Quiz 2 XRD 4/5/01

A change in momentum for a charged particle is often used as a source for x-rays.

- a) **Sketch** an x-ray tube showing:
 - -the source and kind of charged particles,
 - -the mechanism for control of momentum of the particles
 - -the mechanism for change in momentum of the particles
 - -and the necessary parts to achieve and control this process.
- b) **Make a plot** of intensity of x-rays versus wavelength for a copper anode for 1kV, 5kV, 20kV and 40kV
 - -Give a function for the short wavelength limit.
 - -Give a function for the white radiation intensity.
 - -Give a function for the characteristic radiation intensity.
 - -Show the wavelengths of the characteristic peaks.
- c) Describe the mechanism for formation of the 5kV curve in part b.-Why isn't the radiation a single wavelength?
- d) **Describe** the mechanism for formation of the part of the 40kV radiation that differs from your answer to part c.
- e) -What material could be used to filter the 40kV radiation for an XRD measurement?
 -Explain your choice of this material.
 -How does the absorption coefficient depend on Z and ?
 -How would you decide the thickness for this filter?

Answers: Quiz 2 XRD 4/5/01

a) -Source is a filament and kind is electrons.
-control of momentum is a high voltage drop (30 to 40kV)
-Mechanism for change is a piece of metal which serves as the anode, Cu or Mo.
-To control you need cooling water and a high vacuum 10⁻⁷ Torr.

b) $_{swl} = 12.4/kV$ where kV is the voltage drop in kV across the tube. $I_{Bremstralung} = K i Z V^2$ $I_{Characteristic} = K i (V-V_K)^{1.5}$ Cu_K radiation occurs at 1.54Å Cu_K radiation at 1.41Å The critical voltage to observe characteristic peaks is 9kV for Cu.

- c) White radiation represents a distribution of events of variable energy. The highest energy corresponds with a direct hit on a Cu atom by the electron in the tube. This is the source of $_{swl} = 12.4/kV$. Other more probable events involve partial collision where lower energy is involved.
- d) Above the critical voltage of 9kV electrons from the K shell can be removed. Filling of these orbitals by L or M orbital electrons results in quantized energy release corresponding to the difference in energy between L or M orbitals and the K orbital. These correspond to the K and K peaks observed in the 40kV spectrum.
- e) Nickel is used (Z = 28) for Cu radiation (Z = 29) since the critical energy to remove the K shell electrons matches the peak for Cu. The absorption coefficient depends on Z³ and I³, so there is a fairly sharp valley in absorption coefficient versus wavelength near the Cu_K peak at 1.54Å for a Nickel filter. To decide the thickness of the Ni filter you would use Beer's Law, I = I₀ exp(- μ t), where t is the thickness and the value for μ for Ni at 1.54 and 1.41Å. A fixed amount of attenuation of the two peaks would be chosen according to the resolution desired in the XRD measurement, typically I_{CuK} /I_{CuK} = 0.99 would be a good choice. So 0.99 = exp(-t($\mu \mu$)) or t = ln(0.99)/($\mu \mu$).