Chapter 2

Geometry of Crystals

2-1 INTRODUCTION

Turning from the properties of x-rays, consider next the geometry and structure of
crystals in order to discover what there is about crystals in general that enables
them to diffract x-rays. Particular crystals of various kinds and how the very large
number of crystals found in nature are classified into a relatively small number of
groups must also be considered. The final sections of the chapter focus on the ways.
in which the orientation of lines and planes in crystals can be represented in terms
of symbols or in graphical form.
Crystallography is a very broad subject and its origins precede the discovery of

x-rays by many years. Only the more basic aspects are covered here: how atoms are
arranged in some common crystals and how this arrangement determines the way
in which a particular crystal diffracts x-rays. Readers who need a deeper knowledge
of crystallography should consult such books as those by McKie and McKie [G 3}
Borchardt—Ott [G:4],Sands [G.5] or Hammond [G. 6] L _
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- 2-2 LATTICES

b A crystal may be defined as a solid composed of atoms, ions or molecules arranged
! in a pattern periodic in three dimensions. As such, crystals differ in a fundamental
g way from gases and liquids because the atomic, ionic or molecular arrangements in

the latter do not posses the essential requirement of periodicity. Many solids are

i crystalline; if they are not single-crystals they consist of many contiguous crystals, |
! ie., they are polycrystalline. Not all solids are crystalline, however; some are amor-
phous, like glass, and do not have any regular interior arrangement of atoms, ions |
or molecules. There is, in fact, no essential difference between an amorphous solid
and a liquid, and the former is often termed an “undercooled liquid.” It is impor-
tant to emphasize that not only are the atom, ion or molecule positions repetitious -
but also that there are certain symmetry relationships in their arrangement.

In thinking about crystals it is often convenient to ignore the actual atoms, ions,
or molecules and to focus on the geometry of periodic arrays. The crystal is then
represented as a lattice, that is, a three-dimensional array of points {lattice points),
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Chapter 2 Geometry of Crystals
each of which has identical surroundings. As mathematical constructs, lattices are
infinite in extent whereas crystals are not. In practical terms, most crystals consist
of enough atoms to render this distinction moot.

Consider first a one-dimensional lattice. The entire “space” is this line with zero
thickness. The points of the lattice are separated by a lattice translation vector a
whose length, the lattice parameter, is written as |a], @ or a; (Fig. 2-1a)". Translation
of na from a lattice point, where n is an integer, brings one to another lattice point,
Planar or two-dimensional lattices consist of two non-collinear lattice vectors a and
b. These vectors have length a and & and are separated by an angle y (Fig. 2-1b).
Any translation na + phb, where p as well as n are integers, returns one to an equiv-
alent position within the Iattice or planar mesh, If a third translation vector ¢, non-
coplanar with a and b, operates on the mesh of Fig. 2-1b, a three-dimensional or
space lattice results (Fig. 2-1c). Thus, the points of this lattice can be gencrated
solely by applying (repeatedly) the three translation vectors.

Normally a,b and ¢ are defined in a right-handed sense (if the index finger of the
right hand points along a and the middie finger is bent to point along b, the thumb
will point along ¢) The vectors a, b and ¢ define a unit cell, that is a prism or para)-
lelopiped volume. Stacking the unit cells face-to-face is, in fact, another way of gen-
erating a lattice and sometimes offers greater clarity than considering only the
translation vectors. Unit cells can also be defined using the six scalar lattice param-
eters (the lengths of the three lattice translation vectors &y, by and ¢ and the three
inter-axial angles «, between b and ¢, B, between ¢ and a, and v). Figure 2-2a shows
the relationship between axes and angles which is easy to commit to memory using
Table 2-1. It is important to emphasize that the unit cell (its faces and interior) com-

pletely defines the lattice. Adjacent unit cells touch, and eight unit cells share each
vertex, four each edge and two each face, Thus, even though there are eight lattice
points in the unit cell shown in Fig. 2-1c, each is shared by eight other unit cells, only
--one-eighth of each may be attributed to the particular unit cell pictured. Therefore,
there is only one lattice point per unit cell, and this and other unit cells, chosen such
that they contain only one lattice point, are termed primitive.

Translation of the boundaries of the unit cell shown in Fig.2-1c by a vector of the
typeta/2 + b/2 * ¢/2 centers the unit cell-on one of the lattice points (indicated
by an open instead of solid sphere) and illustrates that the particular unit. cell ori-
gin or shape one chooses depends on what is most convenient. In Fig. 2-2b the
arrows show the shift of the unit cell corners from the setting in Fig. 2-1¢, and two
of the unit cell body diagonals indicate the relationship between the lattice point
and the corners of the unit celis. The gray areas represent projections, along a lat-
tice vector, of a unit cell face onto a plane parallel to that face and containing a
plane of lattice points. As a further aid to the eye, the separations of nearest neigh-
bor lattice points from the unit cell faces are indicated with heavy lines. Non-prim-
itive unit cells of some lattices, for example, are employed to illustrate important

MVectors are here represented by boldface symbols, The same symbol in jtalics stands for the magnitude
of the vector.
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Figure 2-1 (a) One-dimensional —_— |<—"'
lattice with parameter a. ° P . Py ®

R

Figure 2-1 (b) Two-dimensional lattice with lattice translation vectors a and b and interaxial angile .

ngure 2-1 (c) Three-dimensional lattice with a primitive unit cell highlighted in bold. Lattice points are
represented by the solid circles/spheres.

aspects of periodicity or symmetry. Once a particular unit cell or unit cell origin is
defined, it must be consistently applied throughout the lattice.
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Figure 2-2 (a) Illustration of lattice vector and
interaxial angle designations.

