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Most of Africa is near the equator, this distorts the size in a 2d projection.
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From Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"

Polymers

Newtonian Fluad Bubbles Bubbics m Polymer Solution

Bolvmer Rheology

http:/Amwww.eng.uc.edu/~gbeaucag/Tlasses/IntrotoPolySci/PolymerChemical Structure.html



http://www.eng.uc.edu/~gbeaucag/Classes/Processing/Chapter3html/Chapter3.html

Polymers

Paul Flory [1] states that "... perhaps the most significant
structural characteristic of a long polymer chain... (is) its capacity
to assume an enormous array of configurations."

Which are Polymers?

resDNA.html

httE://www.enﬁ.uc.ed u/~gbeaucaﬁ/CIassesllntrotoPonSci/What Does Searching

1) Principles of Polymer Chemistry, Flory B, (1953).

ww.eng uc.edu/~gbeaucag/Classes/IntrotoPolySci/VhatlsAPolymerPlastic.html
' http://mwww.eng uc.edu/~gbeaucag/Tlasses/IntrotoPolySci/MacroMolecularMaterials.html


http://www.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/PicturesDNA.html
http://www.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/What%20Does%20Searching%20Configurational%20Space%20Mean%20for%20Polymers.html

Random Walk Generator (Manias Penn State)

e ®
- = )f' -
g .

-Polymers do not have a discrete size, shape or conformation.

-Looking at a single simulation of a polymer chain is of no use.

-We need to consider average features.

-Every feature of a polymer is subject to a statistical description.

-Scattering is a useful technique to quantify a polymer since it describes structure from a statistically averaged perspective.

-Rheology is a major property of interest for processing and properties

-Simulation is useful to observe single chain behavior in a crowded environment etc.

15


http://zeus.plmsc.psu.edu/~manias/MatSE443/Study/7.html
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Viscosity versus Rate of Strain
Polymers
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If polymers are defined by dynamics why should we
consider first statics?

Statistical Mechanics: Boltzmann (1896)
Statistical Thermodynamics: Maxwell, Gibbs (1902)

We consider the statistical average of a thermally
determined structure, an equilibrated structure

Polymers are a material defined by dynamics and
described by statistical thermodynamics

Polymers
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In & polymer melt, the viscous propertios of Newtonian lquids comlbise wak
elastie foroes. The latter comtribete a real part to the dynamic shear compls-
ance, 10 be destified with J$:

Jlw=0)= 7. (6.102)

Combinisg Eqn. (6.99) and (6.102) gives the dysamic shoar complisnce of
polymeric fluids in the kmit of low frequencies

Jw -OJ-J,’ul. (6.103)
Do’
As we can sev, my aad J7 show up directly and separstely, in the limiting

behavice of J' aad Jv.
The dynamic shoar modulus follows as

) e O) o e
O =0 350~ adi i
e (6100
(e 1) 41
wiving
GClw—=0)= .f:d." (6.108)
in agreemment with Fig. 6.16, aad
G (v —0) = (6.108)

We thus find characteristio power laws also for the storage and the Joss mod-
dnmdmlalotludc.l‘.‘s-l_m = a well-defoed way.

Polymers
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Synthetic Polymer Chain Structure
(A Statistical Hierarchy)



Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

Consider that all linear polymer chains can be reduced to
a step length and a free, universal joint

This is the Kuhn Model and the step length is called the
Kuhn length, Ik

This is extremely easy to simulate
I)Begin at the origin, (0,0,0)

2)Take a step in a random direction to (i, j, k)
3)Repeat for N steps

On average for a number of these “random walks” we will
find that the final position tends towards (0,0,0) since
there is no preference for direction in a “random” walk

The walk does have a breadth (standard deviation), i.e.
depending on the number of steps, N, and the step length
Ik, the breadth of the walk will change.

I« just changes proportionally the scale of the walk so
<R2>|/2 ~ lk



Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

The walk does have a breadth, i.e. depending on the
number of steps, N, and the step length Ik, the breadth of
the walk will change.

I« just changes proportionally the scale of the walk so
<R2>|/2 ~ |k

The chain is composed of a series of steps with no orientational relationship to each other.
So<R>=0
<RZ> has a value:

(R)= 3 ror, = Tror+ L or
We assume no long range interactions so that the second term can be 0.

<I\"> = Nr’

<R2>|/2 ~ N|/2 Ik



Synthetic Polymer Chain Structure
(A Statistical Hierarchy)

<R2>112 ~ N2 |k

This function has the same origin as the function describing the root mean
square distance of a diffusion pathway

<R2>112 ~ tI/Z(ZD)IIZ

So the Kuhn length bears some resemblance to the diffusion coefficient

And the random walk polymer chain bears some resemblance to Brownian
Motion

The random chain is sometimes called a “Brownian Chain”, a drunken walk,
a random walk, a Gaussian Coil or Gaussian Chain among other names.



Random Walk Generator (Manias Penn State)

-Polymers do

- v -~
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not have a discrete size, shape or conformation.

-Looking at a single simulation of a polymer chain is of no use.

-We need to consider average features.

-Every feature of a polymer is subject to a statistical description.

-Scattering is a useful technique to quantify a polymer since it
describes structure from a statistically averaged perspective.


http://zeus.plmsc.psu.edu/~manias/MatSE443/Study/7.html

The Primary Structure for Synthetic Polymers

Worm-like Chain

Freely Jointed Chain

Freely Rotating Chain

Rotational Isomeric State Model Chain (RISM)
Persistent Chain

Kuhn Chain

These refer to the local state of the polymer chain.

Generally the chain is composed of chemical bonds
that are directional, that is they are rods connected at their ends.

These chemical steps combine to make an effective
rod-like base unit, the persistence length,

for any synthetic polymer chain (this is larger than the chemical step).

The persistence length can be measured in scattering
or can be inferred from rheology through the Kuhn length

Ik =21p



The Primary Structure for Synthetic Polymers
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The synthetic polymer is composed of linear bonds, covalent or ionic bonds have a direction.

Coupling these bonds into a chain involves some amount of memory of this direction for
each coupled bond.

Cumulatively this leads to a persistence length that is longer than an individual bond.

Observation of a persistence length requires that the persistence length is much larger than
the diameter of the chain. Persistence can be observed for worm-like micelles, synthetic
polymers, DNA but not for chain aggregates of nanoparticles, strings or fibers where the
diameter is on the order of the persistence length.

htp//wwweeno uc edu/~gbeaucac/Clacses/Introto
PonSci/Pictu resDNA.html


http://www.eng.uc.edu/~gbeaucag/Classes/IntrotoPolySci/PicturesDNA.html

The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
E(R) ( 3 V YRY
P (R) = exp| =—— (e 3V exed - HR)
s (R)=expl %] PR3] o :c..,r'|

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

3R’

Ew kT :
2nl;




The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
I(R) { 3 3 ‘\(R):'
P, (R) = exp| =—— (R | exd < 2R)
o (R) ”"l kT ) PR)=\ 3207 ‘1 Ao)

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

IR’
E wkT- R -
2nl;
Force '| = Force \ —
‘ AL “«
‘ f\u x S
("
\\ S’
) ) Assumptions:
= d_’ — 3KT R=k R -Gaussian Chain
dR nli w -Thermally Equilibrated

-Small Perturbation of Structure (so it
is still Gaussian after the deformation)



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
I(R) { 3 3 ‘\(R):'
P, (R) = exp| =—— (R | exd < 2R)
o (R) ”"l kT ) PR)=\ 3207 ‘1 Ao)

Use of P(R) to Calculate Moments:
(R")= [ R"P(R)dR
Mean is the |I’st Moment:

(R)= j RP(R)dR =0



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
E(R) PR ot
P (R) = exp| =—— (vl 31 eed _HR)
(k) “"i kT ) PR)=\3207) ’1 :(.,)’l

Use of P(R) to Calculate Moments:
(R")= IR"I’(R)(IR
Mean is the Ist Moment:
(Ry= [ RP(R)dR =0

This is a consequence of symmetry of the
Gaussian function about 0.



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
E(R) X )
P (R) = exp| =—— RVl 2 o HR)
n( ) k\l* AT ) I(R) I:.Yl"l : ‘1 :(.1)'

Use of P(R) to Calculate Moments:
(R")= [ R"P(R)dR
Mean Square is the 2’ndMoment:

<R:>= I R°P(R)dR = ii’;"‘, = N

f=0 =0



The Gaussian Chain

Gaussian Probability
For a Chain of End to End Distance R

/'m)-|1 - |' \\;1-"”‘" |

e T8 er)

Mean Square is the 2’ndMoment:

3
)

)= ) ‘jl\"‘cxp —:g dR

There is a problem to solve this integral since we can
solve an integral of the form k exp(kR) dR
R exp(kR2?) dR but not R? exp(kR?) dR

There is a trick to solve this integral that is of importance
to polymer science and to other random systems that
follow the Gaussian distribution.



JRePRar fﬂ”p{f—}m

(R:)- .‘ = - R:
:[ P.(R)dR j en{F)dk
These integrals require a trick to solve. First the integral is squared in x and y:

Gla)= jlcxp(-ax:)dx
(G(a)) f cxp(-ax )d.t I cxp(-m )d\ I dx I dy cxp(-a(\ +X ))d\

Then C aneswn coondmatcs are rcplaced wlth cm‘ulaf coordinates, r and 0,
(G(a)) - f rdr f dOexp(-ar ) =27 f rdrexp(-ar )

- % ~2ardrexp(-ar) = —[""l"("r )]- “a

Thcmlcgmlmthc nummtorcanbesolvcdbyanotbennck

H(a)= J: x* expl—ax®)dx = - d(;aa)

(3)

a2

and since G(«) = (x/a)'?, then H(a)- T so,witha=1/k*and x =R,

(%) IR “’( )" _Hl@) ka2 K

fu p( )d G(a) ke 2

http:/imww.eng uc.edu/~gbeaucag/CTlasses/Properties/GaussianProbabilityFunctionforEnd pdf

4)
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The Gaussian Chain

Gaussian Probability
For a Chain of End to End Distance R

YRY

"(R)-‘ 31:1' ') “‘1-3(-1;

Mean Square is the 2’nd Moment:

% 3R’

20°

dR =0’ =nl;




The Gaussian Chain

<R3>= nl;

Means that the coil size scales with n'/2
Or

Mass ~ n ~ Size?

Generally we say that

Mass ~ Sizedf
Where dfis the mass fractal dimension

A Gaussian Chain is a kind of 2-dimensional object like a disk.



The Gaussian Chain

(R*)=nl;

A Gaussian Chain is a kind of 2-dimensional object like a disk.

The difference between a Gaussian Chain and a disk lies
in other dimensions of the two objects.

Consider an electric current flowing through the chain, it
must follow a path of n steps. For a disk the current
follows a path of n'/? steps since it can short circuit
across the disk. If we call this short circuit path p we
have defined a connectivity dimension c such that:

pe~n

And c has a value of | for a linear chain and 2 for a disk



The Gaussian Chain

(R*)=nl;

A Gaussian Chain is a kind of 2-dimensional object like a disk.
A linear Gaussian Chain has a connectivity dimension of | while
the disk has a connectivity dimension of 2.

The minimum path p is a fractal object and has a dimension, dmin so that,
p~ Rdmin

For a Gaussian Chain dmin = 2 since p is the path n

For a disk dmin = | since the short circuit is a straight line.

