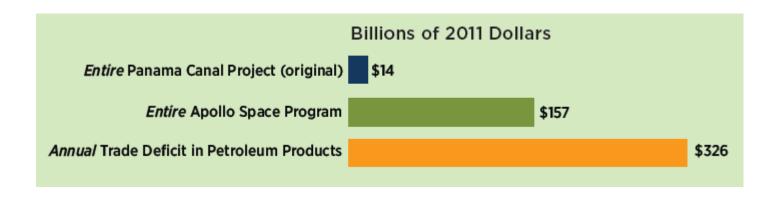


Biofuels production from renewable biomass

Maobing Tu

Chemical and Environmental Engineering University of Cincinnati


Gasoline and ethanol

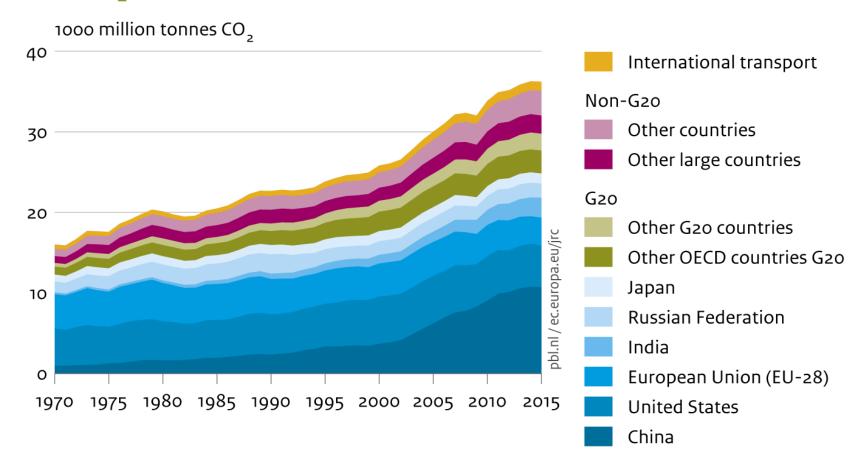
Background

- U.S. spending \$1 billion per day on foreign oil
- Facing critical disruptions in oil supply
- Generating economic uncertainties
- Influencing national security

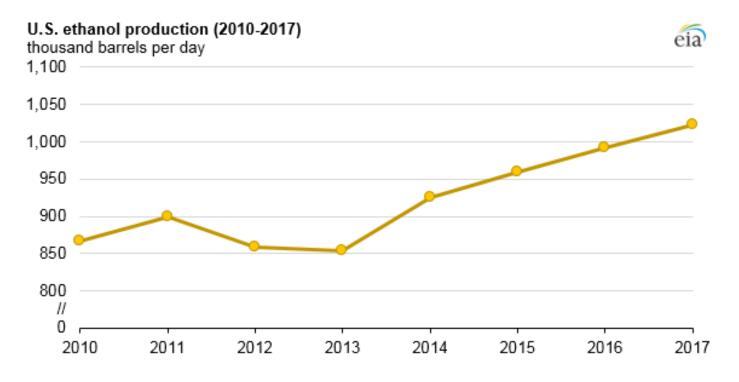
Drivers-why biofuels and bioproducts

- Increase energy security and reduce the nation's dependence on foreign oil
- Reduce greenhouse gas (GHG) emission
- Enhance sustainability of liquid fuels
- Create new economic opportunities and jobs
- <u>Utilize</u> 1 billon tons of renewable biomass (U.S.)

U.S. petroleum imports and exports (2019)

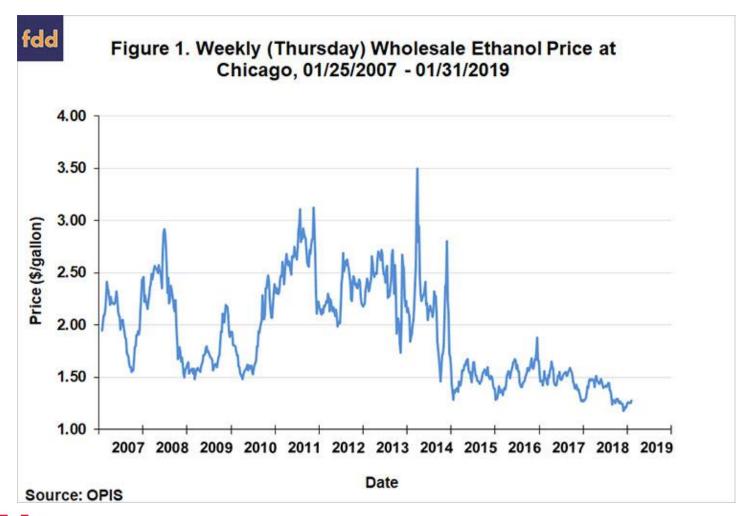

• U.S. petroleum imports and exports million barrels per day

Import sources	Gross imports	Exports	Net imports
Total, all countries	9.14	8.47	0.67
OPEC countries	1.64 (18%)	0.08	1.56
Persian Gulf countries	0.96 (11%)	0.05	0.91
Top five countries ¹			
Canada	4.43 (48%)	1.04	3.40
Mexico	0.65 (7%)	1.16	-0.51
Saudi Arabia	0.53 (6%)	<0.01	0.53
Russia	0.52 (6%)	<0.01	0.52
Colombia	0.37 (4%)	0.14	0.24


U.S. CO₂ emission

Global CO₂ emissions per region from fossil-fuel use and cement production

Source: EDGAR v4.3.2 FT2015 (JRC/PBL 2016: IEA 2014 (suppl. with IEA 2016 for China, BP 2016, NBS 2016, USGS 2016, WSA 2016, NOAA 2016)


U.S. fuel ethanol production

- Corn is the primary feedstock of ethanol in U.S.
- Ethanol is blended with gasoline (10%)

Ethanol price

Energy content of ethanol

Fuel	MJ/L	MJ/Kg
Ethanol	23.5	31.1
Gasoline	34.8	44.4
Diesel	38.6	45.4
Dry Wood	-	19.5
E85	25.2	33.2
Liq. Natural Gas	25.3	55
Methanol	17.9	19.9

Sources: wikipedia.org

Why lignocellulosic biomass?

