Complex Exponential From Summation of Cosine and Sine Waves:

Any cosine wave with a phase shift of d can be described by the sum of a sine and a cosine wave
of amplitudes A, and A with no phase shift.
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A cos(q +d) = A, cos(q) + A sin(q)

This approach was used to plot A, versus A, and obtain the phase shift d.
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Figure 4-11 on pp. 118 shows this for arbitrary phase waves.

We can use the trigonometry identity,
cos(A + B) = cos(A) cos(B) - sin(A) sin(B)
Todefine A and A, interms of d and A:
A cos(q + d) = {A cos(d)} cos(q) +{-A sin(d)} sin(q)
So, A, ={A cos(d)} and A,={-A sin(d)}.
This presents the problem that A, is defined as a negative number, yet the amplitude of awaveis
required to be a positive number. The issue is resolved by describing the sign of A, as an
imaginary number, i. Then the expression for the phase shifted wave can be written,
A (cos(d) +i sin(d)) = €
By expressing phase shifted waves in terms of € the mathematics for calculation of the
diffracted intensity is greatly simplified since a number of simple math identities are available
for the complex exponential.
Rulel: €” = -lifnisoddor 1if niseven,i.e.=(-1)"

Rule2: € =¢e™ whennisan integer

Rule 3: €+ e™ =2 cosx