We find that df = ¢ dmin
There are other scaling dimensions but they can all be related to two

independent structural scaling dimensions such as ¢ and dmin
or dmin and df
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How Complex Mass Fractal Structures
Can be Decomposed

Tortuosity Connectivity

e iy

J—d 0 R O 7
r = Cuin [E3 E (E3




B o Pt S Pam B Pbgnat Prgnn Vol W 1100 8100 1o

Fibers follow either Gaussian or Self-avoiding

structure depending on binding of fibers

Ngwee B Log 1w log ¢ piet far GMF with a0 ines

dont boam sormad 1 (he sample plane Sosling g Figure 5 Ovientation fsctin snd SALS s
- o owg Bllews good sivent soaling Mighq soaling  GMYF in crosssnction o & A o ¢ Dvepmedaoda
Selows Pwrod's lew TR sses the wnifed equation sk

e e foty - arel guralol arv woh reguet o e plase of e
Waw shrwrtare

Orientation partly governs separation

Pore size and fractal structure govern wicking

8 ’

»

Figere 1. Macrographs of GMF sample showing micron scale silion glass Shers = o
polymer Lie mat (a) SEM mirograph afler pold coating This siae scale corresponds o
e permstence regpase and the high ¢ end of e scaling regime (b1 Optical mecrograph 6. Cumulative

ot 207 This size scale would correspend (o the scaling regime of Figure 2 below SALS : pr- - 1




The Primary Structure for Synthetic Polymers

Short-Range Interactions

The persistence length is created due to interactions between
units of the chain that have similar chain indices

These interactions are termed “short-range interactions” because they
involve short distances along the chain minimum path

Short-range interactions lead to changes in the chain persistence. For example,

restrictions to bond rotation such as by the addition of short branches can lead to increases
in the persistence length in polymers like polyethylene. Short-range interactions can be
more subtle. For instance short branches in a polyester can disrupt a natural tendency to

form a helix leading to a reduction in the persistence length, that is making the chain more
flexible.

All interactions occur over short spatial distances, short-range interactions occur over
short-distances but the distinguishing feature is that they occur over short differences in
chain index.

Short-range interactions do not have an effect on the chain scaling.
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Short-Range Interactions

Consider the simplest form of short range interaction
We forbid the chain from the preceding step

Consider a chain as a series of steps ri
ri is a vector of length r and there are n such vectors in the chain

The mean value for ri+1 is O
(If.|>= ZA b, =0

bk is a unit vector in a coordinate system,
6 of these vectors in a cubic system
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Short-Range Interactions
K=Z
(r)= EHI" =0

For exclusion of the previous step this sum
does not equal 0

<" s >.‘~.’..v:..‘.-m - z: =1 I)‘ - () - ( <~ l )(r | )\).-.'urla'.m.\fIu.'r/..'.- Hion - r‘

SO

) |
< i+ 1/ ShortRangelnteraction ( P l )
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Short-Range Interactions

r

'

(i)
i+l ShortRangelmieraction ( P I )

For Gaussian Chain

<R"> = ZZ:;-:; = ZI;-I; + er'-r‘ yields <R3> = Nr’

For SRI Chain the first term is not 0.

>
”

b i 8, & = b » 2 2
(rer) = o (R) =22 (non)=2 2— =nbm 5 = Mg

-
-~

The second to the last equality is the result of the Sum of Geometric Progression Rule,
Iimn>eofa+ar+ar +.. =a/(l-r)
substituting x=1/(z-1) results in 2/(1-x) - | = 2(z-1)/(z-2) - | = 2/(z-2)

For Cartesian simulation z = 6 and befris 1.22 b so about a 25% increase for one step self-

avoidance. hetpy/wwweeng uc. edu~gheacag/ Classes/Physics/ Chapter | pf
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Short-Range Interactions

Short-Range Interactions
Increase the persistence length

Chain scaling is not effected by short-range interactions.

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction
-Steric interactions
-Tacticity

-Charge (poly electrolytes)
-Hydrogen bonds

-Helicity

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

Characteristic Ratio, C~

Table 2.1 C values lor some polymens wnder 2 _ 2 _ _ 2 _
Whete concilions N <R > - nKuhanuhn - LlKuhn - CoonBondlBond - CooLlBond
Polyme CMw x
L, —~ .
Polyethylene o Kuhn Effective
Polyethylencoxsde 40
Polystyrene. alactx wo l
Sonrce T 1199
iy C — _Kuhn
oo
Bond

Polymer physics

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

o | .k.
Aa= 1
'r'i PRS- a2
] R B oot G e % Aa=do
''''''''' A ‘.
' Sy we s C — lKuhn
o’ ., co _
.m . lBond
.CE-"' ............... :..."5:
"""" : The Characteristic Ratio varies with N
v - .\ ~ . .
Pigure 7. The persistence length plets Malond via 08 due to chain end effects. There is
padymors. . I8 The sirest ' i generally an increase in C with N and it
{he bending peashy. Lo from § (bottem). 4, 10 by plateaus at high molecular weight.

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction
-Steric interactions
-Tacticity

-Charge (poly electrolytes)
-Hydrogen bonds

-Helicity

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

Figure L.1: A simple polymer in the trans conformatson. Figure 1.2: Dihedral angle encrgy of n-butane

H H ¥ B H H i
\‘/ \\/ \\/ 0
Voo \ % |
NS ANS NS : J
I I‘l / / -
AR A NN
] ] ! ! B0 AN 0 0 w0 1IN 1w
H OH H H H H B N "
Py e
hetp//cbp.wutwente.nl/Polymeer Dictaat/node4 i K
]

Polyethylene

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

Energy (W met
Energy B wal'h

3 - e ™ e
Tornbon snghe (dogrees!

Pigwre 34 Condormationsl gy ol shdawe = »

K - i» - v » e
Torsion angle (dogrees)

P 1.3 Condimmatunmal svangy of ethane » & hoton

Arnctum of howvam anghe of 1he covival Carbon cafon bond
o e argle The onter carbum-caon bonds we sl 40 b o thew
weravam rargy Mabes aggered postoem)
H
H CH,
H
H
Ethane Butane
Polymer physics

By U''W. Godce

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

Characteristic Ratio, C~

Table 2.1 C values lor some polymens wnder 2 2 2
thals conditiors <R > = N kubn = LlKuhn - CoonBond Bond
Polyrme CM» xr

L, —~ .
Polyethylene o Kuhn Effective
Polyethylencoxsde 40
Polystyrene, alactx wo

\:.Nn..? (1909 C — lKMhl’l

oo

Bond

Polymer physics

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf

= Coo L lBond
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Short-Range Interactions

What kinds of short-range interactions can we expect

-Bond angle restriction
-Bond rotation restriction

C lKuhn Consider a freely rotating chain that has a bond
o l angle restriction of 109.5 °
Bond T scalar produ? of e 2 DErary sgmwet vecton
ranien
e -’ <14
wheee F. 5 B e taees B = baowad
vecton The tollowry watorsts a cttared by
combaing o (210 ad (104
x s T S -
| Foos + 4 Flom
-| +
o + - = - -
Polymer physics Eguation (2135) » ol 3 growrdl foomdtion and s

vald v any comtmeoe polymer chae

http://mww.eng.uc.edu/~gbeaucag/Tlasses/Physics/Chapter | pdf
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Short-Range Interactions

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =1t

(f L) = 1 cos(180 = 1) 109.5

<i’.i’,.,) = [* cos’(180 ~ 14 C — C
(e = Pleos(180 — 1)) '

(FY =l 4 217 '\‘ V [cos(180 — 7)) ~*

'r--l

I’ + P cos(180 = 1) 4+ 4 Pleos(180 — 1) "' 4
Peos180 ~ 1) 4 I o Pleos180 — 1" ' 4
- ' ' + 217
+
Fleos{180 = 0)* ' + 'e P’

Equation (1.18) can be senplified s lollows
The wmmation can be perfosmed over & sngle e

( f=imi 3 wet
varabde 1) by weblitubing y = { 2 V ._.;.,‘]
u‘,---"ll + ’.},'. ™ tu‘J @ :
LAY
-nl{lo S :‘— V l:‘]
where 3 » cos 1IN0 - 1) Y
{ W w )]
e RS
ll-:r‘ l-:,
Polymer physics P »  wg-ar
By UY' W Gesce =3 nQl=o
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Short-Range Interactions

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =1t

fn'aolwn (1185) can be senplind a5 lollows

'f"i'--"[l':.f -“""] For infinely long chatrs (v = )
' i3 . IL»2
--l-{lo S:‘-.‘—A,‘ e+ ]l‘“ll-;l
o Az — r'x;z('m- W om ) _J':uo-xa: ul -
L 2 RS - . Ao 1—a LI~ -~ 1)
[ 2 x _,r]
. )RR
- n{l-af
3
() = 2nl’
Table 2.1 C values lor some polymers under
heta condibions
Polyrmes CM= ) C lKuhn 1 40
M Polyethylene o? co - - .
High RJSEJ"ZFF'&HHW Polyethylensouide 40 Bondangles 1095° : 1045°
Lower Rot. Rexibility Pelystyrese. atact 100 Bond
ety A For a Freely Rotating Polyethylene Chain
Seeq 2T

http://books.google.com/books?id=lem3fC7XdnkC8pg=PA238pg=PA238dq—coil+expansion+actor
8source=bl&ats=BGRMZYalUssig=00Pb2VRuf8DmBgnrmrhyj XyECB8hi=en8sa=X8ei=fSVOT-
XgMMHWOCQH |- T_Ag8ved=0CFOQ6AEWBWHv=0nepage8q=coail7%620expansion?20factor8f=false

Polymer physics

By LYW G«
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Short-Range Interactions

Consider a freely rotating chain that has a bond
angle restriction of 109.5 ° =1t

3

Table 2.1 C values for some polymers under (r) 22"’1
thets conditonm
Folymeer CMm )y l

C — Kuhn
P ol oo, eve o o —
Polyeoh, woeonade 40
Polystysene stacti 100 Bond

Sowor Pary (1999 . . .
*Sor 0 37 If we consider restrictions to bond

rotation for first order interactions

C, = tmm 34

lBond

which o lower thun the experimentally obtained
07T 200" (Table 210 Agreement with expeni
mentd deta » obtained by a0 commidering
higher onder mberactions. Flory showed that an
anallysss wang second-order iteractions brings the
predicted data choser 10 the expermental data

http://books.google. com/books?id=lem3fC7XdnkC8pg=PA238&pg=PA238dq=coil+expansion+actor
8source=bl&ots=BGRZYaUBsig=I00Pb2VRufBDmBqnrmrhyj XyECB&hl=en8sa=X8ei=fSVOT-
XqMMHWOOQH |- T_Ag8ved=0CFOQ6AEWBWHv=0onepage8q=coil %20expansion’20factor&=false

Polymer physics

By LY W Geooe
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Short-Range Interactions

Table 2.1 C values for some polymers under
thets comdtomnm

Polymer CM= )y

Polyerd, wre o
Polyesh, wmeonade 4w
Polystyrene stactsx wo

Sowce Pory (1989
*Ser 0g 37

Polymer physics
By LYW Geooe
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Alexei Khokhlov in Soft and Fragile Matter (2000)

Contour length per monomer is 2 * bond length
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Short-Range Interactions

Persistence

Length, Ip
(Arun Yethiraj |. Chem. Phys. 125, 204901 (2006))

Several Definitions

definitons we = wrms of Be prosecton of B ond-o-ond
vecwoe, R, on 2 boad vector, averaged over all conformations.
Le,

L=(R-u), @

where u, 5 e (normadoed) doad vector betweesn saes & aad
kel Flory™ defined e pensbacace leagh a5 the svemge
propecsen of R oo s terior boad vecwer 8, far from any
cham ends, wihrle Yamalswa™ defined the penastence ioagth
=i, Lo Be projection of R oo B S boad One can also
defiae B ponatence losg® = toren of B bomd sagie cor-
mhition fencton, (cos Ms)), whare # s B anglc botwocn
Boad veciors scpurated By & sopmeats dlong B backbone
For = dcal seemfcaidlc cham (oon M) ~expl-s/A )
where A, & 3 poniicace lesgh

For B purpones of compuring Bhe stiffacss of solecsles
wih Sficrent lkong® and spucing of braachos, we dofine e
porastence long, [ © sormn of S wormhike cham s S
model. ' the mean-square end-to-end dstance. (A°), is given
B

L 1
)= NG -3, o

whore L & S contosr loagth and A s 3 peramcter Shat chae-
acurises he stiffacs. We dofine e ponastonce longh &
twice e value of [, for B model ie,

I- i(l -, «@)

1 Pory, Ssecal Me of Ohatn M ® e mToenc
_ New York, e
TH Yemdbaea Mo Ty of Podvmer Soduiums Harges & R
New York 971
TO Ky wni G Pumd Rk Tis O Puys B 68 1006 (1549,

-Appendix of Flory’s book, lin.
-Yamakawa's book is online, 11.