- Biomass is carbon-based organic material, including forest residues/waste, agricultural residues, energy crops (switchgrass) and algae
- Biomass clean renewable source of energy
- Biomass absorbs carbon during growth

Federal initiative on bioenergy

- President Bush-2007
 - "Twenty-in-Ten" initiative, reduce gasoline 20% in 10 y
 - Energy Independence & Security Act mandates 36 b gallons of renewable fuels by 2022
 - Bioenergy Research Centers
- President Obama-2013
 - \$2-Billion Energy Security Trust
 - Natural gas fuel & Hydrogen fuel
 - Advanced batteries
 - Cleaner biofuels

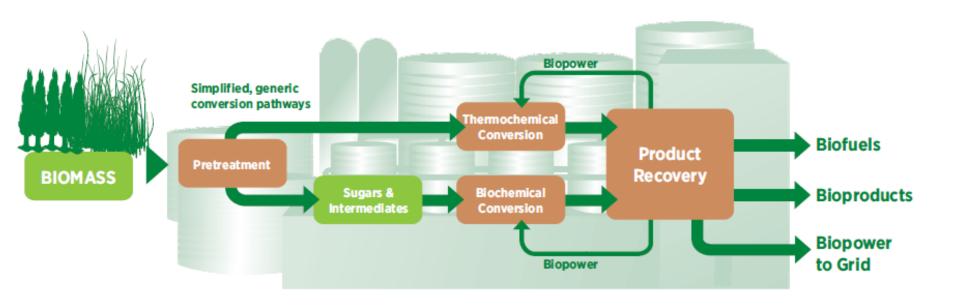
Bioenergy research centers

- DOE Joint BioEnergy Institute
- DOE Great Lakes Bioenergy Research Center
- DOE BioEnergy Science Center
 - Receive \$25 million per year
 - Innovative biofuel research for another fiver years
- DOE Bioenergy Research Centers (BRCs) 2017
 - \$40 million per year

Integrated biorefinery projects funded (DOE)

- INEOS first commercial biorefinery (8MG)
- POET-DSM & Abengoa produce ethanol (20/25MG)
- Myriant produces biobased succinic acid (30 MP)

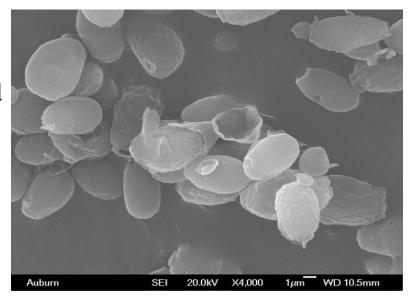
Integrated biorefinery


Project	Location	Scale	Conversion Technology	
Abengoa	American Process Inc.	Alpena, MI	Pilot	Biochemical
Bluefire LLC	Amyris Biotechnologies Inc.	Emeryville, CA	Pilot	Biochemical
Flambeau	Archer Daniels Midland	Decatur, IL	Pilot	Biochemical
Mascoma	Haldor Topsoe Inc.	Des Plaines, IL	Pilot	Thermo - Gasification
POET	ICM Inc.	St. Joseph, MO	Pilot	Biochemical
Enerkem	Logos/EdenIQ Technologies	Visalia, CA	Pilot	Biochemical
INEOS New Planet Bioenergy LLC	Renewable Energy Institute International	Toledo, OH	Pilot	Thermo - Gasification
Myriant	Rentech ClearFuels	Commerce City,	CO Pilot	Thermo - Gasification
RSA	Solazyme Inc.	Peoria, IL	Pilot	Algae/Sugar
Sapphire Energy Inc.	UOP LLC	Kapolei, HI	Pilot	Thermo - Pyrolysis
Algenol Biofuels Inc	ZeaChem Inc.	Boardman, OR	Pilot	Hybrid
	Gas Technology Institute	e Des Plaines, IL	Design Only	Thermo - Pyrolysis

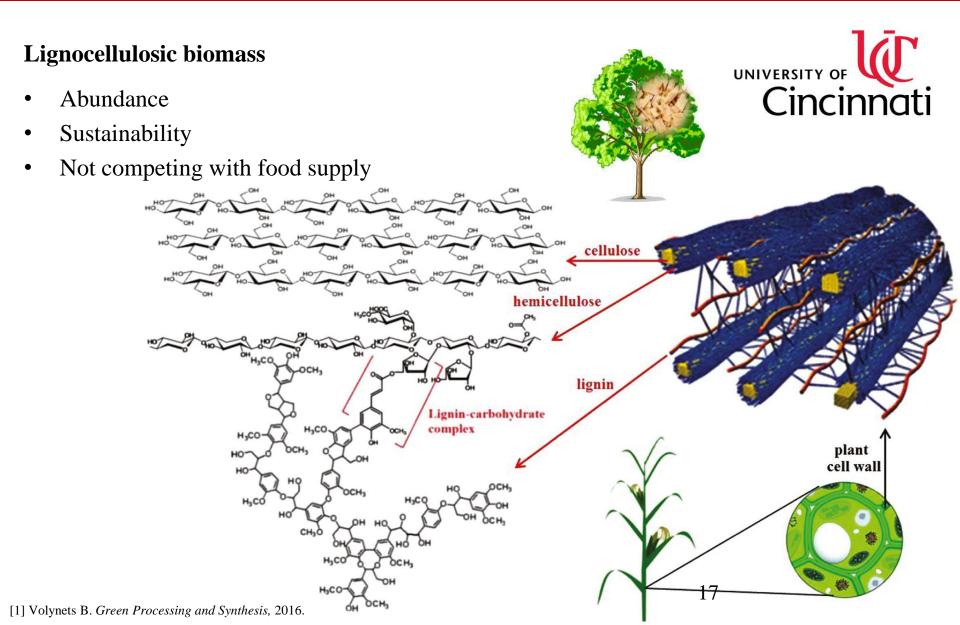
Integrated Biorefinery Projects Funded by DOE Cincinnati

Biorefinery pathways

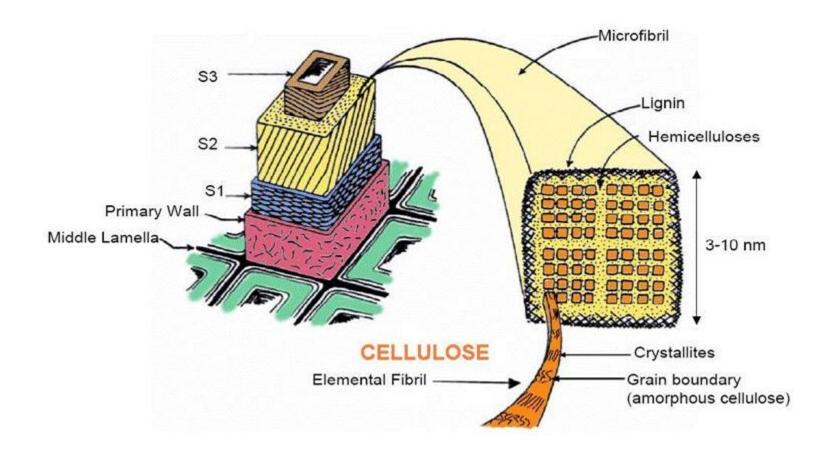
- Thermochemical conversion (gasification/pyrolysis)
- Biochemical conversion (enzymes/microbes)

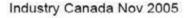


https://www1.eere.energy.gov/bioenergy


Background

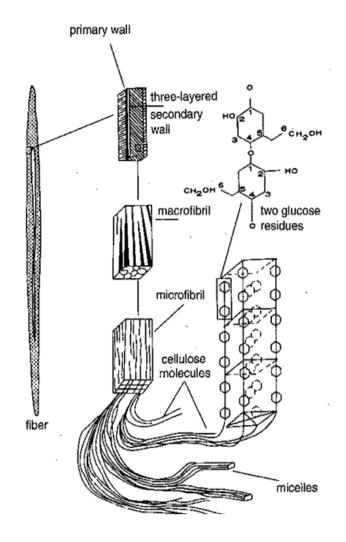
- Biomass pretreatment is needed in biorefinery
 - Break down the recalcitrant structure of cell walls
 - Subsequent enzymatic hydrolysis and fermentation
- Pretreatment undesirably generates inhibitors
 - Degradation of cellulose, hemicellulose, lignin and extractives
- Fermentation inhibition
 - Reduce microbial growth
 - Decrease fermentation rate and yield