Figure 2-2 (b) Unit cells with the lattice peints located at the cell corners and an alternative unit cell
centered on one lattice point.

TABLE 2.1 DETERMINING WHICH INTER-AXIAL ANGLE 1S BETWEEN WHICH PAIR OF AXES. THE ANGLE BETWEEN
ANY TWO TRANSLATION VECTORS IS GIVEN BETWEEN THQSE VECTORS ON THE LINE BELOWY,

Axis ' a b c a

Inter-axial Angle ¥ o B

A different notation for the lattice vectors uses a,, a, and a, in place of a, b and |
¢, respectively. While use of a, may seem somewhat more abstract than necessary,
this notation can be much more convenient (see Section 2-4 and Chap. 3-5). One or




2-3 Designation of Points, Lines, and Planes 35

the other of these notations will be used in this book, and what aspects of periodic-
ity are being emphasized will determine which will be used.

2-3 DESIGNATION OF POINTS, LINES, AND PLANES

Every point within the lattice is uniquely defined with respect to the origin of the
lattice by position vector r = u’a + v’b + w’e. If the origin of the lattice lies on a lat-
tice point and if «’, v’ and w’ are integers, the point located by r must be a lattice
point and its coordinates are written simply as an ordered triplet u’v’w’. Points in
space which are not lattice points have non-integer values of u’, v’ or w’, and it is
possible to write r as the sum of integer multiples #, p and g of the lattice vectors
plus fractions u,v and w of the translation vectors:

r=(n+u).a+(p+v)b+(q+w)c. (2-1)

Rearranging terms yields
r=(na + pb + ge) + (ua + vb + we), 2-2) .

! i.e., a vector between lattice points or between corners of equivalent unit cells plus
a vector from the corner of a unit cell to a pomt within the u.mt cell at position wvw
relative to the comer of that unit cell.

" The direction of any line in a lattice may be described by first drawing a line
through the origin parallel to the given line and then giving the coordinates of any
point on the line through the origin. Let the line pass through the origin of the unit
cell and any point having coordinates #’ v’ w’, where these numbers are not neces-
sarily integral. (This line will also pass through the points 2z’ 2v’ 2w’, 3u’ 3v° 3w,
etc.) Then [uvw], written in square brackets, are the indices of the direction of the
line. They are also the indices of any line parallel 1o the given line, since the lattice
is infinite and the origin may be taken at any point. Whatever the values of u’, v,
w’, they are always converted to a set of smallest integers by multiplication or dm—
sion throughout thus, [111], [112], and [224] all represent the same direction, but
[112] is the preferred form Negative indices are written with a bar over the num-
ber, e.g., [uvw]. Direction indices are illustrated in Fig. 2-3. Note how one can men-
tally shift the origin, to avoid using the adjacent unit cell, in finding a direction like
[120].

Directions related by symmetry are called directions of a form, and a set of these
are represented-by the indices of one of them enclosed in angular brackets: for
example, the four body diagonals of a cube, [111], [111], [T11], and [T 11], may
all be represented by the symbol <111>.

The orientation of planes in a lattice may also be represented symbolically,
according to a system popularized by the English crystallographer Miller [2.1]. In
the general case, the given plane will be tilted with respect to the crystallographic
axes, and, since these axes form a convenient frame of reference, the orientation of
the plane might be described by giving the actual distances, measured from the ori-
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gin, at which it intercepts the three axes. Better still, by expressing these distances
as fractions of the axial lengths, the numbers become are independent of the par-
ticular axial lengths involved in the given lattice. But a difficulty then arises when
the given plane is parallel to a certain crystallographic axis, because such a plane
does not intercept that axis, i.e., its “intercept” can only be described as “infinity.”
To avoid the introduction of infinity into the description of plane orientation, the
reciprocal of the fractional intercept is used, this reciprocal being zero when the
plane and axis are parallel. A workable symbolism results for the orientation of a
plane in a lattice, the Miller indices, which are defined as the reciprocals of the frac-
tional intercepts which the plane makes with the crystallographic axes. For egample,
if the Miller indices of a plane are (kkl), written in parentheses, then the plane
makes fractional intercepts of Uk, I/k, 1/ with the axes, and, if the axial lengths are
a, b, c, the plane makes actual intercepts of a/h, b/k, ¢/l, as shown in Fig. 2-4(a).
Parallel to any plane in any lattice, there is a whole set of parallel equidistant
planes, one of which passes through the origin; the Miller indices (hkl) usually refer

* to that plane in the set which is nearest the origin, although. they may be taken as 4
referring to any other plane in the set or to the whole set taken together. :

(421)

| > sAJ |
24 b
e 14

v !
1A 24 34 4A

(b)

Figure 2-4 Plane designation by Miller indices.
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Determining the Miller indices of the plane shown in Fig. 2-4(b) requires the fol-
lowing steps.