-Bond Angle Correlation, AC.
~Kratky-Porod Worm-like Chain Model, Ip.
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Scattering Observation of the Persistence Length

——

PR Pt o
“ Ry 1

TR
QA

Figure 2. Kratky/Porod graphical analysis in a log-log plot of corrected SANS data from a

5% by volume d-PHB sample in h-PHB. The lower power -2 line is the best visual estimate;

the wpper line is shifted to match a global unified fit. Key: left, ¢* corresponds to best viswal

estimate; right, plot to match global wnified fit. The statistical error in the data is shown [3]

A power-law decay of -1 slope has only one structural interpretation.
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Consider a Brownian path with an index or continuous postion variable "s", For the simulated walks "s" is the time, For
a polymer chain "s* is the chain index. Next consider an arbitrary origin of a coordinate system (0,0,0) and vectors to
positions of the walk r(s). The unit tangent vector to the walk, t(s), is defined by,

i(s)=

dr(s)
as ()

@ |

G9,0)
Figure 1. Brownian Path.
The end-t0-end distance for the Brownian path is given by,

L
R = fi(s)ds
° )



hetpi//www.eng.uc.edu/~gbeaucag/Classes/Morphologyof ComplextMaterials/Persistence/Persistence h
The auto-correlation function for the tangent vector can be written,

(1(s)*2(0)) =" .

if a linear decay in correlation can be assumed. That is,

A(1910)) =910

The persistence length is then similar to the linear absorption coefficient for radiation.

@)

(2) and (3) can be used to calculate the mean square end-to-end distance R?,

(R*)=(R*R)= <_Zi(s)ds° Zi(s')ds'> = j'(dsj'(i(s) . i(s'))ds') = .Z'(ds‘z'ex{-kl: S1)ds']

0 0

l -1
=2I,L(l-—"(l-e "))-ZI L
L P

We also can consider that for a freely jointed chain composed of ng Kuhn steps of length Ik,
2 2
(R*)=nyly =, L =21 L

Showing that the freely jointed Kuhn length is just twice the persistence length.



Other measures of Local Structure

Kuhn Length, Persistence Length: Static measure of step size
Tube Diameter: Dynamic measure of chain lateral size

Packing Length: Combination of static and dynamic measure of local structure



Packing Length and Tube Diameter

Chain dynamics in the melt can be described by a small set of “physically motivated,
material-specific paramters”

Tube Diameter dt
Kuhn Length Ik
Packing Length p

r~j;.-»_.-._-_ <3 T - Adterzral aratetsr

Loor Rewe s o Lol Mecolln Bleolooe



http://www.eng.uc.edu/~gbeaucag/Classes/MorphologyofComplexMaterials/SukumaranScience.pdf
http://sor.scitation.org/doi/pdf/10.1122/1.1567750

Strobel Chapter 8
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u reflects Rouse behavior. In plots versus u,

deviations from ideal Rouse Behavior indicate

tube constraints.
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Quasi-elastic neutron scattering data
demonstrating the existence of the tube

Unconstrained motion => $(q) goes to 0 at very long times
Each curve is for a different q = |/size

At small size there are less constraints (within the tube)

At large sizes there is substantial constraint (the tube)

By extrapolation to high times
a size for the tube can be obtained
dr





http://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-080615-034429

Py o0 S 2 Wt b dow sl e ong W
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There are two regimes of hierarchy in time dependence
Small-scale unconstrained Rouse behavior
Large-scale tube behavior

We say that the tube follows a “primitive path”
This path can “relax” in time =Tube relaxation or Tube Renewal

A model called Tube Dilation also exists to describe deviations between the
tube model and experiment

Without tube renewal the Reptation model predicts that viscosity follows N*
(observed is N34)
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Without tube renewal the Reptation model predicts that viscosity follows N3 (observed is N34)



el Chapter 8 Microscopie Dysasmioal Models
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Pig. 612 [vterminaton of diffusion cocffokenns of deutermted 'E's in a PFE motcks
by balared aleorption messarements in & mxsoscope Concestration profiles &5
o btadnod o e peporoted sato ot the bogin of o dilfusion run and ot o laler stage
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the devaations are due to polydisperrity) (Eft), Diffurion codfficents at 7 = 176°C,
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e continimons Ane corresponds to a power law D ~ M7 Waoek of Kivin 68

Fick’s Second Law

Reptation predicts that the diffusion coefficient will follow N? (Experimentally it follows N?2)

Reptation has some experimental verification

Where it is not verified we understand that tube renewal is the main issue.

(Rouse Model predicts D ~ I/N)



Reptation of DNA in a concentrated solution

G4 Hydrodynamic Interaciion in Solistions
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Simulation of the tube

Fig. 3. Result of the primitive-path
of a melt of 200 chains of
N + 1 = 350 beads. We show the
primitive path of one chain SM)
together with all of those it is
entangled with (blue). The primi-
tive paths of all other chains in the
system are shown as thin lines,



Fig. . A representative amorphous polymer sample and the correspond
ing network of primitive paths

Simulation of the tube



Packing Length

Orrigin of the Packing Length:

Theor

f Stress Distri jon in Block lymer Microdomains.W.itten TA. Milner ST.Wang Z- R

Consider a di-block copolymer domain interface
(and blends with homopolymers as a compatibilizer)

(a) A B
M_,V
s [ ' L ¢ C )
/. >
(c) =

m n N , P 'y - x -
G = =% J 19 H [ v e - § [ §-

http://pubs.rsc.org/en/content/articlehtm|/2012/cs/c2cs35115¢

56



(b)

fa
Fig. 3 Schematic illustration of the possible polymer chain arrangements in different
morphologics of AB diblocks changing from sphere (a) to cylinder (b) and to lamella (c), as
the volume fraction (f,) of the A block (black) increases to ~0.5. The dash curve in cach
morphology represents a part of the interface between A and B domains. The concept of this
figure originates from ref, 24. This reference contributes to BCP sclf-assembly in solution,
and is cited accordingly in Section 3.1.

http://pubs.rsc.org/en/content/articlehtm|/2012/cs/c2cs35115¢



Free Energy Contributions:
Interfacial Energy Proportional to the Total Surface Area
(makes domains large to reduce surface area)
Sur = ykTAdv/Ve
dt 1s the thickness of the interfacial layer where the A-B junction is located
A is the cross sectional area of a polymer chain
V¢ is the occupied volume of a unit segment of a polymer chain
The total occupied volume of a block copolymer chain is Voccupied = NAB V;
This occupied volume is also given by Voccupied = daB A where daB is the length of the block
copolymer chain assuming it forms a cylindrical shaped object and the block copolymer domain
spacing.

Energy of Elongation of Polymer Chains, Elastic Energy

(makes domains small)

Assumes that one end is at the interface and the other end must fill the space.
Chain = -3kT das?/(2<R?>) = -3kT NasV%/(Ik2A2)

dae = NaeVc/A from above and <R?> = Naslk?2

The free energy will be minimized in A to obtain the optimum phase size das. So it is the
packing of the chains at the interface that governs the phase behavior of BCP’s.

AG/KT = ykTAdv/Ve - 3kT NasV/(2(IkA) 2

d(AG/KT)/dA = 7dd/Ve + 3 NasVe/(I2A%) = 0

A = {3 NasV¥/(Ik¥ydi)}'"3

das = NaBVc/A = Nas?3/(3Ik?yd:) '3 This is verified by experiment (Hashimoto papers)



Three terms arise from the consideration of microphase separation

A is the cross sectional area of a polymer chain
V¢ is the occupied volume of a unit segment of a polymer chain
Voccupied = NAB Ve The total occupied volume of a block copolymer chain

Witten defines a term “a” that he calls the intrinsic elasticity of a polymer chain
Elastic Energy/(3kT) = a <R?>/(2Voccupied) Where a =Voceupied/<R0>> = Voccupied/(NK 1k?)
(Previously we had the spring constant Kspr/KT = 3/<R0?> = 3a/Voccupied; a = Kspr Voccupied/3)

“a” has units of length and is termed by Witten the “packing length” since it relates to the

packing or occupied volume for a chain unit, Voccupied.
volume and the molar mass as measured by <Ro?>.

a” is a ratio between the packing

Since Voccupied = Nk V¢, and <Ro?> = Nk Ik?, then a = V¢/Ik?, so the packing length relates to
the lateral occupied size of a Kuhn unit, the lateral distance to the next chain. This is a kind
of “mesh size” for the polymer melt. The cross sectional area, A, is defined by “a”, A = na?,
and V¢ = a Ik?, so the BCP phase size problem can be solved using only the parameter “a”.




Other uses for the packing length

The packing length is a fundamental parameter for calculation of dynamics for a
polymer melt or concentrated solution.

Plateau modulus of a polymer melt G ~ 0.39 kT/a3

Structural Control of “a”
a = mo/(p Ik lo)
Vary mass per chain length, mo/lo

Theorx of Stress Distribution in Block CoBolxmer MicrodomainsIWitten TAI Milner STIWanﬁ Z-G B'656

Lin.Y-H Macro.20 3080 (1987

Lohse DT ‘.Macromol. Sci. Part C PoIKm.Rev. 45 298 ‘2005‘.


file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/Lin_ma00178a024_PackingLength.pdf
file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/Lohse%20Review%202005%2018807217.pdf
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Fig: 5,12, General shinpe of the complete creep curve of PS, as suggosted by the
appearance of the different parts shown in Fig 5.11

o’

Fig. 5.15. Storage shear moduli measured for & series of fractions of PS with dif-
ferent melocular weights in the range M = 89 10" o M = 551 - 10°, The dashed
Iine in the upper right corner indicates the slope corrmponding to the power law
Eq. (681) derived for the Rouwse-model of the ghass transition. Data frem Onogi ot
al [54)

Strobl, Physics of Polymers
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We thus find dharacterintic power lees also for the sornge and the s md
whes which again inchede JT and n 1n & well-Solund ey

Ove many woeder i gy and J7 can s be dodaced from the tizse Sependens
sosporse Sanctions, s for example from GIr) Indeed. drwct relationsdips
exit exposed by the Do eqpast oo

Low Frequency G’ ~ w?
From definition of viscoelastic

High Frequency G’ ~ w'”?
From Rouse Theory for Tg

Plateau follows rubber elasticity
G’ ~ 3kT/(Nk.e Ik?)