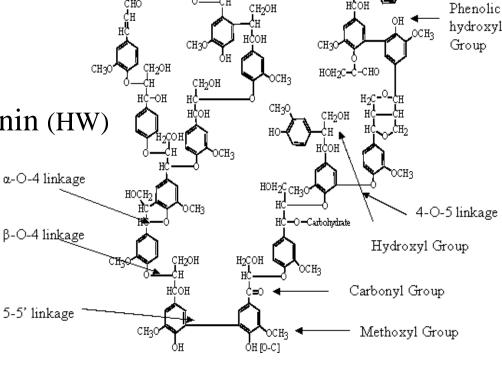
Structure of lignocellulosic biomass

Ultrastructure of plant cell wall

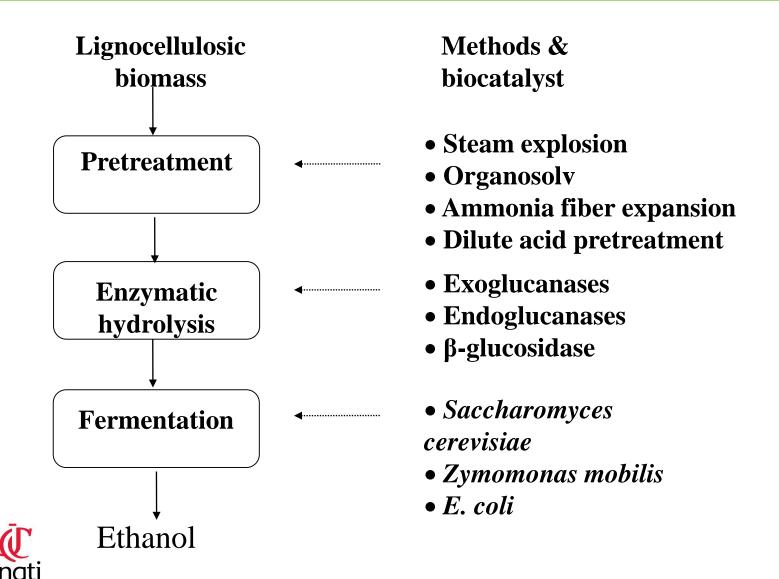


Lignocellulosic biomass chemistry

- Cellulose (45% HW/SW)
 - Linear polymer of β -1,4 linked glucose
 - Degree polymerization (DP), 10,000
 - Crystalline and amorphous
- Hemicellulose (35% HW, 25% SW)
 - Branched polymer of glucose, mannose,
 galactose, xylose, and arabinose
 - DP 150-200
 - Easily degraded and dissolved



Lignocellulosic biomass chemistry


- **Lignin** (21% HW, 25% SW)
 - 3-dimension
 - Amorphous polymer
 - Phenylpropane
 - Guaiacyl-syringyl lignin (HW)
 - Guaiacyl lignin (SW)
 - Complex structure

The structure of softwood lignin (Akler)

Bioconversion process

Pretreatment process

Steam explosion

- High yield of cellulose
- High lignin content

Organosolv pretreatment

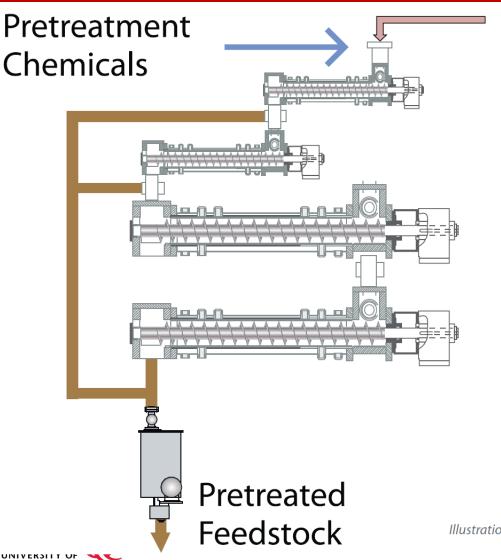
- Hydrolyzing of hemicellulose
- Solubilization of lignin

Ammonia fiber explosion (AFEX)

- degrading crystalline cellulose, preserving hemicellulose
- 10-20% solubilization of lignin

Dilute acid pretreatment

- Extensive hemicellulose hydrolysis
- Furfural and other degradation products


Biomass deconstruction and pretreatment

- Chemical an mechanical deconstruction
 - Deacetylation and mechanical refining process
 - Low toxicity, high concentration sugar stream
 - Native lignin

Biomass deconstruction

Feedstock

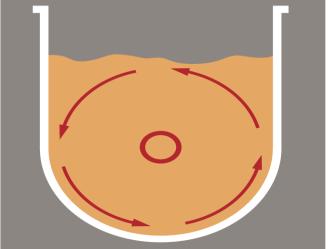
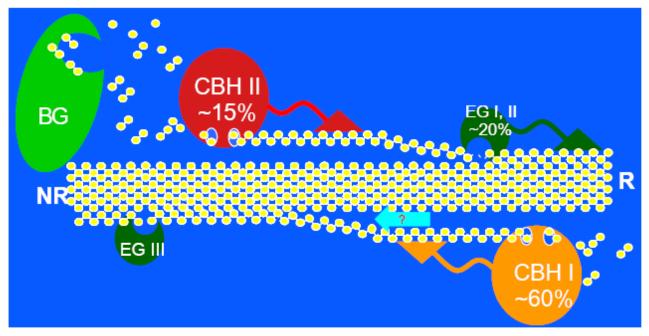

- Multiple horizontaltube reactors
- Steam heated to 150-210 °C
- Changing the auger speed to move biomass

Illustration created by Josh Bauer, NREL

Produce highly concentrated sugar streams

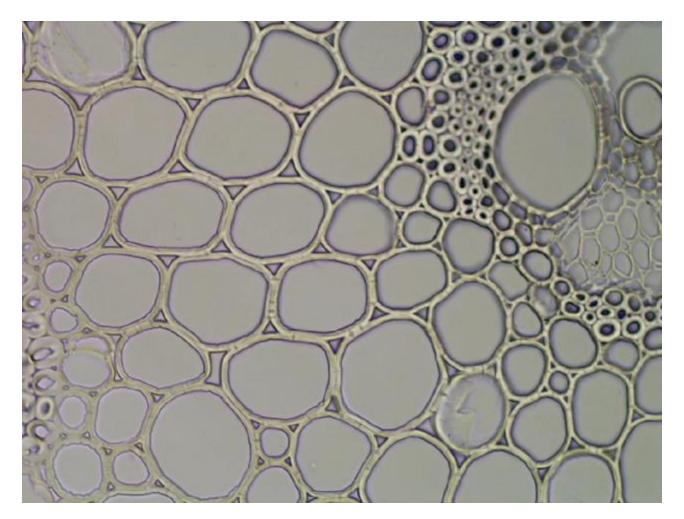
- Solid loadings >20% w/w
- Operated in batch mode (36h)
- Vigorous mixing at temperature
 - $-40-50^{\circ}C$
- Biomass slurry is liquefied 24 h
- Complete enzymatic hydrolysis
 - in another reactor