Axial lengths 4A 3A 3A
Intercept lengths 1A 4A 34
Fractional intercepts 1/4 12 1
Miller indices 4 2 1

As stated earlier, if a plane is parallel to a given axis, its fractional intercept on
that axis is taken as infinity and the corresponding Miller index is zero. If a plane
cuts a negative axis, the corresponding index is negative and is written with a bar
over it. Planes whose indices are the negatives of one another are parallel and lie
on opposite sides of the origin, e.g., (210) and (210). The planes (nh nk nl) are par-
allel to the planes (hk{) and have l/nth the spacing, The same plane may belong to
two different sets, the Miller indices of one set being multiples of those of the other;
thus the same plane belongs to the {210) set and the (420) set, and, in fact, the
planes of the (210) set form every second plane in the (420) set. In the cubic crys-

. tal system it is convenient to remember that a direction [kkl] is always perpendicu-
lar to a plane (4ki) of the same indices, but this is not generally true in other crys-
tal systems. Further fainiliarity with Miller indices can be gained from a study of
Fig. 2-5. -

The various sets of planes in a lattice have various values of interplanar spacing.
The planes of large spacing have low indices and pass through a high density of lat-

i
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Figure 2-5 Miller indices of lattice planes. The distance 4 is the plane spacing.
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Figure 2-6 Two-dimensional lattice, showing that lines of lowest indices have the greatest spacing and
the greatest density of lattice points.

tice points, whereas the reverse is true of planes of smail spacing. Figure 2-6 illus-
o , trates this for a two-dimensional lattice, and it is equally true in three dimensions.

i1 The interplanar spacing d,,, measured at right angles to the planes, is a function
both of the plane indices (k) and the lattice constants (g, b, ¢, e, B, ¥)- :

2-4 RECIPROCAL LATTICE

Vectors a; (i.e., a, b, and ¢) define the basis vectors of a three-dimensional lattice.
This direct space lattice, however, is not the only way that the periodicity and sym-
metry of a given arrangement of lattice points can be represented. As introduced
by J. Willard Gibbs [2.2], a reciprocal lattice b, (i.e., a lattice in rec;procal Space) can

be defined for every direct space lattice a; by

‘a, X az
P xay
a Ay X Ay

a; X a
b, = ———— and

al'azxa3

a; X a 23)

b. =
*Ta e, Xa,

o The cyclic pennutatlon of the indices in the nmmerator insures that a right-handed

> reciprocal lattice is obtained. Strictly speaking, the denominator should be written

|‘ : using the same permutation of indices as the numerator, but this vector product is

the volume of the unit cell of the direct space lattice and this volume is the same
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regardless of the order in which the a, are multiplied.? One should note that the
units of the reciprocal lattice are A™? and not A.

The physical significance of the reciprocal lattice in diffraction is due to Ewald
[2.3] and not to Gibbs. The reciprocal lattice has several important propérties. First,
the cross-product in the numerator means that b, is perpendicular to a, and a,, that
b, is perpendicular (o a, and a; and that b, is perpendicular to a, and a,. This rela-
tionship means that the reciprocal lattice has the property of orthonormality, i.e.,

# - b; = &, (2-4)

where 8;; is the Kroenecker delta and equals 0if i # j and 1if i= j- It can be
shown that the volume of the reciprocal lattice unit cell is the reciprocal of the vol-
ume of the direct space unit cell. Second, a vector Hy, drawn from the origin of
reciprocal space to any point in reciprocal space having coordinates 4,k is per-
pendicular to the plane in direct space whose Miller indices are Akl The length H,,
of the reciprocal lattice vector Hyy, = hb, + kb, + lb, equals the reciprocal of the
periodicity of (hkl),ie., My = 1/dyg.

Two examples of direct space lattices and the corresponding reciprocal space Iat-
tices appear in Figure 2-7. Sometimes drawings of the lattices are shown superim-
posed, but it is best to place the direct space and reciprocal space lattices side-by--
side in order to avoid confusion in terms of units, etc. Note that the axes of each pair
of lattices are shown in the correct alignment: b, is perpendicular to both a;and a,,
etc. Also, in both cases, axes a, are perpendicular to a, and a, and to the plane of the
paper. The corresponding reciprocal lattices also have b, perpendicular to the sheet
of paper, and the 740 plane of the reciprocal lattice is shown. In the case of the
cubic lattice, b; is parallel to a, but for the hexagonal lattice b, is not parallel to a,.
Several planes in the direct space lattices are indicated along with their Miller
indices. In the cubic lattice.(110) and (210) are shewn, and one can sce-that the
reciprocal lattice vectors H;,, and H,,, are perpendicular to the corresponding
planes. Similarly, in the hexagonal lattice, one can sée that H,,, is perpendicular to
(120) and Hy, is perpendicular to (110). Comparing the direct space vector [120]
with the orientation of (120) in the drawing of hexagonal lattice demonstrates what
should always be remembered: the direct space vector [/k] in non-cubic systems
will not necessarily be perpendicular to (kkl). One can also demonstrate by direct
measurement that the lengths of the reciprocal lattice vectors are equal to the
inverse of the spacing between corresponding planes.

In crystallographic terms, all that is needed to uniquely identify a set of paraliel
lattice planes (hk) is their orientation and their periodicity. These are given by the
normal to the planes (a single direction) and the spacing between the planes (dy,).
A single lattice point in reciprocal space, defined by vector H,,, is sufficient, there-
fore, to represent the infinite series of physical direct space planes. In other words,

2 1f the notation a, b and ¢ is used for the direct space vectors, then a* b* and ¢* are used for the cor-
responding reciprocal space vectors.