Plateau Modulus

Not Dependent on N, Depends on T and concentration

10*
0*
o
£ w
. T RT
3 10° Go=4pR =4 :
‘:' SM, 5p
- 1P 1 1 1 1 1
w* 1w w0 0’ 10° 10*
ols’)

Fig. 5.15. Storage shear moduli measured for a series of fractions of PS with dif-
ferent molecular weights in the range M = 8.9- 10" to M = 5.81 - 10°. The dashed
line in the upper right corner indicates the slope corresponding to the power law
Eq. (6.81) derived for the Rouse-model of the glass-transition. Data from Onogi et
al.[54)
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in computer simulation 10" 10° 10
of melts
(35, 36) E’ uauoml- /P
atomistic melt (37) (©) under an elongational strain; and (il) predictions of the tube
model £ 1 on the of our primitive-path analysis for melts (w), bead-spring
semidilute solutions (@), and the semi-atomistic melt (¢). ne indicates the best fit
to the experimental data for polymer melts by Fetters et al. (24). Errors for all the simulation data are
smaller than the symbol size.

this implies that dT ~ p



Kuhn Length- conformations of chains <R%> = IkL

Packing Length- length were polymers interpenetrate p = |/(pchain <R%>)
where pchain is the number density of monomers
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— Ry —

dilute polyelectrolyte with no sait

Fig. 1 Conformations of polymers in dilute solution. Neutrzal
polymers in poor solvent collapse into dense coils with size
=bN'" (purple). Neutral polymers in 8-solvent are random walks
with ideal end-to-end distance Ry = bN'/2 (black). Neutral poly-
mers in good solvent are self-avoiding walks with Flory end-to-
end distance Ry = bN"% (red). Polyelectrolytes with no salt
adopt the highly extended directed random walk conformation
(blue) with length L proportional to N


http://www.eng.uc.edu/~beaucag/Classes/Properties/Colby%20c*%20vs%20ce%20polyelectrolytes%20Review.pdf

Summary






Short Course on Polymer Physics
Dire Dawa University

Greg Beaucage
Prof. of Chemical and Materials Engineering
University of Cincinnati, Cincinnati OH

December 10 2 hours (General Descriptions)
Physical description of an isolated polymer chain

Dimensionality and fractals
Short-range and long-range interactions
Packing length and tube diameter

December 11 2 hours (Some Theoretical Basis)
Questions

Long-range interactions and chain scaling

Flory-Krigbaum theory

The semi-dilute and concentrated regimes

Blob theory (the tensile, concentration, and thermal blobs)
Coil collapse/protein folding

Questions



Long Range Interactions
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The Secondary Structure for Synthetic Polymers
Long-Range Interactions

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System

l;(R)‘

I’..(R)-c\p{-T | I’(R)-‘ :

- r
<No

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

IR’

E = AkT -
2nl;

For a Chain with Long-Range Interactions There is and Additional Term

) 4 nlnfi-V /R") 'y
Py (R)=(1=V /R") -c\[1—:-. ~exp - 25|
So,
E - ‘li IR o= } Flory-Krigbaum Theory
) | ZNI: 2R’ Result is called a Self-Avoiding Walk

For a Chain of End to End Distance R

|)’.f ﬂr‘ _ ,‘(R): '

2o ):

Number of pairs

n(n-1)

2!

R ~lkn"”
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wmummmmgmmak’amuwmormw
possible for chains of N steps, Z°,

- ) Y

of this number the fraction which follow self-avoidance is p(R) = (1 - V/R')™™ " where V. is the
volume of one segment of the chain so (1- VfR')islhcprohbulhyoﬂhcchdanom
andlhisismsodblhcloﬂlnnmbaofpm combinations of two segment pairs,

v-1)2!. This function for p(R) can be expressed as an

r(R)-e-p['A(N l)hl -L] a,( ’;’_:‘g\

where the second equali ua!hebctdmfotlnlllx.h(l-x)--x.udhhw&
(NI)->N W(R)dR for the excluded volume chain can be estimated by W (R)p(R)dR and

are expressed as exponentials the powers sum leading to,
RN
N ZR‘I
The derivative of W (R) will 10 mt R, = 13)'%. This Is proportional 10 N'°b
expocted. s&; (da)imlwno:.\\f(l)b yidgm’ - "

W(R)MR = W,(R)p(R)AR = kR a.;{

2N AR”
Rearranging and substituting R", yields,

(&) -(R) -5 %

hﬁplmu”ﬁhcﬂmmhip«dﬁmmwmsmm

+1=0

ey \®

This crivical result was first noted by Flory and Krigbaum and its development is termed Flory-
Krighaum theory
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The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain
Random Walk

Self-Avoiding Walk Theta-Condition

Good Solvent Brownian Chain

Expanded Coll (The Normal Condition in the Melt/Solid)

(The Normal Condition in Solution)
g s N N2
R ~lkn (R*)=NI

d, =, =~167 d, =2

These are statistical features. That is, a single simulation of a SAW and a GC could look
identical.
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The Secondary Structure for Synthetic Polymers

Linear Polymer Chains have Two Possible Secondary Structure States:

Gaussian Chain

Self-Avoiding Walk Random Walk

Good Solvent Theta-Condition

Expanded Coil Brownian Chain

(The Normal Condition in Solution) (The Normal Condition in the Melt/Solid)

R"~Ikn"" (R*)= NP

d, =, =~167 d, =2

Consider going from dilute conditions, c < c*, to the melt by increasing concentration.

The transition in chain size is gradual not discrete.

Synthetic polymers at thermal equilibrium accommodate concentration changes through a scaling transition.
Primary, Secondary, Tertiary Structures.
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Temperonse (°C)

Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperatwre for

polystyrene in cyclohexane. Vertical line indicates the phase separation temperature, From

Reference [21).



95

We have considered an athermal hard core potential

3IR° Vv
E = k1| !+”
n

Ynl® IR’
> 2R

ButVc actually has an inverse temperature component associated with enthalpic interactions
between monomers and solvent molecules

The interaction energy between a monomer and the polymer/solvent system is on average
<E(R)> for a given end-to-end distance R (defining a conformational state). This modifies

the probability of a chain having an end-to-end distance R by the Boltzmann probability,

—(E(R
Pytoman (R) = exp(%j

<E(R)> is made up of pp, ps, ss interactions with an average change in energy on solvation of
a polymer Age = (epptess-2€ps)/2

For a monomer with z sites of interaction we can define a unitless energy parameter
X = zAe/kT that reflects the average enthalpy of interaction per kT for a monomer



For a monomer with z sites of interaction we can define a unitless energy parameter
X = zAe/kT that reflects the average enthalpy of interaction per kT for a monomer

The volume fraction of monomers in the polymer coil is nVc/R3
And there are n monomers in the chain with a conformational state of end-to-end distance

R so,
(EQR)) _n’V,x
kT R’

We can then write the energy of the chain as,

v (1/
E(R)=kT ;ZZJFHVC(? Z)

This indicates that when x = 2 the coil acts as if it were an ideal chain, excluded volume
disappears. This condition is called the theta-state and the temperature where x = Y2 is
called the theta-temperature. It is a critical point for the polymer coil in solution.



97

& e
®w * - * ©
Tempenge (°0)

Figure 3. Radius of gyration, R, and hkydrodyamic radius R, wersus temperature for
polystyrene in cyclohexane. Vertical ime indicates the phase separation temperature. From
Reference [21].



Flory Krigbaum prediction (left) and experimental measurement (right)

98



99

Widing. Muler. and Dnder Poymer  soivent critica’ Dot Darsrmeters
J. Chom. Phys. Vol 106, No. 2. B Jsy 1996

Flory-Huggins Equation

L
N
- =2 1ng, + 25 1ng, + 0,0,
N kTN N A N B ATB
\ cells A B
dﬁ_G=o Miscibility Limit
9 Binodal
d*AG
—=0 Spinodal
do
[} <N 3
A d’AG
® a5 =0 Critical Point

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatare 7 and the volume fraction @. The COSXISISECS CUrve scparsies a
dilute solution of collapsed chains [at &, ] from a sermdalute solution of
overlapping chains [at 82, ] These two branches of the coexistence curve
merge at a cnitical poimt 7.(V), @.(N). For N = the crical point merges
with the ©® pomt of a dilute polymer solution [T (N-+%)-0,
S (N—+m)—0] and the unmuxing transition has a tncnitical character. At
=8, the cham contgurations are ideal Gaussian conls, while thewr struc-
ture at T (N) 1s nontrivial.

All three equalities apply
At the critical point

" ; _— .


http://rkt.chem.ox.ac.uk/lectures/liqsolns/regular_solutions.html

Widing. Misler. and Dnder Polymer - soivent criical Dot parameters
J. Chom. Phys. Vol 106, No 2. 8 Jsy 1996

°!\\ """""" T.AN)=0/(1+1/JN)}=~0-20/YN, N—o=, (1)
\\\ & (N)=1/(1+N)=1/\JN, Nowx. 2)

0 ) °

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction @. The coexistence curve scparates a
dilste solution of collapsed chairs [at &, ] from a sermidilute solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a entcal point T.(N), @.(V). For N—= the crtical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-80,
S (N-—+m)—0] and the unmuxing transiton has a tricritical character. At
=8, the chamn confgurations are wdeal Gaussian conls, while thew struc-
ture at T(N) 1s nontrivial.
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Widing. Misler. and Dnder Polymer - soivent criical Dot parameters
J. Chom. Phys. Vol 106, No 2. 8 Jsy 1996

4\\ """""" T.AN)=0/(1+1/JN)}=~0-20/YN, N—o=, (1)
NoN—==-
N S (N)=1/(1+ W)= 1N, Noe, @)

one - phase regon

Tc=6(1-20¢

inear Relationship

B

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction @. The coexistence curve scparates a
dilste solution of collapsed chairs [at &, ] from a sermidilute solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a entcal point T.(V), &.(V). For ¥—= the cntical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
& (N—+®)—0] and the unmuxing transition has a tricritical character. At
T=8, the cham contgurations are wdeal Gaussian couls, while thew struc-
sure at T (N) 1s nontrivial
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Widng Muler. and Dnder Porymer soivent crifica’ Dot Darameters
J. Crom. Phrys., Vol 106, No. 2. B Juy 1996

AN TAN)=0/(1+1N)*~0-20/YN, N—w=, (1)
.
N . (N)=1/(1+N)=1/\N, N—ow, )
L™

¢ L
’ 2

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction @. The COSXISISECS CUrve sCparses a
élute solution of collapsed chairs [at &, ] from a serudilate solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a cnucal poimt T.(N), #.(N). For N = the cntical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
S (N—+m)—0] and the unmuxing transition has a tncnitical character. At

T=8, the chan confgurations are wdeal Gaussian conls, while thew struc-

ture at T(N) 15 nontrivaal

Overlap Composition

Consider also ®" which is the coil
composition, generally below the
critical composition for normal n
or N

n n

e =
¢ V R

ez
n 73 (for good solvents)

_1
or ~n % (for theta solvents)



Widing. Mtlor. and Dinder Polymer - s0ivent critica’ Dot parsmeters
J. Crom. Prs., Vol 106, No. 2. B Ay 1696

°"’§.‘\' - TAN)=0/(1+1/N)}=~0-20/JyN, Nox=, (1)
NoN—==-
AN & (N)=1/(1+N)=1/\JN, Nowx. 2)

Overlap Composition

Both (D*and Ocdepend on
1/VN

*
Below ® the composition is
fixed since the coil can not be
diluted!

o M ®

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
cmperatare 7 and the volume fraction @. The coexistence curve separstes a
dilute solution of collapsed chairs [at &, ] from a sermdilute solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a cnucal poimt T.(N), #.(N). For N = the cntical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
& (N—+m=)—0] and the unmxing transition has a tricritical character. At
T=8, the chamn contgurations are ideal Gaussian couls, while thew struc-
ture at T(N) 1s nontrivial.
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Widng Muler. and Dinder Porymer sovent crilics’ Dot parameters
J. Crom. Prs., Vol 106, No. 2. B Ay 1696

Coil
Collapse

o N

2

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction é. The coexistence curve scparates a
dilute solution of collapsed chairs [at &, ] from a sermdilute solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a cnucal poimt T(N), #.(V). For N—+= the crtical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
S (N-—+=)—0] and the unmuxing transition has a trcritical character. At
T=8, the chan contgurations are ideal Gaussian couls, while thew struc-
ture at T(N) 1s nontrivial.

