090522 Quiz 5 XRD

1) Construct the Sphere of Reflection by sketching a reciprocal lattice with an origin, (000) and the center of the diffraction measurement indicating 2θ and $\left(\mathbf{S}-\mathbf{S}_{\mathbf{0}}\right) / \lambda$. Why are only a few peaks seen when a perfect crystal diffracts with a single wavelength x-ray radiation?
2) The following electron diffraction pattern is from an austenite phase of steel. Explain how this relates to inverse space and why electron diffraction patterns appear different than x-ray diffraction patterns.

3) Construct the limiting sphere and explain why Debye-Scherrer rings are seen from a powder pattern in a 2D photographic measurement such as was done in lab 2.
4) Explain why for FCC the unit cell structure factor, F , is 4 f for unmixed hkl and is 0 for mixed hkl where f is the atomic form factor.
5) Sketch the atomic form factor (I versus 2θ) and explain why the function has this shape.

Answers: 090522 Quiz 5 RD

1)

2) The wavelength of electrons is two orders smaller than the wavelength of x-rays so the sphere of reflection is two orders larger in diameter. The sphere is basically close to a flat sheet compared to the lattice size so we observe many more reflections in the electron diffraction pattern compared to an x-ray diffraction pattern. The Ewald sphere for electrons can align with the inverse space lattice to yield many reflections as shown in the figure.
3)
-) By rotation of the crystal to all possible ovientatims the spun dy. Her ion traces cut a layer er speer

For the intersection d the Balds place wi th a
recinceral lattice point rotating the la
will truce out a circle wo nd he la the,

4) 4 atoms $(0,0,0)$; $(1 / 2,1 / 2,0) ;(1 / 2,0,1 / 2) ;(0,1 / 2,1 / 2)$

$$
\begin{gathered}
\mathrm{F}=\mathrm{f}\left[1+\mathrm{e}^{(\pi \mathrm{i}(h+\mathrm{k}))}+\mathrm{e}^{\mathrm{\pi i}(h+1)}+\mathrm{e}^{\pi \mathrm{i}(\mathrm{k}+1)}\right] \\
\text { for Unmixed } \mathrm{hkl}=>\mathrm{F}=4 \mathrm{f} \text { and } \mathrm{F}^{2}=16 \mathrm{f}^{2}
\end{gathered}
$$

$$
\text { for Mixed } \mathrm{hkl}=>\mathrm{F}=0
$$

i.e. no (100) reflections but will have (111), (200) etc.
5) Plot of f versus 2θ.

f shows a monotonic decay with 2θ because it represents the Fourier transform of the electron density distribution function for an electron cloud which is basically a Gaussian (bell shaped) function. The Fourier transform of a Gaussian is another Gaussian which is a monotonic decay curve of the type shown above.

