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X-Ray Diffraction Lab
Experiment 3

Pinhole/Polaroid Diffractometer

Objective:  To become familiar with operation of a 4kW Philips x-ray generator and to look at some
simple 2D-XRD patterns in processed materials using a Polaroid film.

Background:  Cullity pp. 175 (Chapter 6), pp. 281 (Chapter 9), pp. 358 (Chapter 11).
A pinhole diffraction experiment using photographic film or a Polaroid camera is probably the
simplest approach to observation of crystalline diffraction using x-rays.  Figure 6-11 on page 175
demonstrates the type of diffraction pattern which can be obtained using this technique.  If
orientation is important it is critical to note the arrangement of the film with respect to the camera
and sample.  You should make a careful record in your notes on the orientation of the film with
respect to the camera and of the orientation of the sample in the camera.  

The pinhole technique involves pinhole collimation of the beam as opposed to a line beam.  The x-
ray tube typically has four ports from which x-rays can be obtained.  The footprint of the electrons
from a linear filament will be a line on the anode (Cu in this case).  From two of the ports a line
beam is produced and from the other two a point beam is produced.  It is best to choose the point
source if pinhole collimation is to be used since this will result in higher flux.  The beam which is
produced from the generator is from about 2 mm to less than 1 mm depending on the size of the
filament (i.e. normal or micro-filament).  Finer filaments produce better collimation but tubes with
fine filaments burn out faster.  For pinhole collimation it is the size of the beam which determines
the angular resolution which can be obtained.  

The pinhole technique is an extremely useful and cheap technique for screening samples especially
for processed materials.  Alignment of collimation is simple and can usually be achieved in less
than an hour.  The beam from the Cu target is attenuated with a sheet of Nickel to reduce the beta
peak.  You should make sure to note the voltage and current at which the generator is operated
during the experiment as well as estimating the power for the generator

The pinhole technique is a fairly simple lab which is intended to demonstrate diffraction from
common materials.  We will examine oriented and unoriented samples of polycrystalline
aluminum, polyethylene and some fibers to investigate fiber patterns.  For the processed samples
we will perform a crude estimate of the orientation function to describe orientation effects.  The
crystalline d-spacing and verification of the diffraction indexing will also be performed.  An
estimation of the crystalline size will also be performed for the PE samples from image plate data
which will be supplied.  

It is possible to obtain quantitative data in a diffractometer arrangement identical to the
photographic pinhole camera used in this lab.  This can be done using a 2-D wire detector or using
an image plate detector.  A 2-d image plate pattern from polyethylene will be provided on the web.
This image has been averaged azimuthally and radially at specified values of 2-theta corresponding
with some of the diffraction peaks.  The excel files for the averaged data are also included on the
web.

Polyethylene samples typically contain some inorganic processing aids, typically silica (SiO2)
which is usually in an α-quartz crystal structure, hexagonal with a = 4.9136Å and c=5.40512Å.  It
is easy to identify these inorganic additives in the diffraction pattern since the polymer crystals are
very small and give rise to smooth Debye-Scherer rings with significant breadth, while the
inorganic processing aid gives rise to a grainy pattern with no orientation and a fairly sharp band,
see figure 9-1 pp. 283.  
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Polyethylene crystallizes in an orthorhombic crystalline structure (Lab 2) with lattice dimensions of
a=7.40Å, b=4.93Å and c=2.534Å.  The c-direction is the chain direction.  Typically only three
strong reflections are observed, (110), (200) and (020), with the (200) being the prominent peak.
These peaks are superimposed on a broad region of intensity which results from the amorphous
component of the polymer (polymers are usually not 100% crystalline).  This amorphous halo
reflects a preferred spacing of PE chains in the amorphous state.  Typically, polymer samples
display significant intensity at very low angle which reflect colloidal scale structure associated with
stacked lamellar crystallites.  The pattern at very low-angles, 0.01° to about 6° can be analyzed
using various approaches of small-angle scattering.

The breadth of the diffraction peak is related to the size of the crystals by the Scherer equation
which we will derive in class.  The measurement of the breadth of the diffraction peak and
calculation of the crystalline size using the Scherer equation is a primary method to determine
crystallite dimensions.  The Scherer equation is given on pp. 284 in chapter 9 and is derived earlier
in chapter 3.  The size of a crystallite, t, giving rise to a diffraction is inversely proportional to the
breadth of the peak, B, in radians.  The peak breadth can be estimated from the photographic
image simply by measuring it off the pattern and converting this number to radians.  
t = 0.9 λ/(B cosθ)

where λ is the wavelength and θ is half the angle of diffraction (2θ).  Typically the half-width at
half-height of the diffraction peak is used for B which can be estimated as half the peak width on
the diffraction photograph.  A careful consideration of the error in this method using the
photographic method should be made.  Usually, the Scherer method is applied to diffractometer
traces which we will look at in a later lab.

A quantitative estimate of the degree of orientation in a processed sample can be obtained through
calculation of the Herman's orientation function, fhkl.  The Herman's orientation function can have
values in the range -0.5 to 1.  A value of -0.5 indicates that the crystalline planes are oriented
perpendicular to the machine direction, a value of 0 indicates random orientation and a value of 1
indicates perfect orientation in the MD.  For an orthogonal crystal the Hermans orientation function
for the three unit cell axes sum to 0.  The Hermans orientation function for a given plane can be
calculated by calculation of <cos2φ> where φ is the azimuthal angle in a 2-d pattern such as you
will obtain in this lab.  The Herman's orientation function can be used as a weighting fraction in
calculation of properties of a material in the various sample directions, i.e. modulus in the MD and
CD directions for a blown film.  

    Estimation        of         Hermans        Orientation        Function.   
Using the image plate data (radial averages) that displays orientation you the intensity as a function
of φ for a fixed 2θhkl on prominent diffraction peaks has been obtained, (200) for PE for instance.

φ=0 is in the MD direction. <cos2φhkl> is determined by:
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Aluminum has a FCC structure with a=4.0497Å.  Figure 9-11 displays a pinhole diffraction
pattern from an aluminum wire with the (111) and (200) reflections being the most prominent.
Notice that the edge of the photograph has been marked by cutting the top right edge for
identification of the camera orientation.

If time permits you can run diffraction patterns on other samples of your choice.
Make sure to keep careful notes on these and to include them in your lab reports.
Samples might include other fibers, salt, amorphous plastic pieces etc.  
(Back scattering will be run in another lab.)

Specific issues to be addressed:

1)  For all samples calculate 2θ, dhkl, and identify the planes which give rise to all strong
reflections (about 3-4 per sample).  If you see silica in the PE pattern verify that this is quartz by
the same calculation.

2)  For the polymer samples estimate the crystalline size using the Scherer Equation.  (You might
also try this for the aluminum samples).

3)  Calculate the orientation function for the image plate data as described above.  In your
discussion list the three limits to the orientation function and the values of f and <cos2φ> for these
cases.  Describe the usefulness of the orientation function.  

4)  Discuss the differences in appearance between polycrystalline metal patterns, polymer and
ceramic (silica in terms of Figure 9-1 on pp. 283).  Also discuss why the silica in PE doesn't orient
while the PE reflections can become highly oriented.  (This pertains to the shape of polymer
crystals vs. the shape of silica grains).


