Quiz 4 XRD 020207

1) What is the unit cell for NaCl (B1)?

What atoms are in a single lattice position for NaCl?

Give the direction vectors of atoms in a single lattice position for NaCl.

Give the direction vectors in the unit cell for all lattice positions.

2) For Cu,

sketch the unit cell

and give the real space vectors locating atom positions in the unit cell.

Explain why a (100) reflection is not observed in diffraction from Cu using the atom positions you listed above.

3) **What** is the transverse direction in a <111> {100} standard projection cubic pole figure? (Use the equation for a zone axis/plane and the idea that the dot product of two perpendicular directions is zero, i.e. for [100] and [010], 1*0+0*1+0*0=0.)

Answers: Quiz 4 XRD 020207

- 1) The unit cell is FCC for NaCl with two atoms per lattice position, Na at [000] and Cl at [1/2 0 0]. The unit cell has lattice positions at [000], [1/2 1/2 0], [0 1/2 1/2], and [1/2 0 1/2].
- 2) Cu is FCC with atoms at [000], $[1/2 \ 1/2 \ 0]$, $[0 \ 1/2 \ 1/2]$, and $[1/2 \ 0 \ 1/2]$. A (100) reflection isn't seen since a wave from the atom at [000] is completely out of phase with a wave from the atom at $[1/2 \ 1/2 \ 0]$ and a wave from the atom at $[0 \ 1/2 \ 1/2]$ is completely out of phase with a wave form the atom at $[1/2 \ 0 \ 1/2]$ for (100) reflections. The phase angle is 2 (hu + kv + lw) where (hkl) = (100).
- 3) The transverse direction, [uvw], must fulfill the following two equations:

[111] dot [uvw] = 0 so
$$u+v+w=0$$

and

$$[100]$$
 dot $[uvw] = 0$ so **u=0**

Then $\mathbf{v} = -\mathbf{w}$ and the transverse direction is of the type $< 0 \mathbf{1} \mathbf{1} >$.