°"'§f S TAN)=0/(1+1/N)*~0-20/JN, N,
AN . (N)=1/(1+yN)=1/\/N, N—oow,

Overlap Composition

Both (D*and Ocdepend on
1/VN

*
Below ® the composition is
fixed since the coil can not be
diluted!

So there is a regime of coil
collapse below the binodal at
(D*in composition and
temperature

(1)
(2)
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Widng Muler. and Dinder Porymer sovent crilics’ Dot parameters
J. Chom. Phys. Vol 106, No. 2. B Ay 1996

GS-Coil
o ..... L
N TAN)=0/(1+1/yN)*~0-20/N, N—x,
oil\(.-‘-
| NG S.(N)=1/(1+yN)~1/JN, N—c.
L™
Overlap Composition

Coil "
Collapse Both ® and ®cdepend on

¢ o" ®

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction é. The coexistence curve scparates a
élste solution of collapsed chairs [at &, ] from a serudibste solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a cnitical poimt 7.(V), @.(N). For N = the crical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
& (N—+®)—0] and the unmaxing transiton has a ticritical character. At
T=8, the chan conEgurations are ideal Gaussian couls, while thew struc-
ture at T (N) 1s nontrivial.

1/VN

*
Below @ the composition is
fixed since the coil can not be
diluted!

So there is a regime of coil
collapse below the binodal at
(D*in composition and
temperature

(1)
(2)



For a polymer in solution there is an inherent concentration to the chain
since the chain contains some solvent

The polymer concentration is Mass/Volume, within a chain

. d
Mass Mass Size’ 3

. d -
~ Size”’

I* e
CcT= = =
. 3 . 3

Volume  Size Size

_ n(|_3/df)

Cc*

W hen the solution concentration matches c* the chains “overlap”

Then an individual chain is can not be resolved and the chains entangle

This is called a concentrated solution, the regime near c* is called semi-dilute
and the regime below c* is called dilute
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In concentrated solutions with chain overlap
chain entanglements lead to a higher solution viscosity

- E
- -
o | i
" e ; / ¢
=0 b
we ;
mv"' 1 .; 100 :

clgdl™

E .wmumsw@“m '
Figure 11.17 er " seihyl il
mo'tﬂ!"“““"mmmm‘m;:
concent sid-wlaion ((3) dsta marks the critizal coscentrilion,
s case).

J.R. Fried Introduction to Polymer Science
P
n~c

P=1forc<c*



Shadowgraph images from the capillary breakup of 2 0.2 wt. % polyethylene cxide (PEQ, Mw= 4 x 106 g/mol) In a 60/40 wt, %
glycerol/water solution, Images are taken at t = -0.05 0.25 043, and 0.65 s (cf Fig. 4). The size of the images i 0.55 % 1.1 mm. The
horizontal knes in the second image indicate the region shown in Fig. 5. The last image shows the final instability of the viscoelastic
thread when many small droplets are formed.
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How does a polymer chain respond to external perturbation?



The Gaussian Chain

Boltzman Probability Gaussian Probability
For a Thermally Equilibrated System For a Chain of End to End Distance R
E(R) (3 XRY)
P (R)=exp| =—— (Rl | exed <)
+(R) ‘\'){ kT ) ) Il.m'l ‘1 o)

By Comparison The Energy to stretch a Thermally Equilibrated Chain Can be Written

-
E wkT- R -
2nl;
Force | e O Force \ .
‘ '\\* X o=
P
"
) ) Assumptions:
F = d_’ — 3KT R=k R -Gaussian Chain
dR nli w -Thermally Equilibrated

-Small Perturbation of Structure (so
it is still Gaussian after the deformation)



For Larger Perturbations of Structure

Tensile Blob -At small scales, small lever arm, structure remains Gaussian
-At large scales, large lever arm, structure becomes linear
Perturbation of Structure leads to a structural transition at a
size scale 5

o 2nl; dR nl;

-
-
A
»
5
w

For weak perturbations of the chain R « n | =8

kT
F

‘_In

Application of an external stress to the ends of a chain
create a transition size where the coil goes from Gaussian

to Linear called the Tensile Blob.



Because the mechanical response of a polymer chain depends on its size or mass, n

F=d—E= 3k?R=ks R
dR  nl; ?
" nly

Mechanical deformation leads to a transition size scale, {

-
S Tensile

For sizes smaller than { the structure is not perturbed.



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n,and will lead to a
transition size scale called a ‘blob’. There are three classic types of blobs: Thermal
blob (de Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, {

3kT
él'rnul( S e

F

For sizes smaller than C the structure is not perturbed.



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n,and will lead to a
transition size scale called a ‘blob’. There are three classic types of blobs: Thermal
blob (de Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, {

: —
) Tensile

SKT:
3

For sizes smaller than T the structure is not perturbed.

Overlap concentration depends on size so depending on sub-segment size a chain
component can be in dilute (low n, df = 5/3) or concentrated (high n, df = 2) regimes

%

n n

C*N—N—:n_
R 5



This can be generalized to say that any response of a polymer chain (or any other
mass fractal structure) will depend on its size or mass, n,and will lead to a
transition size scale called a ‘blob’. There are three classic types of blobs: Thermal
blob (de Gennes), Concentration blob (Edwards) and Tensile blob (Pincus)

Mechanical deformation leads to a transition size scale, {

3kT

< ot
S'I'nml( B

F

For sizes smaller than T the structure is not perturbed.

Chain Energy depends on size so depending on sub-segment size a chain component
can have large excluded volume component and be in good solvent (high n, df = 5/3)

regime or small excluded volume component and be in theta solvent (low n, df = 2)
regime

+
2nl* R’

pw=ia] 2 a2)






Semi-Dilute Solution Chain Statistics



In dilute solution the coil contains a concentration c* ~ |/[n]

c*=kn/R =kn™" for good solvent conditions

For semi-dilute solution the coil contains a concentration ¢ > c*

At large sizes the coil acts as if it were in a concentrated solution (c>>>c*),dr = 2. At
small sizes the coil acts as if it were in a dilute solution, df = 5/3. There is a size scale, &,
where this “scaling transition” occurs.

We have a primary structure of rod-like units, a secondary structure of expanded coil
and a tertiary structure of Gaussian Chains.

What is the value of €?

¢ is related to the coil size R since it has a limiting value of R for ¢ < c* and has a scaling
relationship with the reduced concentration c/c*

£~R (C:"C")? ~ (3H4PYS

There are no dependencies on n above c* so (3+4P)/5 = 0 and P = -3/4

E~R(c/c*)™”



Coil Size in terms of the concentration

R =& n."“ = Reo (c/c*)** (c/c*)™ = Ryo (c/c*) ™"

This is called the “Concentration Blob”



J. Physique 43 (1982)531 - 538

Star shaped polymers :
a model for the conformation and its concentration dependence

M. Dacwd and ) P Comon
Laborstere Live-Brillosin, CEN Sachy, 91191 OF wer Yveue Coder, Frasce

Fig 1. — A representation of our model : every branch s
made of a succession of blobs with a size { increasing from
the centre of the star to the outside

Abstract. — We propose a model giving the conformation of a star shaped polymer by taking mto account the
radial variation of the monomer comcentration ¢(r).

For an solated star when increasing r(at the centre of the star 7 = 0), the variation of g(r) is first given by a constant
valoe (r < [ /) then has a (r/)"" variation (for f*? 1 < r < 17 ¢"' 1) and finally a (7/1)"** variation (for
r> fY3¢71 1), where f is the number of branches, N the nember of monomers in a branch and v and / are the
excluded volume and the length associated to a monomer. For all these cases, it is shown that the size of a branch
s always larger than that of a lisear polymer made of N monomers,

Beyoad the overlapping concentration the star conformation is obtained from two characteristic lengths essen-
tially : y(c) a radius inside which the branches of the other stars do not penetrate, this radius defines a domain
where the conformation of a star is similar to that of an isolated one. Beyond x(c) the interpenetration of branches
is characterized by a screening length {(c) very similar to that found for semi-dilute solutsons of linear polymers.
For all these regimes the variation of the size of a star s predicted as a function of N, £ vand .






Thermal Blob
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Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperatwre for

polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21).

Chain expands from the theta condition to fully expanded gradually.
At small scales it is Gaussian, at large scales expanded (opposite of concentration blob).

f 3 2 N . [ 3R? \ |-2A-’
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2nl, 2R \ T .
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Thermal Blob
Ae= (EN' + eu‘)/z'fps

Ae
T

V.:-hdp ",‘("21)

n'V (1=

A A

Eak 3R;
2nl;

2R

21))

1
»

) %
Terrgerchure (°C)




Thermal Blob

(3R 0’V (1=2%))
PN LA ‘)l
| 2nl, 2R

Energy Depends on n, a chain with a mer unit of length | and n = 10000
could be re cast (renormalized) as a chain of unit length 100 and n = 100
The energy changes with n so depends on the definition of the base unit

Smaller chain segments have less entropy so phase separate first.
We expect the chain to become Gaussian on small scales first.
This is the opposite of the concentration blob.

Cooling an expanded coil leads to local chain structure collapsing to a Gaussian structure first.
As the temperature drops further the Gaussian blob becomes larger until the entire chain is

Gaussian at the theta temperature.



Thermal Blob

A
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Flory-Krigbaum Theory yields: R =V A (l - ?_x)..'/( N;,'--"s,

By equating these:
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=

/
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Temperature

see V(Y% 2)

Lower-Critical Solution Temperature (LCST)

E(R)=kT ViR T
AG 9, ¢
———="21n¢, +-21Ing, +
R T PR
ra
‘I‘f \“ \‘
o
LCST
UCST
el hf—'cq'.{."
Ac...l_‘\:l ' w%‘&
0 Composition

Polymers can order or disorder on
mixing leading to a noncombinatorial
entropy term,A in the interaction
parameter.

B
=A+—
X T

If the polymer orders on mixing then A
is positive and the energy is lowered.

If the polymer-solvent shows a specific
interaction then B can be negative.

This Positive A and Negative B favors
mixing at low temperature and
demixing at high temperature, LCST
behavior.



Temperature
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Lower-Critical Solution Temperature (LCST)
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O
e
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-""'-".'-_""_77,‘---- Q“'o. 3
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O ) *\ f"’b
Sy e N Poly vinyl methyl ether/Water
. PVME/PS
Composition 1


http://www.sigmaaldrich.com/technical-documents/articles/material-matters/poly-n-isopropylacrylamide.html

(14 H ”

What Happens to the left of the theta temperature?

