061025 Quiz 5 XRD

$1 \& 2$) It was mentioned in Lab 1 that the diffraction pattern observed on a film or screen is the Fourier transform of the structure. Explain how a diffraction pattern with one peak (one dspacing) is related to the real space structure of a crystal using the pairwise correlation function (rod throwing probability) and a Fourier transform of this function.
3) Show how the phase difference, $\phi=2 \pi / \lambda\left(\mathbf{S}-\mathbf{S}_{\mathbf{0}}\right) \cdot \mathbf{A B}$ can be obtained from a sketch of the diffraction from atoms A and B.
4) Construct the Sphere of Reflection by sketching a reciprocal lattice with an origin, (000) and the center of the diffraction measurement indicating 2θ and $\left(\mathbf{S}-\mathbf{S}_{\mathbf{0}}\right) / \lambda$. Why are only a few peaks seen when a perfect crystal diffracts with a single wavelength x-ray radiation?
5) Construct the limiting sphere and explain why Debye-Scherrer rings are seen from a powder pattern in a 2D photographic measurement such as was done in lab 2.
1)

This courelatim functim can be represented by a single sin wove of wavelength d so the resulting FT is single valued $I(g) \underbrace{q=\frac{2 \pi}{d}}_{q}$
4)

Spheref Reflection
(or Ewald Sphere)
It is an likely that a siven point will inkerest the sphere of tived radias 1/d in a fixed orientation relatiue to the latfire
5) By rotation of he crysta (to all pessisle orientations the spuse ofirflestion trases cut a larper splere of radius 2, called the limity sptere.

For the interrectiong the Bualds splece with a recinceral la tigige point rolating the la ble,e will trace out a cirele contrucultues of the