J 40 Chapter2  Geometry of Crystals

i P A by
! (010)
4 - 040 + o
[ .
J (A) T e e @
|| —
I 2 + g 201 o o o
@ S’

| ] %
:! e 110
] . 2 T ® [
! ‘ =
i i a; 210 b,
g G —— —
| a 2 4 by 200 400

4

. / 2 / 7 7 Yh

Figure 2-7 Tllustration of crystal lattices (left side) and corresponding reciprocal lattices (right side}) for
a cubic system (top} and an hexagonal system (bottom). '

the transformation from direct space to reciprocal space maps all direct space
‘ planes (ki) onto a single point (i.e., the reciprocal laitice point with coordinates

i -‘;| h,k,I). Note that the symmetry which is present in direct space appears in recipro-
cal space. As will be seen in the following two chapters, the reciprocal lattice repre-
sentation of a crystal is a powerful tool for understanding diffraction.

2-5 SYMMETRY

One type of repetition, lattice translation, underlies the periodicity of one-, two-
! and three- dimensional nets. As mentioned in Sec. 2-2, the surroundings of each lat-
tice point are identical, not only in kind but also in orientation. Symmetry is the
i second type of repetition required to define the periodicity of two-dimensional pat-
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terns seen in wallpaper or of three-dimensional assemblies of atoms, ions or mole-
cules comprising crystals. The various symmetry operators act to change the orien-
tation of the repeated features or motifs which populate a lattice. These operators
are required to describe repeating patterns which are more compiex than thoss
generated through the simple repetition of lattice translations. For simplicity, the
symmetry elements used in crystallography will be introduced distinct from lattices
and only later will be incorporated into lattices to produce erystal structures.
Before considering how symmetry is incorporated in lattices, it is necessary to
investigate how the symmetry elements operate on their surroundings. If a certain
object is at a certain position relative to the symmetry element, the type of symme-
try element dictates where to look to find an object identical, except for orientation,
to the first. Alternatively, a body or structure is said to be symmetrical when its
component parts are arranged in such balance, so to speak, that certain operations
can be performed on the body which will bring it into coincidence with itself. For
example, if a body is symmetrical with respect to a plane passing through it, then
reflection of either half of the body across the mirror plane will produce a body
coinciding with the other half Thus a cube has several planes of symmetry, one of
which is shown in Fig. 2-8(a). Points A; and A, in Fig. 2-8(a) must be identical
because of the mirror plane through the center of the cube; they are related by
reflection. '

s
(]
A
4
A;
4 - il : A
1 Ai 1 A2
(a) (b)
Figore 2-8 Some symmetry ele- 7
ments of a cube. (a} Reflection s
plane. A, becomes A4, (b)
Rotation axes. 4-fold axis: 4, 4 A A

becomes A,; 3-fold axis: A,
becomes A,; 2-fold axis: A, \\
becomes A, (c) inversion cen- A
ter. A, becomes A, (d) 4,
Rotation-inversion axis, 4-fold
axis: A, becomes A’ inversion

center: A”) becomes A2, {e) @
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There are in all four macroscopic® symmetry operations or elements: reflection,
rotation, inversion and roto-inversion. A body has n-fold rotational symmetry about
an axis if a rotation of 360°/x brings it into self-coincidence. Thus a cube has a 4-fold
axis normal to each face, a 3-fold axis along each body diagonal; and 2-fold axes
i _ joining the center of opposite edges. Some of these are shown in Fig. 2-8 where the
‘ ; small plane figures (square, triangle, and ellipse) designate the various axes.In Fig.

|

2-8(b), points A;, Ay, Ay, and A, are related by the four-fold rotation axis (Fig. 2-
' 8(b)) while points A, and A, are also related by the two-fold axis inclined with
| :i respect to the four-fold axis. In general, rotation axes may be 1-, 2-, 3-, 4- or 6-fold.
Multiple 1-fold axes are present in all objects, and these are normally not shown
while a 5-fold axis or one of higher degree than 6 are impossible, in the sense that
y unit cells having such symmetry cannot be made to fill space without leaving gaps.
l . A body has an inversion center if corresponding points of the body are located
-k at equal distances from the center on a Jine drawn through the center. A body hav-
o ‘ ing an inversion center will come into coincidence with itself if every point in the
body is inverted, ot “reflected,” in the inversion center. A cube has such a center at
the intersection of body diagonals [Fig. 2-8(c)]. Finally, a body may have a rotation-
inversion axis, either 1-,2-, 3-, 4- or 6-fold. If it has an n-fold rotation-inversion axis,
it can be brought into coincidence with itself by a rotation of 360°/n about the axis
followed by an inversion in a center lying on the axis. Figure 2-8(d) illustrates the
operation of a 4-fold rotation-inversion axis on a cube. ’

Consider next all of the positions and orientations an object or motif must take
due to the operation of various symmetry elements (Fig. 2-9). The motif must
appear even more frequently if, for example as in Fig. 2-9(g) and (h), two symine-
try operators operate through the same point. The combined operation of a two-
fold asis lying within a mirror plane “produces™ a second mirror plane, perpendi-

~ cular to the first mirror and also containing the two-fold axis (i.e., horizontal in

- Fig. 2-9(g)). When a four-fold axis lies Within a single mitror plane as shown in

Fig. 2-9(h) symmetry requires a total of eight jdentical motifs (i various orienta-
tions) and four mirror planes to be present.