Enzymatic hydrolysis of cellulose

Trichoderma reesei Cellulases

EG: endo-glucanase

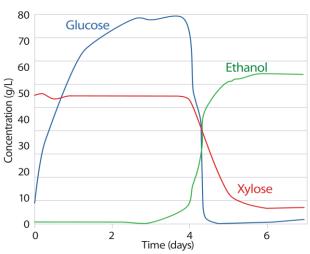

CBH: cellobiohydrolase

BG: β-glucosidase

Cincinnati

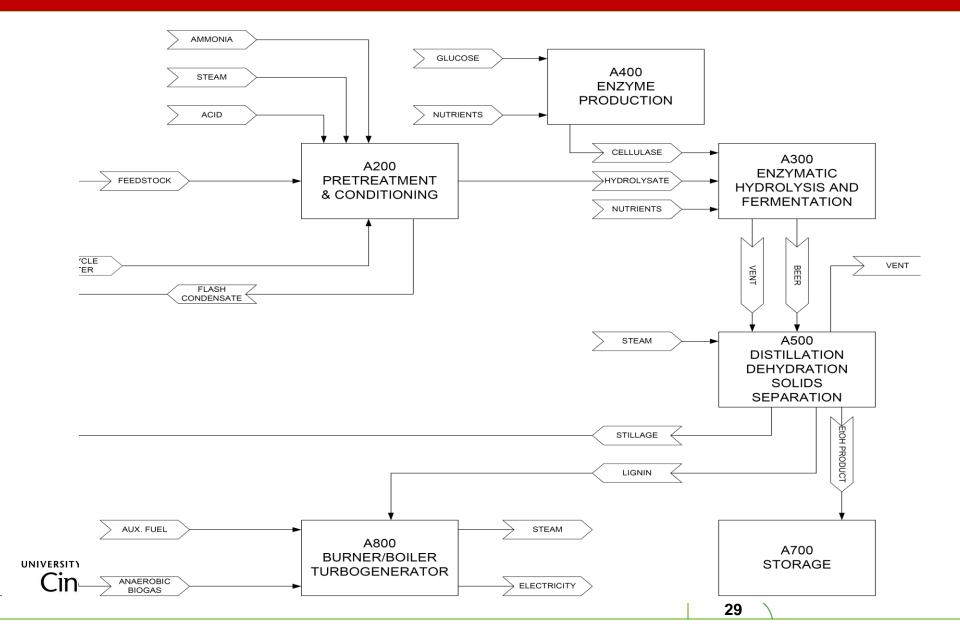
Source: novozymes

Plant cell walls digested by fungal cellulases (10 h)



Microbial fermentation

- Fermentation systems with pH,
 - Temperature, dissolved oxygen control
- Monitoring glucose and xylose
 - Consumption and ethanol production



Enzymatic hydrolysis and fermentation of pretreated corn stover

Process design and economic analysis

Ethanol production engineering analsyis

Dilute Acid Pretreatment with Enzymatic Hydrolysis and Co-Fermentation All Values in 2007\$

Minimum Ethanol Selling Price (MESP): \$2.15 /gal

Gasoline-Equivalent MESP: \$3.27 /gal gasoline equivalent

Contributions: Feedstock \$0.74 /gal

Enzymes \$0.34 /gal

Non-Enzyme Conversion \$1.08 /gal

Ethanol Production 61.0 MMgal/yr (Ethanol at 68 °F)

Ethanol Yield 79.0 gal / dry U.S. ton feedstock + Handling Cost \$58.50 /dry U.S. ton

Feedstock + Handling Cost \$58.50 / Internal Rate of Return (After-Tax) 10%

Equity Percent of Total Investment 40%

Capital Costs		Manufacturing Costs (cents/g	gal ethanol)
Pretreatment	\$29,900,000	Feedstock + Handling	74.1
Neutralization/Conditioning	\$3,000,000	Sulfuric Acid	2.4
Saccharification & Fermentation	\$31,200,000	Ammonia	6.5
On-site Enzyme Production	\$18,300,000	Glucose (enzyme production)	19.3
Distillation and Solids Recovery	\$22,300,000	Other Raw Materials	12.9
Wastewater Treatment	\$49,400,000	Waste Disposal	2.5
Storage	\$5,000,000	Net Electricity	-10.8
Boiler/Turbogenerator	\$66,000,000	Fixed Costs	17.5
Utilities	\$6,900,000	Capital Depreciation	22.0
Total Installed Equipment Cost	\$232,000,000	Average Income Tax	12.3
		Average Return on Investment	56.6
Added Direct + Indirect Costs	\$190,500,000	_	
(% of TCI)	45%	Manufacturing Costs (\$/yr)
		Feedstock + Handling	\$45,200,000
Cincinnati	\$422,500,000	Sulfuric Acid	\$1,500,000

Biomass composition in process design

Table 1. Delivered Feedstock Composition Assumed in the Present Design

Component	Composition (dry wt %)
Glucan	35.1
Xylan	19.5
Lignin	15.8
Ash	4.9
Acetate ^a	1.8
Protein	3.1
Extractives	14.7
Arabinan	2.4
Galactan	1.4
Mannan	0.6
Sucrose	0.8
Total structural carbohydrate	59.0
Total structural carbohydrate + sucrose	59.8
Moisture (bulk wt %)	20.0

• Biomass cost is \$58.5/dry ton (2007\$)

Biomass pretreatment targets

Table 7. Research Status and 2012 Targets in the Pretreatment Area

	2008 State of Technology	2009 State of Technology	2010 State of Technology	2012 Targets
Pretreatment	•		•	
Solids loading (wt %)	30%	30%	30%	30%
Xylan conversion to xylose (%)	75%	84%	85%	90%
Xylan conversion to furfural (%)	11%	6.4%	8%	5%
Conditioning				
Ammonia loading (g/L of hydrolysate)	13	10	4.8	4.8
Hydrolysate solid-liquid separation	yes	yes	yes	no
Xylose sugar loss (% entering conditioning)	2%	2%	2%	1%
Glucose sugar loss (% entering conditioning)	1%	1%	1%	0%

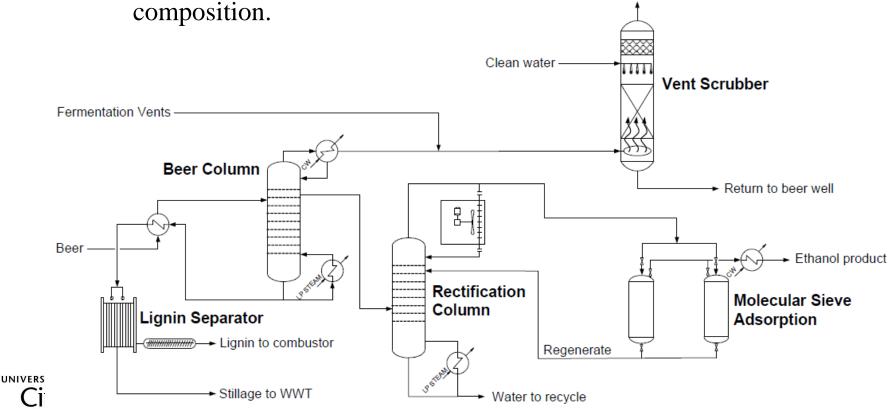
Enzymatic hydrolysis and assumed conversions