) R2 R2

Grosberg uses: o = Rather than the normal definition used by Flory: ¢y =

R R

B T M Tem—

i

* - \- P ;f

Figure 3. Radius of gyration, R, and hkydrodyamic radius R, versus temperature for
polystyrene in cyclohexane. Vertical lime indicates the phase separation temperature. From
Reference [21].
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The Flory Krigbaum expression for the free energy of a self-avoiding chain is given by,

2V, (1-22)kT  3RAT

FR)= "% 2

=U(R)~TS(R) (1)
Equation (1) can be rewritten using the coil expansion cocfficient, a,

Qe —-— 2)

vi i
Fla) 2 BKT  3a’kT

-t wUla)-15(a) 3)

where B is the second virial coefficient,

B=V,(1-2%) @)

Finding the minimum in the free energy expression, equation (3), yields the most probable value

fora,

v2p\\?
a-(‘l—.") )

R~R,a=7"ba~z"B"b



The virial expansion of the enthalpic interactions is given by,

kTR'Bz" 7' "BkT

U(a):‘,("'kr[n:8+n.c‘.,,]m‘cv‘an:B‘ - - -
R 2a’l

(6)

where n is the segmental density in the coil and Vi, is the volume of the coil. The second virial
cocfTicient describes binary interactions and the third vinial coefficient describes temnary
interactions. In dilute conditions we can ignore the higher order interactions and use only the
second vinal coefficient,

Generally B is negative and C is positive, i.e. favors coil collapse

So C is important below the theta temperature to model the coil to globule transition

For simplicity we ignore higher order terms because C is enough to give the gross features
Of this transition. Generally it is known that this transition can be either first order for
Biopolymers such as protein folding, or second order for synthetic polymers.

First order means that the first derivative of the free energy is not continuous,i.e.a jump in
Free energy at a discrete transition temperature, such as a melting point.
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Widng Muler. and Dinder Porymer sovent crilics’ Dot parameters
J. Crom. Phys. Vol 106, No. 2. B Juy 1996

T T(N)=0/(1+1N)*~0-20/YN, N, (1)
Coil\<.-.-
\ $.(N)=1(1+N)~1\N, N @)

Consider the coil of length n as composed of g* chain
subunits each with (n/g*) Kuhn units of length Ik g*
can be any value between one and n.

Coil
Collapse Small size g* units have a lower Tccompared to large

size g* units.

o e

B

FIG. 1. Schematic phase diagram of a polymer solution m the space of the
wmperatere 7 and the volume fraction é. The coexistence curve scparates a
élste solution of collapsed chairs [at &, ] from a serudibste solution of
overlapping chains [at ¢, ] These two branches of the coexistence curve
merge at a cnucal poimt T(N), #.(V). For N—+= the crtical point merges
with the © pomt of a dlute polymer solution [T (N-+%)-8,
& (N—+®)—0] and the unmaxing transiton has a ticritical character. At
T=8, the chan contgurations are ideal Gaussian couls, while thew struc-
ture at T(N) 1s nontrivial.



Blob model for coil collapse

\ FIGURE 8.6

A few initial stages

of the coil-globule
transition. This looks
self-similar! (Compare
with what we write
about self-similarity in
Chapter 10). Source:
Courtesy of S. Nechaev.

R2~g*

Assume Gaussian

Collection of
Blobs

e

Grosberg and Khokhlov’s figure 8.6 shows a model for chain collapse that explains the entropic
behavior in terms of blobs of g* chain units associated with a confined chain. We can consider

the collapsed chain as composed of z/g* collapsed blobs each with an energy kT.



2 “BkT 3a’kT

Fla)== 55+ =Ula)-T5(a) 3)
R* ~ g*
[-7s(a)]. ~ kT ;—. = kT ’;— = ';—T )

In the absence of confinement (coil collapse) the expression was,
[-75(a)] ~kTa’ (8)
and a sum of these terms (approximation),

-15(a)=[-15(a)]. . +[-T5(a)],,.... ~ kT (e’ +a) 9)

kTBz'* kTC
- 10).
20°1  a'l* (10)

F(a)~ kT(a’ - a")-&»



2 “BkT 3a’kT

Fla)== 55+ =Ula)-T5(a) 3)
R ~g
' kT
[-15(@)]....... ~4T 5 =4T = o

In the absence of confinement (coil collapse) the expression was,
[-75(a)] ~kTa’ (8)
and a sum of these terms (approximation),

-15(a)=[-15(a)]. . +[-T5(a)],,.... ~ kT (e’ +a) 9)

o is >1 for expansion

<1 for contraction

kTBz'* kTC
- 10).
200°1  a'lf (10)

F(a)~kT (o +a )+



Which works for both expansion and collapse. Finding the minimum in this free energy yields
the most probable value for a, (equivalent of equation (5)),

o -a=x+ya’ (11)
where x is related to B and is given by,

x=K B[l (12)
and y is related to C and is given by,

y=K.C/I* (13).
If a is small you can neglect the terms on the left hand side of equation (11) and solve for R,

V3
R-az"l-(?C) 2 (14)

Ratio of C/B determines behavior, the collapsed coil is 3d



a“-a=x+)u" (ll)

Equation (11) can be understood by plotting the coil expansion factor, a, versus the reduced
temperature function x for fixed values of y as shown in Figure 8.3 from Grosberg and Khokhlov
reproduced below. In this figure, at large y the chain is flexible and the coil only slightly
collapses on cooling (smaller x). The theta temperature occurs at x = 0. For rigid chains with a
small value for y, the curve shows three values for a given x just below the O-temperature,

134 Chapter 8 Coils and Globules
FIGURE 8.3 =
The dependence a(x)
given by equation (8.7) > 2 .
for different values of i I P s e  ————
y; from top to bottom, /?;
the curves correspond oL o-8 // e
i lues
to the following value oS /
of y: 10, 1, 0.1, 1/60, ] \
0.01, 0.001, 0.0001. % A
it Hgd
0.2 e ey

L0k 48ey 0 b Oy A =02 o4, 0 D245 0
Y X
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Compact
globule

/

Expanded

/ coil

FIGURE 8.4

The dependence F(a) in
the case where a(x) is
multivalued. As x
changes (which can be
controlled by, say,
temperature change),
the shape of the F(a)
dependence changes
such that one minimum
gets deeper at the
expense of the other.
Deeper minimum
corresponds to the
more stable state. For
this figure, we choose
the value y = 0.001.
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FIGURE 8.5

The curves a(x) in
Figure 8.3 are
multivalued at some x;
in this figure, one
solution is selected for
each x such that the
values of a(x)
correspond to the
absolute minimum free
energy for every x. The
values of y are the
same as in Figure 8.3.

Generally it is known that this transition can be either first order for
Biopolymers such as protein folding, or second order for synthetic polymers.
First order means that the first derivative of the free energy is not continuous, i.e. a jump in

Free energy at a discrete transition temperature, such as a melting point.
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Summary






Short Course on Polymer Physics
Addis Ababa University

Greg Beaucage
Prof. of Chemical and Materials Engineering
University of Cincinnati, Cincinnati OH

December 19 2 hours (Analytic Techniques for Polymer
Physics)

Questions

Measurement of the size of a polymer chain

Rg, Rh, Reted

Small-angle neutron, x-ray scattering and static light scattering
Intrinsic viscosity

Dynamic light scattering
Osmotic Pressure
Polymer melt rheology
Questions



Size of a Chain, “R”
(You can not directly measure the End-to-End Distance)



What are the measures of Size,“R”, for a polymer coil?

Radius of Gyration, Rg

1y 2\ 19
k.-,—v;\(k.-&r, &.-N}_;R.

& -y3((R-33n) ) VGRS 0) -5 S w0

22«&'&)2)'221" ”“’2'222(" —m)b =262+ 2AZ-1)+3(2-2).(2-1)2+ Z]

LECLEL

Z=N-1

$(ze1-plp= (2o S p-3 5 - AL NED) ¥

p=l p=l p= 6
" »ml »r el
zu’-;+l+%+% for p<3 (other terms needed for higher p's)
u=l

147 http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapterl.pdf



What are the measures of Size,“R”, for a polymer coil?

Radius of Gyration, Rg

R\ 2\
&'R’," \(R-R.)/ R, -;/.ZR
2 2
R2 - Nb RMSeted

*T 6 6
R, is 1AV 6 of the RMS end-to-end distance.

2.45 Rg = Reted

Rg is a direct measure of the end-to-end distance for a
Gaussian Chain

148 http://www.eng.uc.edu/~gbeaucag/Classes/Physics/Chapterl.pdf
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Static Light Scattering for Rg

_R?
)=t exs| /)

Guinier Plot linearizes this function

R2
ln(Mj =——2¢* G=INn

e

G 3

The exponential can be expanded at low-
q and linearized to make a Zimm Plot

2

G
- — 1+_gq2
I(q) 3

Guinier’s Law

Intensity (cm)

ol !
0,01 F
4

0.001

0.001

P 2
0ol

q (Ang)”
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(b)
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PEG 4600 at 10°C

Progr Colloid Polym Sci (2008) 130: 70-78
DOI 10.1007/b107350

Published online: 3 June 2005

© Springer-Verlag 2005

Jan Skov Pedersen
Cornelia Sommer

Temperature dependence of the virial
coefficients and the chi parameter
in semi-dilute solutions of PEG

q(A")
PEG 4600 at 50°C
100
.
oo"‘o.
e g, g!'_!.
v v
|
.0
10 ._‘_.
A“
1 T
0.01 0.
q(A")
PEG 4600 at 100°C
100

qA")

Fig. 1 SAXS data with fits (curves) for PEG 2600 solutions at fixed
temperature as a function of concentration. (a) 10°C (b) 50° C (c)
100° C. Signatures: 1 wt% circles, 2 wt% triangle down, 5 wt%
square, 10 wt% diamond, 20 wit% triangle up. The data have been
divided by the square of the excess electron density (Ap was in units of
¢/A”) of the PEG chains in order to eliminate the influence in the plot
of the change in contrast with temperature

(@) 1% PEO data and fits

Fig. 2 SAXS data with fits (curves) for PEG 4600 solutions at fixed
concentration as a function of temperature. (a) 1 wi% (b) 2 wi% (c)
5 wi% (d) 10 wt%. Signatures: 20°C circles, 40°C triangles down,
60°C squares, 80°C diamonds and 100°C triangles. The data have
been divided by the square of the excess electron density of the PEG
chains in order to eliminate the influence in the plot of the change in
contrast with temperature

(b 2% PEO data and fits

s g
o
am 0.1
q(A") qiA")
(c) 5% PEO data and fits () 10% PEG 4600 - DATA and FITS
s ks
c &

01

q(A")
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file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/PedersonSommer2882_10993675_Chapter_9.pdf

Zimm Plot

¢ 0032
G
000019 p (q) q2R§
. (9,4
o ‘ p 3
° 00001
. 2 p2 2p2
R
‘ . —— =exp kI POV B
wel 27 19) 3
3 .1 . 2
N — | Plot is linearized by G/I(q) versus g
. . s .'."0 002¢ . .
g= 4r sin 0
A 2
Concentration part will be described later
¢ [ 1 s, ¢’ .
. S[qRA <) ".‘\. (1 ﬁ/'»vl.l *= | (6)
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Binary Interference Yields Scattering Pattern.

I(@) ~ N ng?

n, Reflects the density of a
Point generating waves

N is total number of points



The Scattering Event

I(q) is related to amount Nn?

— ‘ ) J q is related to size/distances
\L—ZAAN _Arm e/)
He))) ) A2
\\ // 2n
d=—
q

2) Rather than consider specific structures, we can consider
general scattering laws by which all scatters are governed
under the premises that 1) “Particles” have a size and

2) “Particles” have a surface.

:

VvV
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Binary Interference Yields Scattering Pattern.

.

-Consider that an in-phase
wave scattered at angle 6 was
in phase with the incident
wave at the source of
scattering.

-This can occur for points
separated by r such that

Ir| = 26/|q|

. 4r . 0
g =——smn-—-

A2



Binary Interference Yields Scattering Pattern.
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Binary Interference Yields Scattering Pattern.

| | | | | WMW -For small 6, ris large
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.




For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.




For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector rin the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector rin the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle



For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector rin the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.