The different symmetry operations acting through a point are termed point
| groups. In two-dimensions there are ten point groups which can be included in lat-
.‘ . tices. In three-dimensions, the number of point groups increases to thirty-two:
: unlike in two-dimensions, inversion centers are no longer equivalent to two-fold
|
!
|
|
|

| - - - . .
e axes, and combinations such as mirrors perpendicular to rotation axes are possible.*

3 S0 called to distinguish them from certain microscopic symmetry operations which are not of concern
here. The macroscopic elements can be deduced from the angles between faces of a well-developed crys-
P tal, without any knowledge of the atomic arrangement inside the crystal. The microscopic symmetry ele-

| ments, on the other hand, depend entirely on atom arrangement, and their presence cannot be inferred

. : from the external development of the crystal.
P , 4 Texts such as thaf of Schwartz and Cohen [G.7] and those on crystallography [G.3-G:6] illustrate this

topic in considerably greater detail.
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Figure 2-9 Symmetry operators for crystallography; the point group designations are in quotations, (a)-
(h) are 1-fold axis “1”, two-fold axis “27, three-fold axis “3”, four-fold axis “4”, six-fold axis “6”, mirror
plane “m”, mirror plus two-fold axis “2m”, mirror plus four-fold axis “4m”, respectively.

It is important to emphasize that symmetry elements operate throughout space.
The discussion thus far has concentrated on direct space, but all the principles
described also apply in reciprocal space.

2-6 CRYSTAL SYSTEMS

In defining a lattice with three non-coplanar Jattice vectors, units cells of various
shapes can result, depending on the length and orientation of the vectors. For exam-
ple, if the vectors a, b, ¢ are of equal length and at right angles to one another, or
a=hb=cand a = g =y = 60° the unit cell is cubic. Giving special values to the
axial lengths and angles, produces unit cells of various shapes and therefore various
kinds of point lattices, since the points of the lattice are located at the primitive unit
cell corners. It turns out that only seven different kinds of cells are necessary to
include all the possible point lattices, These correspond to the seven crystal systems
into which all crystals can be classified. These systems are listed in Table 2-2. (Some
‘ writers consider the thombohedral system as a subdivision of the hexagonal, thus
: reducing the number of crystal systems to six.)

; Seven different point lattices can be obtained simply by putting points at the cor-
ners of the unit cells of the seven crystal systems. However, there are other arrange-
; ments of points which fulfill the requirements of a point lattice, namely, that each
lattice point have identical surroundings. The French crystailographer Bravais
worked on this problem and in 1848 demonstrated that there are fourteen possible
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! i | TABLE 2.2 CRYSTAL SYSTEMS AND BRAVAIS LATTICES

‘ ; (The symbol s means that equity is not required by symmetry. Accidental equality may occur, as
shown by an example in Sec. 2-4.)

i ’ e
. Bravais Lattice
! : System Axial lengths and angles laitice symbol
| Simpl, P
) Three equal axes at right angles 1mple
Cubic b= =B =y = 90° Body-centered I
i . a=h=c @=p=Y= Face-centered F
g
' | | Totragonal Three axes at right angles, two equal Simple P
i ! a=hbh=e a=f=y=90° Body-centered I
| |
I ‘ ‘ Simple P
| 1. . Three unequal axes at right angles Body-centered I
1] .
: ! i Orthorhombic azb#c o=B=y=90° Base-centered C
‘ ‘| Face-centered F
‘ !" Rhombohedral® Three cqual axes, equally inclined Sinol R
.EE:..:!E ompoie a=b=c, a=B=y#90° mpie
i
i
| 1*! ; Two equal coplanar axes at 120°, _
“‘ ! Hexagonal third axis at Iight angles Slrnp]_e P
I a=b#¢ @=p=90° (f=120°
1
i !i ! Three unequal axes, .
‘|"- Monoclinic one pair not at right angles Simple P
P o Base-centered C
ol azb#c, w=y=90°=p
_ \\H Three unequal axes, unequally inclined
o -. Trclinic and none at right angles Simple P
l ‘ I“\ ' o coo T g E b (wEPEY=I0%) R
il
I ‘ ‘ # Also called trigonal. !

‘ point lattices and no more [2.4]; this important result is commemorated by the use
Col | of the terms Bravais lattice and point lattice as-synonymous. For example, if a point
Lok is placed at the center of each cell of a cubic point lattice, the new array of points
' also forms a point lattice. Similarly, another point lattice can be based on a cubic
unit cell having lattice points at each corner and in the center of each face.

The fourteen Bravais lattices are described in Table 2-2 and illustrated in
Fig. 2-10. Some unit cells are simple, or primitive, cells (symbol P or R), and some
ate non-primitive cells (any other symbol): primitive cells have only one lattice
point per cell while nonprimitive have more than one. A lattice point in the interior
L] of a cell “belongs” to that cell, while one in a cell face is shared by two cells and one

it at a corner is shared by eight. The number of lattice points per cell is therefore

e given by
Ny N,

N=N++le @)
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Figure 2-10 The fourteen Bravais lattices.
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where N, = number of interior points, Ny= number of points on faces, and No= num-
ber of points on corners. Any cell containing lattice points on the corners only is
therefore primitive, while one containing additional points in the interior or on
faces is nonprimitive. The symbols F and I refer to face-centered and body-centered
cells, respectively, while A4, B, and C refer to base-centered cells, centered on one
pair of opposite faces 4, B, or C. (The A face is the face defined by the b and ¢ axes,
etc.) The symbol R is used especially for the rhombohedral system. In Fig. 2-10, axes
of equal length in a particular system are given the same symbol to indicate their
equality, e.g., the cubic axes are all marked 4, the two equal tetragonal axes are
marked a and the third one c, etc.