Reaction	Reactant	% Converted to Product
(Glucan) _n → n Glucose Oligomer	Glucan	4.0%
(Glucan) _n + ½n H ₂ O → ½n Cellobiose	Glucan	1.2%
(Glucan) _n + n H ₂ O → n Glucose	Glucan	90.0%
Cellobiose + H ₂ O → 2 Glucose	Cellobiose	100%

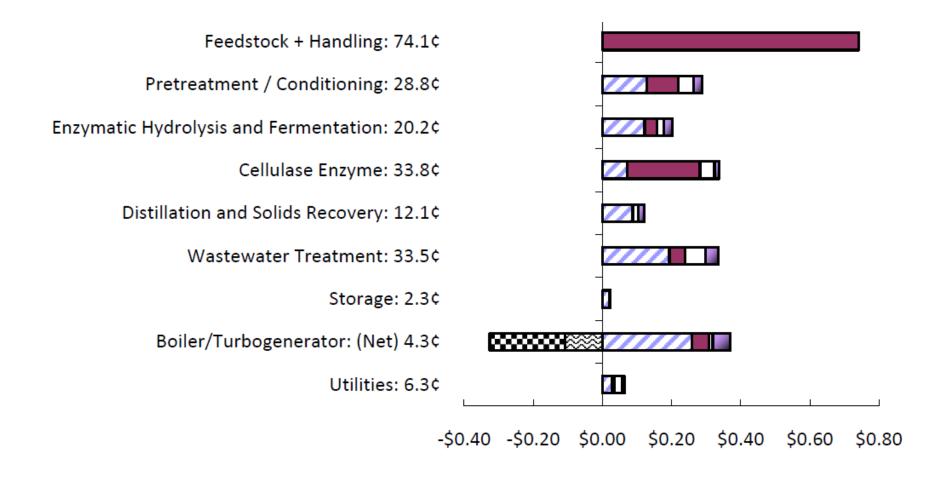
- Temperature 48 °C and Initial solids loading 20 wt % total solids
- Residence time 84 h
- Number and size of continuous vessels 8 @ 950 m3 (250,000 gal) each
- Number and size of batch vessels 12 @ 3,600 m3 (950,000 gal) each
- Cellulase loading 20 mg protein/g cellulose

Co-fermentation of glucose and xylose

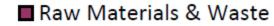
Reaction	Reactant	% Converted to Product
Glucose → 2 Ethanol + 2 CO ₂	Glucose	95.0%
Glucose + 0.047 CSL ^a + 0.018 DAP \rightarrow 6 Z. mobilis + 2.4 H ₂ O	Glucose	2.0%
Glucose + 2 $H_2O \rightarrow 2$ Glycerol + O_2	Glucose	0.4%
Glucose + 2 $CO_2 \rightarrow$ 2 Succinic Acid + O_2	Glucose	0.6%
3 Xylose → 5 Ethanol + 5 CO ₂	Xylose	85.0%
Xylose + 0.039 CSL + 0.015 DAP \rightarrow 5 Z. mobilis + 2 H ₂ O	Xylose	1.9%
3 Xylose + 5 $H_2O \rightarrow 5$ Glycerol + 2.5 O_2	Xylose	0.3%
Xylose + H_2O → Xylitol + 0.5 O_2	Xylose	4.6%
3 Xylose + 5 CO ₂ → 5 Succinic Acid + 2.5 O ₂	Xylose	0.9%


- Organism Recombinant Zymomonas mobilis
- Temperature 32 °C
- Initial fermentation solids level 19.8% total solids
- Residence time 1.5 days (36 h)
- Inoculum level 10 vol %

Ethanol distillation and separation


- Distillation and molecular sieve adsorption to recover ethanol
- Distillation is accomplished in two columns:
 - Beer column, removes the dissolved CO2 and most of the water.


Rectification column to concentrates ethanol to a near azeotropic composition.


35

Cost contribution from each process area

Cincil Grid Electricity

■ Total Plant Electricity

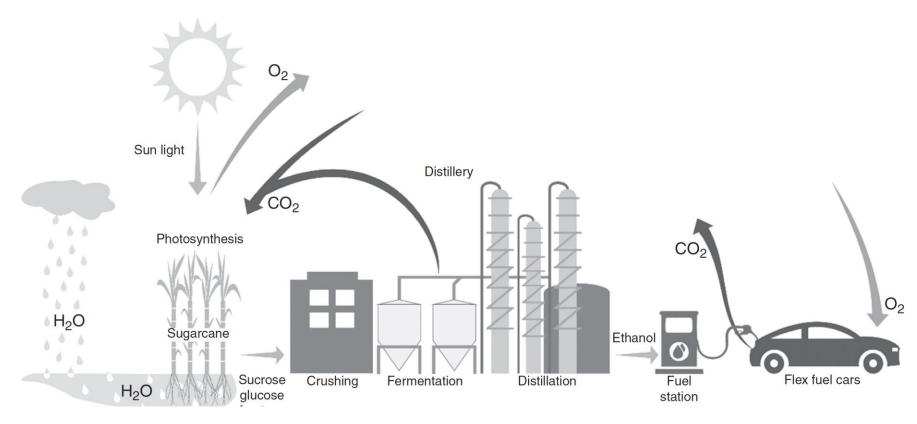
☐ Process Electricity

■ Fixed Costs

36

Ethanol plant energy balance

Stream	Energy Flow (MMkcal/h)
Major energy inputs	
Stover feedstock	-316
Glucose	-8
Sulfuric acid	1
Ammonia	-4
Other chemicals	0
Well water	87
Total	-239
Major energy outputs	
Ethanol	-139
Cooling tower evaporation	-20
Combustion exhaust + ash	-12
Ambient heat losses	-63
Electricity export	-11
Electricity reserve	-4
WWT brine	8
Total	-240


 Energy balance performed to compare the energy products from the process (ethanol & electricity) to the potential energy in the biomass feed.

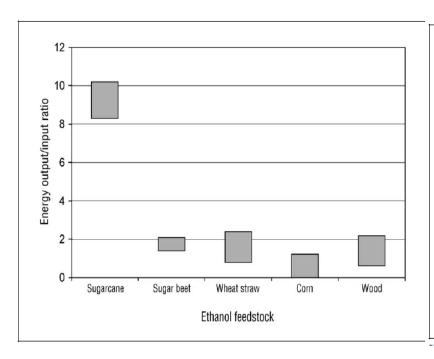
The percent of carbohydrate energy in the feed recovered as ethanol is about 72%

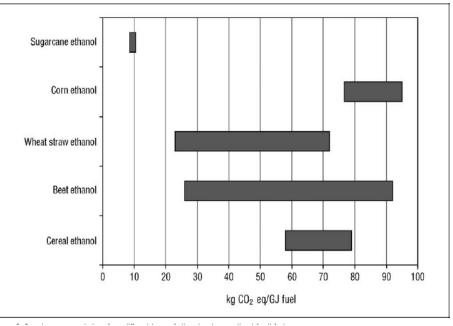
Sugarcane ethanol in brazil

UNIVERSITY OF

Cincinnati

• CO₂ and H₂O absorbed and converted to sugars, which are fermented by yeasts to ethanol.