Rather than random placement of the vector we can hold
The vector fixed and rotate the particle
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The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.
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The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’ s Law.

p(r)= ex{;::; ] = Iq)= Gex;{— q“;?; J

G = Nn;




Static Light Scattering for Radius of Gyration

Consider binary interference at a distance “r” for a particle with arbitrary orientation
Rotate and translate a particle so that two points separated by r lie in the particle for all rotations

and average the structures at these different orientations

Guinier’s Law _ _3r2 Binary Autocorrelation
yGaussian(r) - exp( 4(72) Function
N
2. (i —n)’
B (51
(N —> N o= =2R
.,\.‘ R , s, %, N_l 8
. \ Lead Term is

£ & Avoragpng of § parvaie show e ong -~ v = walogy

_R%?
I(q) :Iean exp ¢4 3 ) ](()):Nne2
I(1/r)~ N(r)n(r)2

Scattered Intensity is the Fourier Transform of

The Binary Autocorrelation Function

S (2 3
70(")=1_E’”+--- exp| 3; I-o s

) 3 0 then d(’}/Gaussian (r)ydr — 0 A particle with no surface

165 Beaucage G J. Appl. Cryst. 28 717-728 (1995).
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Guinier’ s Law Pertains to a Particle with no Surface.

-3r° q:R“?
=ex . = I(q)=Gexpl —=
() 1{4& J @ a[ : ]

G = Nn]

Any “Particle” can be Approximated as a Gaussian
probability distribution in this context.



plr)= cxl{ o

Guinier’ s Law can be thought of as the
First Premise of Scattering:
All “Particles” have a size reflected by the radius of gyration.

167
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Two possibilities for an arrow with both ends in a particle

(A) Different Particles => Guinier’s Law

(B) Same Particle => Surface Scattering

(Only near the surface is there constructive interference with no intermediate
destructive vector at % the distance r)

There is a transition between (A) and (B) nearr = Rg
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Debye Scattering Function for Gaussian Polymer Coil

Consider a chain of length N whose average end to end distance is N'* b, where b is the effective
step length for the chain which has no long-range interactions. For the n'th chain step, g (r) is the
average density of scgments at a radial position r from step n. R, is here the position vector for the
segments of the chain. It is important to keep clear that r_ is a radial position relative to segment
"n" while R_ is the segmental position relative to a coordinate system based at the first segment
where n = 1. n can have values from 1 to N. Then,

Y (50~ (R, - &)

A

where the del operator has a value of 1 when the position vector difference (R's) is equal to r.
£ (r) will have values between 0 for r's larger than the chainto | forr = 0.

Since g (r) only considers a single segment, "n", it must be averaged over all segments in order to
obtain a statistical description of the spatial distribution of chain scgments for the entire coil. This
averaging results in the pair correlation function, g(r) for the coil,

N N

2N228n n 2]1\,222< ( )>

n=l m=1

g(r)=

The pair correlation function, g(r), is directly related to the intensity scattered by light,
neutrons or x-rays from a polymer coil. The scattered intensity is measured as a function of

scattering angle, 0, and is usually plotted against the reduced parameter, q = |q| = 4a/A sin(0/2),
which is called the scattering vector. "q" is the inverse space vector and is related to the Bragg

spacing, d, by d = 2n/q.
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Scattered Intensity = K g(q) where K is a constant for a given system which includes the contrast
and instrumental parameters. g(q) is the Fourier Transform of g(r),

T ii(exp(zq- R —R ))>

n=1 m=1

Jdrg exp q-r

For a Gaussian polymer coil the solution to this double summation is the Debye Equation for
Polymer Coils which was first solved in 1946 by P. Debye.

(Do = é [0-1+exp(-0)]
where Q =g'Nb*/6 =q'R/’

The Debye function for polymer coils describes a decay of scattered intensity following a power-
law of -2 at high-q and a constant value for intensity at low-q (below R)).

Debxe Pager Derivinﬁ this Eguation


http://www.eng.uc.edu/~beaucag/Classes/Properties/the%20collected%20papers%20of%20Peter%20J.%20W.%20Debye,%20pgs%20500-513;%20547-558%20copy.pdf

Low-q and High-q Limits of Debye Function

(@omne = é[Q— 1+ exp(-0)]

where Q=q'Nb/6 =q'R’°

At high q the last term => 0

Q-1=>Q

g(q) =>2/Q ~ q7

Which is a mass-fractal scaling law with df = 2

At low g, exp(-Q) => 1-Q+Q%/2-Q¥6+...
Bracketed term => Q2%/2-Q3/6+...

g(q) => 1-Q/3+... ~ eXp(-Q/3) = eXp(-qug2/3)

Which is Guinier’s Law






Measurement of the Hydrodynamic Radius, Rn

"“'V—'-T—vﬁ—* ——

Foces (4)

|
) U T U TS —.—
<0 p] -0 w0

=) 0
Termperonue (%C)

Figure 3. Radius of gyration, R, and hydrodyamic radius R, versus temperatwre for

polystyrene in cyclohexane. Vertical line indicates the phase separation temperature. From
Reference [21].

_ 43R, R = KT 11 ¢y/ | . |
[n]= r "= SanD E_szﬁ Kekeodnl Poli Sl 101052)

i=t j=t \|i 7 1;
P JJINr.ru/~Kuzems rKDIO.!

http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadiu
s.pdf
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http://onlinelibrary.wiley.com/store/10.1002/pol.1954.120120102/asset/120120102_ftp.pdf?v=1&t=hn7imqlb&s=a762417d841e792c768f6c6cef85b4f1a904ac28
http://theor.jinr.ru/~kuzemsky/kirkbio.html
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Viscosity

Displacement, D
| Velocity, V
V = Ditime

Strain = D/H

Stress = FIA

n,=n, (1 + [U]‘P)

VMolecule
M

[n]=

Moledule

Native state has the smallest volume



Intrinsic, specific & reduced “viscosity”

Ty = 777/@ Shear Flow (may or may not exist in a capillary/Couette geometry)

n=n,(1+0[n]+ k> [n] + k0’ [n]' +--+k,.9" [n]') ")

n = order of interaction (2 = binary, 3 = ternary etc.)

1 T]—T]Oj_l Ny Limicg=0 _Va
| — =0 -1)=————[n|[=—"
¢( o ¢( ) ¢ 7] M
We can approximate (I) as:
=1 K
ﬂr—n = +¢[7]]exp( M¢[n]) Martin Equation
0

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |



Intrinsic, specific & reduced “viscosity”

n=m(1+c[n]+ ke’ [n] +ke (0] +--+k, c"[n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n-n, 1 My Limite=>0 Vi
S0 |2 (g —1) = L Limite=>0  ro0_ TH
)L -2 )=

We can approximate (I) as:

n
n, =—=1+c[n]exp(KMc[77]) Martin Equation

Mo
n,, 2 . .
7=[ |+k&[n] ¢ Huggins Equation
In(n,) —~[n]+k [77]2C Kraemer Equation
c 1 (exponential expansion)

Utracki and Jamieson “Polymer Physics From Suspensions to Nanocomposites and Beyond” 2010 Chapter |



Intrinsic, specific & reduced “viscosity”

n=n,(1+e[nl+ke’ ] +koe’ [] ++-+k,."[n]')

n = order of interaction (2 = binary, 3 = ternary etc.)

(1)

1{n-n, 1 n, i v,
- - -1 = “lsp. Limit c=>0 _ 'H
c\ 1, c(nr ) c [n] Afl

~ 40 Concentration Effect

o °
= acetyl starch
E 3|inHo

3 o

Fig. 4.5. Reduced Viscosity Tq as func-
tion of the concentration ¢ for acetyl
starch of different molar masses in aque-
ous solution at T=25 °C.The degree of
substitution (DS) with acetyl groups is
nearly constant at DS=0.9. Due to the
compact structure of the polymer coil the
concentrations of the dilution series are
relatively high to reach the required rela-
tive viscosity range of ,=1.2-2.5

-- M, =709.000 g/mol, DS =0,91
-- M =517.000 g/mol, DS =0,86
- M= 263.000 g/mol, DS =0,82
- M= 152.000 g/mol, DS =0,94

Phue

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=m(1+c[n]+ ke’ [n] +ke (0] +--+k, c"[n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

(n,4)/ (ml g")

C

My

)L o=t

nsp Limit c=>0 VH
U
M

4000 -
] ¢ =25 M, /(gmol”)
"" (= v 11.810°
3000 - A 57410°
= 3310°
¢ 2210°
* 1.310°

2000

T
0.004

Concentration Effect, c*

Fig. 4.2. Reduced viscosity 1,4 as a
function of the concentration c for differ-
ent molar masses of the polycation
poly(acrylamide-co-(N,N,N-trimethyl-N-
[2-methacryloethyl]l-ammoniumchloride)
(PTMAC) in 0.1 mol/I NaNO; solution.
Data from [87]. All data points are mea-
sured at concentrations below the critical
concentration ;. The copolymer con-
sists of 8 mol% TMAC and 92 mol% AAm

0.006
c/(gml’)

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Intrinsic, specific & reduced “viscosity”

n=m(1+c[n]+ ke’ [n] +ke (0] +--+k, c"[n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n-n, 1 My Limite=>0 _Vu
—_ — = — —1 = — —_—
e B R

—

5, 1600 Solvent Quality
= PAAm 5.2.10° g mol”
= 1400; | = inwater
3 e in formamide
= 1200/ A in glycol
& 10001
¢ 800+
600/ Fig. 5.3. Reduced viscosity 1.4 as a func-
tion of the concentration c for a poly(acryl-
400 amide) (PAAm) in the solvents H,O, form-
A—b——A—h A A amide and ethylene glycol at =25 °C.
206}.00 01 002 0.03 Data from [89, 90]. The intrinsic viscosity

) (intersection with the Y-axis) rises with the
c/(gml) solvent quality

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)



Intrinsic, specific & reduced “viscosity”

n=m(1+c[n]+ ke’ [n] +ke (0] +--+k, c"[n]') (1
n = order of interaction (2 = binary, 3 = ternary etc.)

1 nsp Limit c=>0

1 77—770 VH
c\ 1, c(nr ) c [77] M

Molecular Weight Effect

500
9 1 M, /(g mol™)
E.:.4004 , s 1.7910°
T - K= v 09310° ; (oo
& 19663 mP g* s 027.10° Fig. 5.4. Reduced viscosity 1,4 as a func-
300 - e o 0‘13_106 tion of the concentration ¢ for sodium
il . . 0'04105 poly(styrene sulfonate) (PSSNa) of different
n / 5023 ml"g - molar masses in aqueous solution.The n., = 1, - [77]+ k [77]2 c
Sp 200 K (= K = second virial coefficient of the viscosimetry, red c H
] 1518 mPg? 2567 mitg® Ky [n)% is equivalent to the slope of the
¢ 100 s K. 1of curves and is given for each molar mass.
T aasssst— WUl = The Huggins constant K, is constant and H H i
- uggins Equation
1 PREPNEEP ALY * 6221 mf g* independent of the molar mass. Data from 88 q
0 . R R A 35,91]
0.00 0.02 0.04 0.06
c/(gml™

Kulicke & Clasen “Viscosimetry of Polymers and Polyelectrolytes (2004)
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Viscosity n, =n,(1+[n]¢)

[n]=

V

Molecule

M

Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Objects)

m, =1, (1+2.5¢)

For “Gaussian” Chain Mass ~ Size? ~V2/3
V ~ Mass3”2

For “Expanded Coil” Mass ~ Size>? ~ V>
V ~ Mass®?