At first glance, the list of Bravais lattices in Table 2-2 appears incomplete. Why
not, for example, a base-centered tetragonal lattice? The full lines in Fig. 2-11 delin-
eate such a cell, centered on the C face, but the same array of lattice points can be
referred to the simple tetragonal cell shown by dashed lines, so that the base-cen-
tered arrangement of points is not a new lattice. However, the base-centered cell is
a perfectly good unit cell and may be used rather than the simple cell. Choice of one
or the other has certain consequences, which are described later (Problem 4-3).

The lattice points in a nonprimitive unit cell can be extended through space by
repeated applications of the unit-cell vectors a,b,c just like those of a primitive cell.
The lattice points associated with a unit cell can be translated one by one or as a
group. In either case, equivalent lattice points in adjacent unit cells are separated by
one of the vectors a, b, ¢, wherever these points happen to be located in the cell
(Fig. 2-12).

Now, the possession of a certain minimum set of symmetry elements is a funda-
mental property of each crystal system, and one systcm is distinguished from
another just as much by its symmetry elements as by the values of its axial lengths
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and angles. In fact, these are interdependent. For example, the existence of 4-fold
rotation axes normal to the faces of a cubic cell requires that the cell edges be equal
in length and at 90° to one another. On the other hand, a tetragonal cell has only
one 4-fold axis, and this symmetry requires that only two cell edges be equal,
namely, the two that are at right angles to the rotation axis.

The minimum number of symmetry elements possessed by each crystal system is

listed in Table 2-3. Some crystals may possess more than the minimum symmetry
elements required by the system to which they belong, but none may have less. The
existence of certain symmetry elements often implies the existence of others, For
example, a crystal with three 4-fold rotation axes necessarily has, in addition, four
3-fold axes and falls in the cubic system. The converse is not true; there are cubic
lattices which do not have three four-fold axes (see the unit cell of AuBe shown in
Fig. 2-23).
i Symmetry operations apply not only to the unit cells shown in Fig. 2-10, consid-
ered merely as geometric shapes, but also to the point lattices associated with them.
The latter condition rules out the possibility that the cubic system, for example,
could inclnde a base-centered point lattice, since such an array of points would not
have the minimum set of symmetry elements required by the cubic system, namely
; four 3-fold rotation axes. Such a lattice would be classified in the tetragonal system,
‘ which has no 3-fold axes and in which accidental equality of the 2 and c¢ axes is
! allowed. : :

Crystals in the thombohedral (trigonal) system can be referred to either a thom-
bohedral or a hexagonal Jattice. Appendix 4 gives the relation between these two
lattices and the transformation equations which allow the Miller indices of a plane
(see Sec. 2-8) to be expressed in terms of either set of axes.

2-7 PRIMITIVE- AND NONPRIMITIVE CELLS

i In any point lattice a unit cell may be chosen in an infinite number of ways and may
contain one or more lattice points per cell. It is important to note that unit cells do
not “exist” as such in a lattice: they are a mental construct and can accordingly be
chosen for utility, The conventional cells shown in Fig. 2-10 are convenient and con-
form to the symmetry elements of the lattice.

TABLE 2.3 SYMMETRY ELEMENTS

System Minimum symmetry elements

Cubic Four 3-fold rotation axes

Tetragonal One 4-fold rotation (or rotation - inversion) axis

Orthorhombic Three perpendicular 2-fold rotation (or rotation - inversion) axes
Rhombohedral One 3-fold rotation (or rotation - inversion) axis

Hexagonzal One 6-fold rotation (or rotation - inversion) axis

Monoclinic ‘One 2-fold rotation (or rotation - inversion) axis

Triclinic None
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Any of the fourteen Bravais lattices may be referred to a primitive unit cell. For
example, the face-centered cubic lattice shown in Fig. 2-13 may be referred to the
primitive cell indicated by dashed lines. The latter cell is rhombohedral, its axial
angle a is 60°, and each of its axes is 1/ \/2 times the length of the axes of the cubic
cell. Each cubic cell has four lattice points associated with it, each rhombohedral
cell has one, and the former has, correspondingly, four times the volume of the lat-
ter. Nevertheless, it is usually more convenient to use the cubic cell rather than the
rhombohedral one because the former immediately suggests the cubic symmetry
which the attice actually possesses. Similarly, the other centered non-primitive cells
listed in Table 2-2 are preferred to the primitive cells possible in their respective lat-
tices.

Why then do the centered lattices appear in the list of the fourteen Bravais lat-
tices? If the two cells in Fig. 2-13 describe the same set of lattice points, as they do,
why not eliminate the cubic cell and let the rhombohedral cell serve instead? The

~answer is that this cell is a particular thombohedral cell with an axial angle & of
'60°. In the general rhombohedral lattice no restriction is placed on the angle o; the

result is a lattice of points with a single 3-fold symmetry axis. When a becomes
equal to 60°, the lattice has four 3-fold axes, and this symmetry places it in the cubic
systemn. The general rhombohedral cell is still needed.

