Complex Exponential From Summation of Cosine and Sine Waves:

Any cosine wave with a phase shift of can be described by the sum of a sine and a cosine wave of amplitudes A_s and A_c with no phase shift.

 $A \cos(+) = A_c \cos(-) + A_s \sin(-)$

This approach was used to plot $A_{\scriptscriptstyle S}$ versus $A_{\scriptscriptstyle c}$ and obtain the phase shift ~ .

Amplitude of Cosine

Figure 4-11 on pp. 118 shows this for arbitrary phase waves.

We can use the trigonometry identity,

 $\cos(A + B) = \cos(A) \cos(B) - \sin(A) \sin(B)$

To define A_c and A_s in terms of and A:

 $A \cos(+) = \{A \cos()\} \cos() + \{-A \sin()\} \sin()$

So, $A_c = \{A \cos()\}$ and $A_s = \{-A \sin()\}$.

This presents the problem that A_s is defined as a negative number, yet the amplitude of a wave is required to be a positive number. The issue is resolved by describing the sign of A_s as an imaginary number, i. Then the expression for the phase shifted wave can be written,

A (cos() + i sin()) = e^{i}

By expressing phase shifted waves in terms of e^i the mathematics for calculation of the diffracted intensity is greatly simplified since a number of simple math identities are available for the complex exponential.

Rule 1: $e^{n} = -1$ if n is odd or 1 if n is even, i.e. = $(-1)^n$

Rule 2: $e^{n i} = e^{-n i}$ when n is an integer

Rule 3: $e^{ix} + e^{-ix} = 2 \cos x$