For “Fractal” Mass ~ Sizedf ~Vdf3
V ~ Mass¥/df

2

[n] - M:Ifolecule



Viscosity n =mn, (1 + [n]¢)

[n]=

V

Molecule

M

Moledule

For the Native State Mass ~ P VMolecule
Einstein Equation (for Suspension of 3d Obijects)

m, =1, (1+2.5¢)

For “Gaussian” Chain Mass ~ Size2 ~ V23
V ~ Mass32
“Size” is the
“Hydrodynamic Size” For “Expanded Coil” Mass ~ Size®? ~V3/°
V ~ Mass®5

For “Fractal” Mass ~ Sizedf ~Vdf3
V ~ Mass¥df

2

[n] - M I(lllleecule
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Intrinsic, specific & reduced “viscosity”
n=m(1+c[n]+ ke’ [n] +ke (0] +--+k, c"[n]') (1

n = order of interaction (2 = binary, 3 = ternary etc.)

1{n-n, 1 My Limite=>0 Vi
—_— — —_ —_— —_ 1 = — =
A\ )= =%

Viscosity itself has a strong temperature dependence. But intrinsic viscosity depends on temperature as far as coil
expansion changes with temperature (RH3).

— 20

@ Temperature Effect
£

=~ 154

PAAM in H,0

Fig. 5.5. Zero-shear viscosity 7o as a
function of the temperature T for poly
(acrylamide) (PAAm) and poly(N-iso-
propyl-acrylamide) (PipAAm) in aqueous

1.0

0.5 solution (c=0.1 wt%).The viscosity for
0 the solvent water as a function of the
g temperature is plotted as well. Data
0.0 ——T T from [77]
0 20 40 60 80
T/(°C)

Weaker and
E Opposite Dependency

184 kBT




Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=n,(1+[n]c)

For a solid object with a surface v is a constant in molecular weight, depending only on shape
25
For a symmetric object (sphere) v = 2.5 (Einstein) [77]:7 mi/g

For ellipsoids v is larger than for a sphere,

J2 prolate .
V= .
15(1n(27)-3/2) a,b,bza>b .
J a \
] = alb 2 | 4 °1?
167 oblate \I .
VE—— ..
15tan_l (J) a’ a’ b v a<b Tn-anal ello “:"v sbinct som™

ases s Do ¢

185



Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=n,(1+[n]c)

Hydrodynamic volume for “bound” solvent

V= (7 + 80)
A

Partial Specific Volume v,
Bound Solvent (g solvent/g polymer) 53
Molar Volume of Solvent v



Intrinsic “viscosity” for colloids (Simha, Case Western)

n=1,(1+v9) n=n,(1+[n]c)

vN,V,
M

[n]=

Long cylinders (TMV, DNA, Nanotubes)

2  #N,L J=L/d
45 M(InJ +C,)

7]

CU End Effect term ~ 2 In 2 —25/12 Yamakawa 1975
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Hydrodynamic Radius from
Dynamic Light Scattering


http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HydrodyamicRadius.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/HiemenzRajagopalanDLS.pdf

Consider motion of
molecules or nanoparticles in
solution

Particles move by Brownian Motion/Diffusion
The probability of finding a particle at a distance x from the

starting point at t = 0 is a Gaussian Function that defines the
diffusion Coefficient, D

1 _%ZDz)
9t N T
p(‘x ) (47Z'Dt)l/2 €
<x2> =0’ =2Dt

The Stokes-Einstein relationship states that D is related to RH,
B kT
67NR,,

A laser beam hitting the solution will display a fluctuating
scattered intensity at “q” that varies with q since the
particles or molecules move in and out of the beam
I(q.0)

This fluctuation is related to the diffusion of the particles



W (http://www.youtube.com/watch?v=ow6F5HJhZo0)

For static scattering p(r) is the binary spatial auto-correlation function

We can also consider correlations in time, binary temporal correlation function
gla,1)

For dynamics we consider a single value of g or rand watch how the intensity changes with time
I(a,t)

We consider correlation between intensities separated by t
We need to subtract the constant intensity due to scattering at different size scales

and consider only the fluctuations at a given size scale, ror 2n/r = q


http://www.youtube.com/watch?v=ow6F5HJhZo0

D woam ic Liﬁ ht Scatterin 5 (http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf)

Qe= quantum efficiency
R =2mn/q

I(Rv t) = Q¢ E,‘(R, t')T ’ E;(Ro t') Es=amplitude of scattered wave

<IR>=Q.<E*R,t)""E(R,1)>
<I(O)I()> = <I(0)> + Qf <IE*(0)" " E()| IE*(t)" - E(0))>

If the intensity correlation function is normalized by <I(0)> the autocorrelation function results,
C(1) = <IO)I(t>/<l(0)>= 1 + K g“(1)

where g (1) is the square of the normalized autocorrelation function for electric field, g“(t) =

G.(K, 1) = <(AC(K, 0))> exp(-D K1) g'() = g'"(K,1) = exp(-D K

g or K squared since size scales with the square root of time <x2>=0'2 =2Dt


http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf

Dynamic Light Scattering

-
t ‘l‘. _/,/', —lu‘ }’/ .
. 20 7) (I()I(t + 7))
gql\Q\7T) = —5v7
g RS s (I(1))?
0 )

— l" NYWY Y W
l'l' L

g l7)=14+8¢'(g:7)

9'(q:7) = exp(=I'7)
I'=¢'D,

D=k T/6na

a = RH=Hydrodynamic Radius

The radius of an equivalent sphere following Stokes’ Law
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Dynamic Light Scattering

my DLS web page

W iki Einstein Stokes


http://www.eng.uc.edu/~gbeaucag/Classes/Physics/DLS.pdf
http://webcache.googleusercontent.com/search?q=cache:eY3xhiX117IJ:en.wikipedia.org/wiki/Dynamic_light_scattering+&cd=1&hl=en&ct=clnk&gl=us
http://webcache.googleusercontent.com/search?q=cache:yZDPRbqZ1BIJ:en.wikipedia.org/wiki/Einstein_relation_(kinetic_theory)+&cd=1&hl=en&ct=clnk&gl=us

Diffusing Wave Spectroscopy (DWS)

Will need to come back to this after introducing dynamics
And linear response theory


http://www.formulaction.com/technology-dws.html

Rg/RHRatio

Rg reflects spatial distribution of structure
RHreflects dynamic response, drag coefficient in terms of an equivalent sphere
W hile both depend on “size” they have different dependencies on the details of structure

If the structure remains the same and only the amount or mass changes the ratio between these parameters remains
constant. So the ratio describes, in someway, the structural connectivity, thatis, how the structure is put together.

This can also be considered in the context of the

‘ “universal constant”

J |
g “ LedererAetaI.Anﬁewandte Chemi52 4659‘2013‘.

(http://www.eng.uc.edu/~gbeaucag/Classes/Properties/DresdenRgbyRh4
659_ftp.pdf)


http://www.eng.uc.edu/~gbeaucag/Classes/Properties/DresdenRgbyRh4659_ftp.pdf
file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/DresdenRgbyRh4659_ftp.pdf

Rg/RHRatio

,2)(]’
@ o

IOV

Scheme v Variation of the branching degree from linear to hyper-
branched structures for polyesters with different functional groups.

20
L
o OH
near chars
154
o o
&
. o
pw 2‘ ? ©f
. L
104
nard spheres
00 o 02 03 04 o5
degree of Learching

Figure 1. Dependence of the branching parameter p on the degree of
branching for SY- and OH4erminated samples. The lines correspond
1o tentative fits 10 the measurement points,

A Lo a0

Lederer A et al. Angewandte Chemi 52 4659 (2013).
. .Uc. ~ s/Properties/DresdenRgbyR

D+T

e YT 5

)

wihere D, Tand L are the fractions of dendritic, torminal or
nearty

incorporated monomers in the resulting hyperbean-
ched mmmomw
ﬁh‘-ﬁwmvﬂw

-

c.nut‘ for
I e range 0f 0.4 10 0.5, Equation (1) has used

Acta Patymer, 48, 36-)3 (1997)


file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/DresdenRgbyRh4659_ftp.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/DresdenRgbyRh4659_ftp.pdf
file:///Users/beaucag/Avaratec%20Desktop/public_html/Classes/Properties/DresdenRgbyRh4659_ftp.pdf

Rg/RHRatio

Table 111
¢ Factor and Molecular Polydispersity P, [P, for Some Selected Models®

model ° Py Py
linear chains
monodisperse B/3n"2 1
polydisperse (m = 1) gl
(M - z)l'l
polydisperse (m coupled chains) p— 1 ( —),-(h) 1+(1/m)
star molecules
LR LRg ]
regular stars 8( _ “z f)‘: v-1) 1
l d 12 " 8
polydisperse stars (,§ 1) _ﬂf‘ D 1+01N
polycondensates
[
13 - —
e P ! "(‘ ar-n)
31+ 2B\'"Y2+8B
ABC type (cxoa) (1-3) n+H
randomly cross-linked chains (polydisperse (m » 1) primary chains) 3'* AP, /Py p)
monodisperse spheres () 1
€5 = (1/R,8%,' % all other notation is as in Tables [ and II,
Burchar hm i km r. M .13 12 1

m p://www.eng.uc. edu/~gbeaucag/CIasses/Propertles/RgbthRatloBurchard
a60077a045. pdf*
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http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchardma60077a045.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchardma60077a045.pdf

Rg/RHRatio

20
Ar G ycondensates
polyaisperse starsy
~ \,K 4 B
2 \ reg polydisp  ABC poly-
< reguiac stars stars stars condensate
5‘°:P £=077 =2 14% 3:08 55=:14 2.25+ 06
h=094:5% 3:z08 43:09 1.656 = 0.35
poseese Soraves oot p=14:6% 3:09 80:25 35:11
| C=0.158 :+ 10% 3215 10.0=5 45:23
e
'
Figure 3. Dimensionless parameter p = (R,"),R, for three
branching models and for compact spheres.
Burchar hmi km r. M .13 12 1

m tp://www.eng.uc. edu/~gbeaucag/CIasses/Propertles/RgbthRatloBurchard
a60077a045. pdf‘
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http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchardma60077a045.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhRatioBurchardma60077a045.pdf

200

Rg/RHRatio

200
g l-wr\
'\ heating
k=
~ L0}
<
vV osol cootng %
008 30 00 350 4o
1/°C
Figure 2. Temperature of the average radius of

gyration ((R,)) of the PNIPAM chains in the coil-to-globule
(heating) and the globule-to-coil (cooling) transitions, respec-
tively,

200 TSA.O 300 TSO 400
T/°C

Figure 3. Temperature dependence of the average hydrody-

namic radius ((R)) of the PNIPAM chains in the coll-

1o ghobule
(heating) and the globule-to-coll (cooling) transitions, respec-
tively,

1.60
— ll "\*._5
A * 4 )
i 1.20p v§ \“ll"
v Y
-~ \3
&. cnah'\ &é
$
X" 0.50} NP
g ; v
0.40%4 - . .
200 250 30.0 350 400

T/°C
Figure 4. Temperature dependence of the ratio of radius of

pyration to hydrodynamic radius ((RVRY)) of the PNIPAM
chains in the coil-to-globule (heating) and the globule-to-coil
(cooling) transitions, respectively.

1.5 = Random Coil

~0.56 = Globule

Globule to Coil => Smooth Transition
Coil to Globule => Intermediate State
Less than (3/5)1/2= 0.77 (sphere)

ttp:/ /www.eng.uc.edu/~gbeaucag/Classes/Properties /RgbyRhPNIPA
Mma971873p.pde


http://www.eng.uc.edu/~gbeaucag/Classes/Properties/RgbyRhPNIPAAMma971873p.pdf
http://www.eng.uc.edu/~gbeaucag/Classes/Pro