If nonprimitive lattice cells are used, the vector from the origin to any point in
the lattice will now have components which are nonintegral multiples of the unit-
cell vectors a, b, e. The position of any lattice point in a cell may be given in terms
of its coordinates; if the vector from the origin of the unit cell to the given point has
components xa, yb, zc, where x, y, and z are fractions, then the coordinates of the
point are x y z. Thus, point A in Fig. 2-13, taken as the origin, has coordinates 0 0 0
while points B, C, and D, when referred to cubic axes, have coordinates 0iiio0}
and 110, respectively. Point E has coordinates ;31 and is equivalent to point D,
being separated from it by the vector ¢. The coordinates of equivalent points in dif-
ferent unit cells can always be made identical by the addition or subtraction of a set
of integral coordinates: in this case, subtraction of 0 0 1 from 1% 1 (the coordinates

of E) gives 11 0 (the coordinates of D).
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Note that the coordinates of a body-centered point, for example, are always 344
no matter whether the unit cell is cubic, tetragonal, or orthorhombic, and whatever
its size. The coordinates of a point position, such as 11 may also be regarded as an
operator WhJCh when “applied” to a point at the origin, will move-or translate it to
the pos1t10n 11 the final position being obtained by simple addition of the opera-
tor 5 3 3 and the original position 0 0 0. In this sense, the vectors between 000 and all
body-centered positions in the eight adjacent unit cells, i.e., (2 7 2) are called the
“body-centering translations,” since they will produce the two point positions char-
acteristic of a body-centered cell when applied to a point at the origin. Similarly, the
four point positions characteristic of a face-centered cell, namely, 0 0 0, 0 11io0l
and 33 0, are related by the face-centering translations (%- 0). The base- ceutermg
translatzons depend on which pair of opposite faces are centered if centered on the
C face, for example, the equwalent posmons are 000,330 and the C-face center-
ing translations are (% 0] not [0%3] nor [1 01]. These centering translations, sum-
marized below, should be memorized:

body—centering = (33

face~centering = (33 0)

base—centering = [33 0] or [103] or{01}

Normally one writes “000 + body-centering translation”, “000 + face-centering
translation” or “000 + base-centering translation” when discussing unit cells with
only one atom per lattice point (i.e., Nb, Ni, Cu). Other unit cells have more than
one atom per umit lattice point. Slhcon for example, has a face-centered cubic
Bravais lattice with atoms at 000 and § } 1 plus face centering translations, for a total
of four lattice points but eight atoms per unit cell. More complex molecular crys-
tals, typical of substances found in Biclogical systems have large numbers of atoms
of different types per lattice point.

Note that the indices of a plane or direction are meamngless unless the orienta-
tion of the unit-cell axes is given. This means that the indices of a particular lattice
plane depend on the unit cell chosen. For example, consider the right-hand vertical
plane of the cell shown by full lines in Fig. 2-11; the indices of this plane are of the
form {100} for the base-centered cell and {110} for the simple cell.

In any crystal system there are sets of equivalent lattice planes related by sym-
metry. These are called planes of a form or a family of planes, and the indices of any
one plane, enclosed in braces {kl}, stand for the whole set. In general, planes of a
form have the same spacing but different Miller indices. For example, the faces of a
cube, (100), (010), (100), (010), (001), and (00T}, are planes of the form {100}, since
all of them may be generated from any one by operation of the 4-fold rotation axes
perpendicular to the cube faces. In the tetragonal system, however, only the planes
(100), (010), (T00), and (0T0) belong to the form {100}; the other two planes, (001)
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| |
31 and (00T), belong to the different form {001}; the first four planes mentioned are

! related by a 4-fold axis and the last two by a 2-fold axis’
: Planes of a zone are planes which are all paralle] to one line, called the zone axis,

|

ll 5 and the zone, i.e., the set of planes, is specified by giving the indices-of the-zone axis.

i ; Such planes may have quite different indices and spacings, the only requirernent
being that they are parallel to a single line. Figure 2-14 shows some examples. If the

{ axis of a zone has indices [1vw], then any plane belongs to that zone whose indices

(hkl) satisfy the relation
hu + kv + 1w =0 (2-6)

| | (A proof of this relation is given in Sec. 3 of Appendix.) Any two nonparallel
planes are planes of a zone since they are both parallel to their line of intersection.
If their indices are (hk,1,) and (,k,l,), then the indices of their zone axis [uvw] are

|:
| given by [hukily] X [hkob], that is,
u = laly = kohy,

‘ l‘ ‘ v =Ly — L,
w = hlkz —' h’Zkl' ‘ (2"7)

I;: Before turning to the special system of indexing for hexagonal crystal systems, it
is important to revisit the topic of interplanar spacings dy; for {hkl}. The exact rela-
tion depends on the crystal system involved and for the cubic system takes on the

J ! 1 “ relatively simple form
l - |' ) (Cubic) do = ] a 9.8

' | i dw= ooy @9
] In the tetragonal system the spacing equation naturally involves both 2 and ¢ since
' these are not generally equal:

1 _ a .
f _ (Tetragonal) d TR @ D (2-9)

‘ Interplanar spacing equations for all systems are given in Appendix 3. In the cubic

: } system, it is important to remember that [kk/] is perpendicular to (hkl). It is equally
‘ important never to forget that for all other crystal systems [kl) generally is not per-
|

pendicular to (hki).

|| 3 Certain important crystal planes are often referred to by name without any mention of their Miller

indices. Thus, planes of the form {111} in the cubic system are often called octahedral planes, since these
| are the bounding planes of an octahedron. In the hexagonal system, the (0001) plane is called the basal
| plane, planes of the form {10T0} are called prismatic planes, and planes of the form {1071} are called

pyramidal planes.
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[001] -
4 zone (110) 310)
(210) | axis /

-

Figure 2-14 All shaded planes in the cubic lat-
tice shown are planes of the zone {001).

