structures with desired and tunable
properties requires a quantitative understanding of how
properties of polymers depend on nonequilibrium conforma-
tions. Through the presented examples, we highlight common
scientific challenges for apparently different scenarios, hinting
at possibilities for developing quantitative concepts relating
processing protocols to molecular conformations and to
resultant properties. We have identified some possible future
directions of research that will bring us toward realizing our
goal of “molecular process design” by achieving quantitative
processing−property relations based on a fundamental under-
standing of polymers in nonequilibrium conditions. Clearly, a
concerted effort between theory, simulations, and experiments
is required to identify suitable order parameters characterizing
the preparation-induced nonequilibrium states in polymers. A
better understanding of polymers in nonequilibrium conditions
not only will introduce new research directions in fundamental
materials science but also will establish how the choice of the
processing protocol can act as an important and tunable
control parameter in materials design. Ultimately, the ability to
open up new processing-based pathways will enable a much
broader spectrum of structural, dynamical, and mechanical
properties that are unattainable in thermodynamic equilibrium,
thus potentially creating a wealth of novel applications.
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