Sugar cane to ethanol process



UNIVERSITY OF Harvest-milling-fermentation-distillation (self sufficient)

Cincinnati

Energy input and output

- Energy output and input from different feedstocks
- Greenhouse gas emissions from different fuels

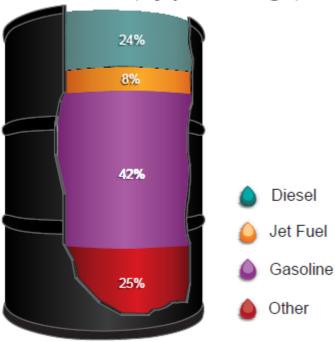
Coelho, 2006

Comparison of ethanol from corn & sugarcane

Cost item	US corn wet milling	US corn dry milling	US sugarcane	Brazil sugarcane
Feedstock cost	0.40	0.53	1.48	0.30
Processing cost	0.63	0.52	0.92	0.51
Total cost	1.03	1.05	2.04	0.81

- Estimated ethanol production costs (\$ per gallon)
 - Excludes capital costs
 - Feedstock costs for U.S. corn wet and dry milling are net feedstock costs
 - USDA report (2006)

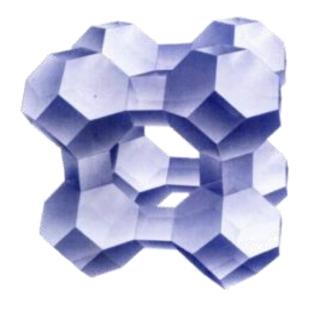
Bioproducts from biorefinery

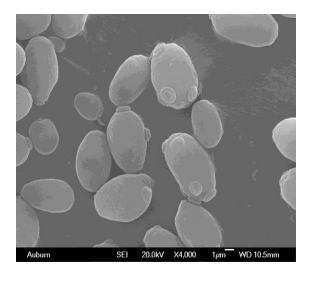

Figure 4. Overview of current and planned bioproduct facilities in the United States

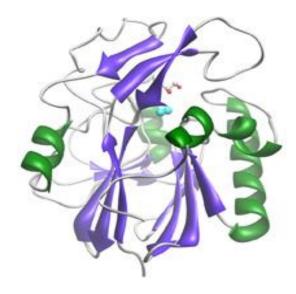
Cincinnati ______Source: Cameron Cargill

Replacing the whole barrel

- Cellulosic ethanol can
 - displace only 42% of a barrel
 - Of crude oil)gasoline)
- Hydrocarbon biofuels
 - "drop-in" fuels to replace
 - Diesel, jet fuel and others
- 7% of barrel used to make
 - glues, solvents and plastics


Uses of a Barrel of Crude Oil (by percentage)



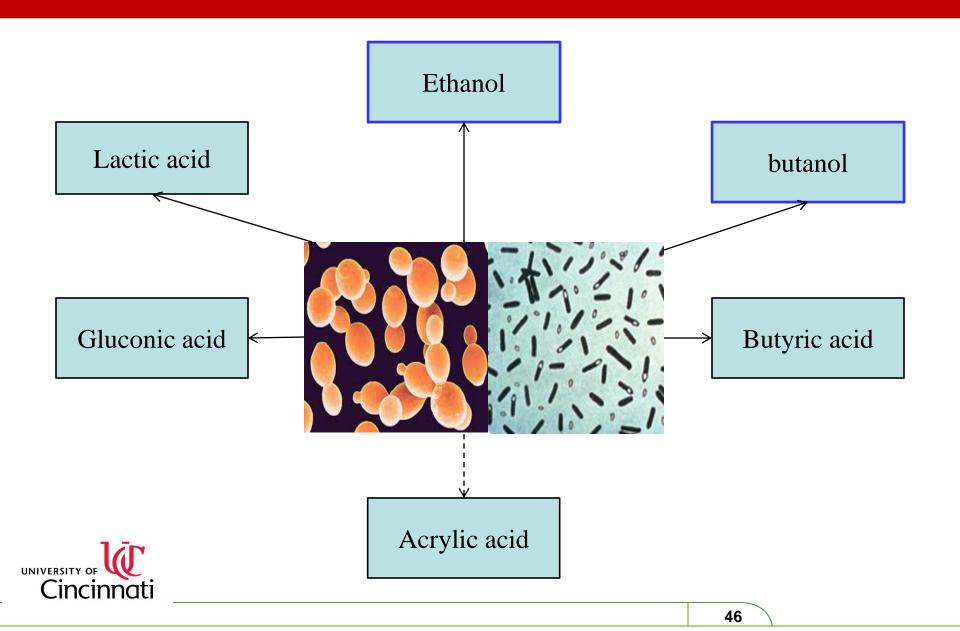

Source: Energy Information Administration; data

Catalyst and biocatalyst

Zeolite

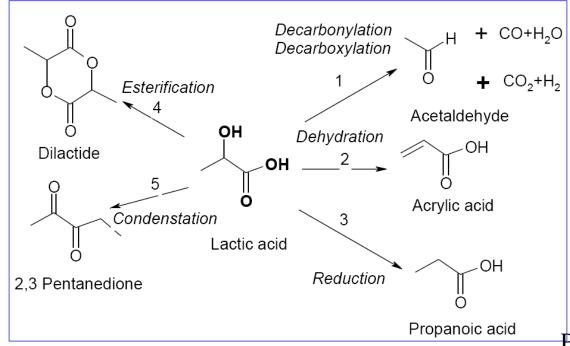
Yeast

Enzyme



Catalyst and process engineering

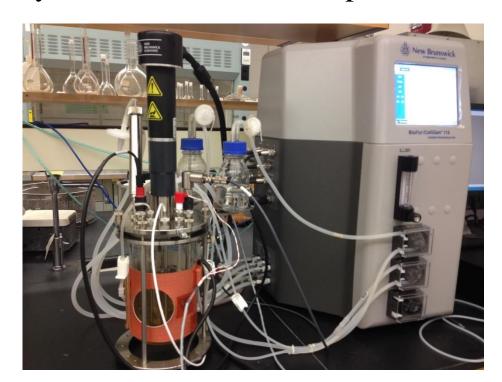
- Engineers turn molecules into money
 - develop and operate processes to convert raw materials into valuable products
 - Reactor design, process control, reaction kinetics, mass and heat transfer and separation
 - Catalyst plays essential role in many of these processes



Tu research: fuels and chemicals

Our research on acrylic acid

- Integrating biochemical conversion and chemical catalysis to produce new chemicals
 - Biomass to lactic acid by fermentation
 - Catalytic conversion of lactic acid to acrylic acid



Procter & Gamble

Our research on butanol

- Biofuels and bioproducts manufacturing
 - Butanol production from renewable biomass by Clostridium acetobutylicum
 - Carbonyl inhibition of biofuels production

New approach

Quantitative structure-activity relationship (QSAR) approach

- Computational study
- Experimental determination
- Predict the inhibitory effects of
 - degradation compounds
- Identify the potent inhibitors
- Design new selective detoxification

Predict Carbonyl Toxicity

Chemical

Structures

Revamp butanol fermentation

Training-Test

Experiments

49

Molecular

Descriptors

QSAR

Objectives and Hypothesis

Objectives:

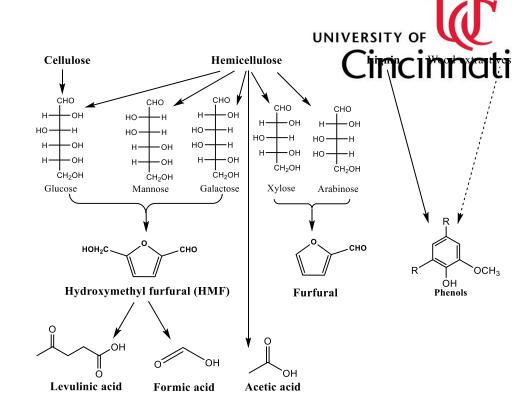
- Establish QSAR between molecular descriptors and inhibitory effects
 - of carbonyl compounds on microbial fermentation
- Design carbonyl-based selective chemical reactions
 - For detoxifying biomass hydrolysates

Hypothesis:

 Inhibition of carbonyl compounds is governed by their electrophilic reactivity to biological nucleophiles, the reactivity is further dominated by physicochemical properties

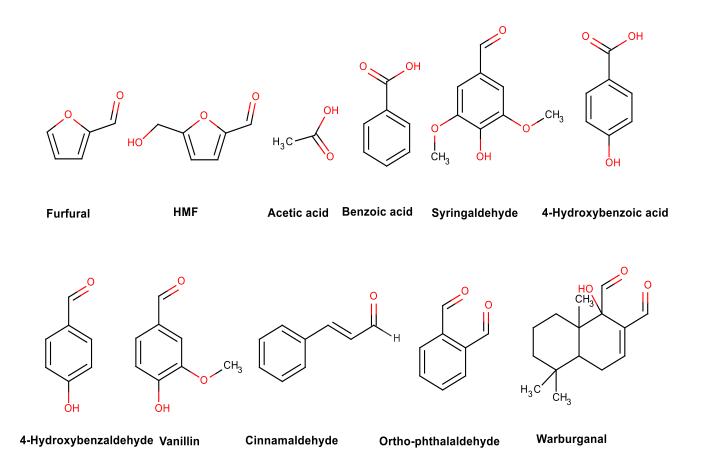
Formation of carbonyl inhibitors

Furans


- From sugars (Furfural and HMF)
- Toxicity low

Carboxylic acids

- Aliphatic acid from sugar
- Phenolic acid from lignin


Phenolic compounds

- Mostly from lignin and extractives
- Low concentration
- Higher toxicity

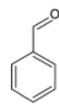
Questions: What are the most potent inhibitors?

Fermentation inhibitors: carbonyl compounds

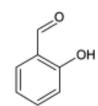
Critical issues and questions

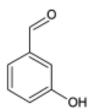
- What are the *most potent inhibitors*?
- How can they be *selectively removed*?
- Which *functional groups* are responsible for their inhibition?

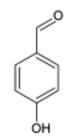
Methods

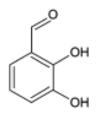

- Calculate the physiochemical properties of model compounds
 - The E_{LUMO} , E_{HOMO} , dipole moment (u), molar refractivity (MR) calculated by semi-empirical methods using Gaussian 09. The electrophilicity index (ω) calculated by the equation :

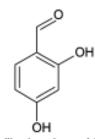
$$\omega = \frac{\mu^2}{2\eta} = \frac{E_{HOMO}^2 + 2E_{HOMO}E_{LUMO} + E_{LUMO}^2}{4(E_{LUMO} - E_{HOMO})}$$

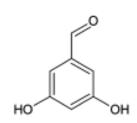

- Determine the inhibitory effects of model carbonyl compounds on yeast fermentation
 - Glucose consumption rate
 - Final ethanol yield

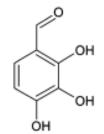

Phenolic model compounds

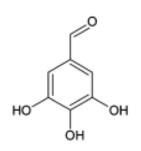

benzaldehyde

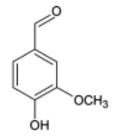

2-hydroxybenzaldehyde

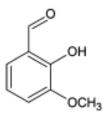

3-hydroxybenzaldehyde


4-hydroxybenzaldehyde


2,3-dihydroxybenzaldehyde


2,4-dihydroxybenzaldehyde

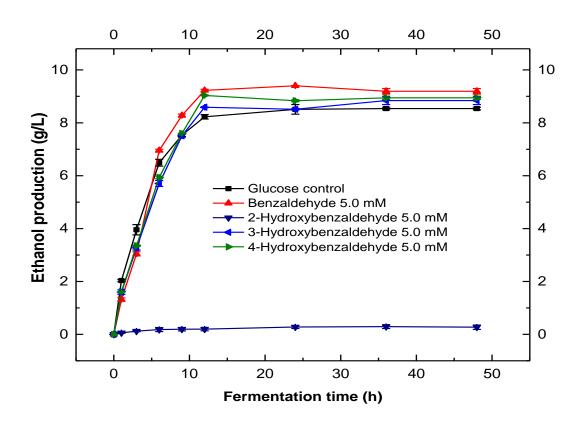

3,5-dihydroxybenzaldehyde


2,3,4-trihydroxybenzaldehyde

3,4,5-trihydroxybenzaldehyde

vanillin

o-vanillin

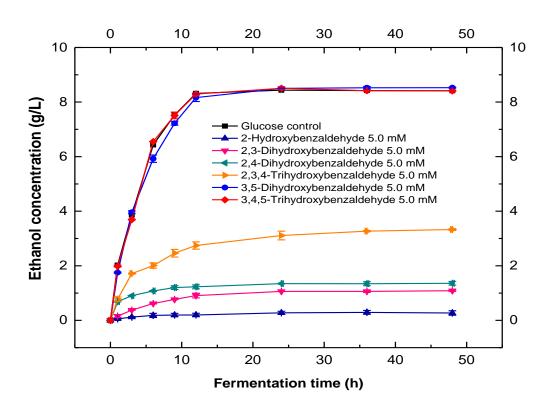


Substitution Effects of Phenolic Aldehyde Inhibition on fermentation

compound	$\begin{array}{c} \text{concentration} \\ \text{(mM)} \end{array}$	$Y_{\rm EtOH}^{a} (g/g)$	EC_{50}^{b} (mM)				
glucose control		0.42 ± 0.00	N/A	2,3,4-trihydroxybenzaldehyde	10.0	0.08 ± 0.00	
benzaldehyde	40.0	0.03 ± 0.00	27.5		5.0	0.17 ± 0.00	
	20.0	0.35 ± 0.02			2.5	0.44 ± 0.00	
	10.0	0.47 ± 0.01			1.0	0.44 ± 0.01	
	5.0	0.46 ± 0.01		3,5-dihydroxybenzaldehyde	40.0	0.44 ± 0.00	
2-hydroxybenzaldehyde	5.0	0.01 ± 0.00	0.9	5,5-diffydroxybeffzaideffyde	20.0	0.44 ± 0.00 0.44 ± 0.01	
	2.5	0.02 ± 0.00					
	1.0	0.22 ± 0.03			10.0	0.44 ± 0.00	
	0.5	0.42 ± 0.00			5.0	0.44 ± 0.00	
3-hydroxybenzaldehyde	40.0	0.03 ± 0.00	14.9	3,4,5-trihydroxybenzaldehyde	40.0	0.43 ± 0.00	
	20.0	0.10 ± 0.00			20.0	0.43 ± 0.00	
	10.0	0.44 ± 0.00			10.0	0.43 ± 0.00	
	5.0	0.44 ± 0.01			5.0	0.43 ± 0.01	
4-hydroxybenzaldehyde	40.0	0.05 ± 0.00	18.6	vanillin	40.0	0.13 ± 0.00	
	20.0	0.18 ± 0.00			20.0	0.22 ± 0.00	
	10.0	0.46 ± 0.00			10.0		
	5.0	0.44 ± 0.00				0.43 ± 0.00	
2,3-dihydroxybenzaldehyde	5.0	0.05 ± 0.00	0.9	475	5.0	0.42 ± 0.00	
	2.5	0.06 ± 0.00		o-vanillin	5.0	0.05 ± 0.00	
	1.0	0.11 ± 0.00			2.5	0.07 ± 0.01	
	0.5	0.45 ± 0.00			1.0	0.43 ± 0.00	
2,4-dihydroxybenzaldehyde	10.0	0.06 ± 0.00	2.1		0.5	0.43 ± 0.00	
	5.0	0.07 ± 0.00		Y_{EtOH} represents the ethanol	vield at 48 h	hased on origin	، ادر
	2.5	0.18 ± 0.01		^b EC ₅₀ represents the concentration			
	1.0	0.44 ± 0.00		LC ₅₀ represents the concentra	thon or phe	none aluenydes i	esu

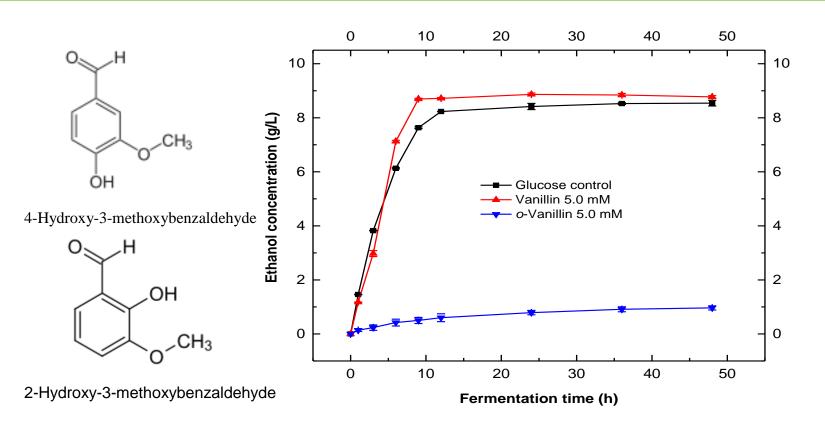
a final ethanol yield of 50% of the control at 48 h.

Effect of 2-, 3- and 4-hydroxybenzaldehydes on fermentation



• 2-hydroxybenzaldehyde showed 30-fold higher inhibition activity than benzaldehyde

Ortho-substituted 2-hydroxybenzaldehyde resulted in 15-20 fold higher inhibition than the meta- or para-substituted analogues of 3-and 4-hydroxybenzaldehydes


Effects of di- and trihydroxybenzaldehydes on yeast fermentation

3,5-dihydroxybenzaldehyde was much less inhibitory (EC50, > 40 mM) than 2,3- and 2,4-dihydroxybenzaldehydes (EC50, 0.9-2.1 mM) *Ortho* -OH group can influence the inhibition significantly.

Effect of vanillin and o-vanillin on fermentation

- Methoxyl group not important in benzaldehyde inhibition
- the position of —OH group contributed to the higher inhibitory activity of o-vanillin

Physicochemical descriptors and inhibitory activity

Compound	$C_{ m carb}$	$O_{ m carb}$	C_1	Log P	E _{HOMO}	E _{LUMO}	Dipole (Debye)	ω	$EC_{50}^{'}$ a
Benzaldehyde	0.435	0.529	0.177	1.69	-0.3255	-0.0394	3.380	0.116	4.439
2-Hydroxybenzaldehyde	0.427	0.510	0.224	2.03	-0.2990	-0.0322	4.331	0.103	2.954
3-Hydroxybenzaldehyde	0.436	0.525	0.154	1.38	-0.3011	-0.0407	4.372	0.112	4.173
4-Hydroxybenzaldehyde	0.433	0.539	0.209	1.38	-0.3015	-0.0305	4.481	0.102	4.270
2,3- Dihydroxybenzaldehyde	0.428	0.508	0.213	1.73	-0.2872	-0.0318	5.711	0.100	2.954
2,4- Dihydroxybenzaldehyde	0.425	0.519	0.252	1.73	-0.2950	-0.0220	4.959	0.092	3.322
3,5- Dihydroxybenzaldehyde	0.437	0.520	0.134	1.08	-0.2940	-0.0410	4.138	0.111	4.602
2,3,4- Trihydroxybenzaldehyde	0.426	0.515	0.235	1.43	-0.2888	-0.0218	6.474	0.090	3.716
3,4,5- Trihydroxybenzaldehyde	0.434	0.531	0.163	0.78	-0.2911	-0.0323	5.630	0.101	4.602
Vanillin	0.433	0.547	0.190	1.22	-0.2860	-0.0299	2.286	0.097	4.413
o-Vanillin	0.428	0.511	0.218	1.87	-0.2820	-0.0276	5.939	0.094	3.114

^aLog $EC_{50}^{'}$ represents Log (EC₅₀*1000), in which the concentration unit of EC₅₀ was changed from mM to μ M.

Quantitative structure-inhibition relationship

Regression	n	r^2	S	F	P
$Log EC_{50}' = -53.19 + 132.36 C_{carb}$	10	0.73	0.37	24.70	< 0.001
$\text{Log } EC_{50}' = -17.97 - 41.75 \ O_{\text{carb}}$	10	0.60	0.45	13.69	0.005
$Log EC_{50}' = 6.57 + 13.79 C_1$	10	0.57	2.56	11.79	0.007
$Log EC_{50}' = 6.10 - 132.36 log P$	10	0.69	0.40	19.58	0.002
$\text{Log } EC_{50}' = 2.01 - 19.89 \ E_{\text{HOMO}}$	10	0.12	0.66	1.25	0.293
$\text{Log } EC_{50}^{'} = 2.26 + 50.55 \ E_{\text{LUMO}}$	10	0.25	0.61	2.99	0.118
$\text{Log } EC_{50}' = 5.11 - 0.265 \text{ Dipole}$	10	0.23	0.62	2.68	0.136
$\text{Log } EC_{50}^{'} = -0.17 - 39.79 \ \omega$	10	0.25	0.61	3.01	0.117
$Log EC'_{50} = -31.71 + 85.50 C_{carb} - 0.86 log P$	10	0.87	0.27	25.88	< 0.001

- Strong association was observed between log P and EC50 value.
- Good correlation observed between the partial charge on carbonyl carbon (Ccarb) and the EC50 value of aldehydes

Summary

- *Ortho*-substituted 2-hydroxybenzaldehyde resulted in 15-20 fold higher inhibition than the *meta* or *para*-substituted analogues of 3- and 4-hydroxybenzaldehydes.
- Strong relationship between log *P* (octanol/water partition coefficient) of aldehydes and EC50.
- *Ortho* –OH group capable of forming an intramolecular hydrogen bond, which can potentially increase the cell membrane permeability and their toxicity.