2-8 INDEXING IN THE HEXAGONAL SYSTEM

A slightly different system of plane indexing is used in the hexagonal system. The
unit cell of a hexagonal lattice is defined by two equal and coplanar vectors a, and
a,, at 120° to one another, and a third axis ¢ at right angles [Fig. 2-15(a)]. The com-
plete lattice is constructed, as usual, by repeated translations of the points at the
unit cell corners by the vectors a,, a,, ¢. Some of the points so generated are shown
in the figure, at the ends of dashed lines, in order to exhibit the hexagonal symme-
try of the lattice, which has a 6-fold rotation axis parallel to c. The third axis a,, lying
in the basal plane of the hexagonal prism, is so symmetrically related to a; and a,

[001]
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. I I f (1100)
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| -~ 1200) -7~
o] 1205 N
N 126° %
! [100]
@ofyy 71210
3 (a) (b)

s Figure 2-15 (a) The hexagonal unit cell (heavy lines) and (b) indices of planes and directions.
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that it is often used in conjunction with the other two. Thus the indices of a plane in
the hexagonal system, called Miller-Bravais indices, refer to four axes and are writ-
ten (kkil). The index i is the reciprocal of the fractjonal intercept on the a, axis.
Since the intercepts of 2 plane on a, and a, determine its intercept on a,, the value
of i depends on the values of % and k. The relation is

B+ k=—i (2-10)

Since i is determined by 4 and k, it is sometimes replaced by a dot and the plane
symbol written (kk - I) Sometimes even the dot is omitted. However, this usage
defeats the purpose for which Miller-Bravais indices were devised, namely, to give
similar indices to similar planes. For example, the side planes of the hexagonal
prism in Fig. 2-15(b) are all similar and symmetrically located, and their relation-
ship is clearly shown in their full Miller-Bravais symbols: (1070), (0170), (1100),
(T010), (0110), (1T00). On the other hand, the abbreviated symbols of these planes,
(10 - 0), (01 - 0), (T1 - 0), (IO - 0), (0T - 0), (11 - 0) do mot immediately suggest this
relationship.

Directions in a hexagonal lattice are best expressed in terms of the three basic
vectors a,, a,, and c. Figure 2-15(b) shows several examples of both plane and direc-
tion indices. Another system, involving four indices, is sometimes used to designate
directions. The required direction is broken up into four component vectors, paral-
lel to a,, a,, a;, and ¢ and so chosen that the third index is the negative of the sum of
the first two. Then, if [ VW] are the indices of a direction referred to three axes and
[uvtw] the four-axis indices, the two are related as follows:

U=u—t u=QU-V)3

Vev—t v=(2V—U)/3
W=w t=—(u+v)=—-(U+V)3

w = W. (2-11)

Thus, [100] becomes [2110], [210] becomes [1010], etc.

2-9  CRYSTAL STRUCTURE

So far discussion focused on topics from the field of mathematical (geometrical)
crystallography and barely acknowledged actual crystals and the atoms of which
they are composed. In fact, all of the above was well known long before the dis-
covery of x-ray diffraction, i.e., long before there was any certain knowledge of the
interior arrangements of atoms in erystals.
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It is now time to describe the structure of some actual crystals and to relate this
structure to the point lattices, crystal systems, and symmetry elements discussed
above. The cardinal principle of crystal structure is that ke atoms of a crystal are set
in space in some fixed relation to the points of a Bravais lattice. It {5116Ws from this
that the atoms of a crystal will be arranged periodically in three dimensions and
that this arrangement of atoms will exhibit many of the properties of a Bravais lat-
tice, In particuiar many of its symmetry elements.

The features associated with each lattice point are termed the basis of the lattice,
and this applies to one- and two-dimensional lattices as well as three-dimensional
crystal structures. Figure 2-16 shows three different bases for a one-dimensional lat-
tice; the vertical dashed lines mark the end of the unit cells. The basis for lattice (b)
is a single dot-dash, with the dot to the right of the dash, that for (c) is a dash-dot
dot-dash combination and that for (d) is a dash-dot dash-dot combination. The sym-
metry in Fig. 2-16(c) can be represented by mirrors (solid vertical lines in the fig-
ure) or by 2-fold rotation axes perpendicular to the page. Note that the mirror at
“Q” (or the 2-fold axis at “O” in the alternate version) acts throughout the entire
one-dimensional space: the features at A and B appear at A’ and B’.

The term space group defines the entire spatial arrangement of a crystal system,
that is, translation (i.e., the vectors which define the size and shape of the unit cell)
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Figure 2-16 (a) One dimensional lattice with unit cells marked by vertical bars. {(b) One-dimensional lat-
tice populated with a “dash-dot” motif and showing one-fold symmetry. The borders of the unit cells are
indicated by the vertical dashed lines. (c) Three representations of the same one-dimensional lattice
populated with the dash-dot motit: The top line shows only the dash-dot motifs and unit cell boundaries.
The middle lattice shows where mirror planes oceur in the lattice (vertical bars) while the bottom lat-
tice includes two-fold axes. (d) One-dimensional Jattice with a basis consisting of two dash-dot motifs.
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combined with the symmetry elements acting through a point (i.e., the point group)
specify the space group. There are two point groups and two space groups for one-
| dimensional lattices, 17 space groups in two-dimensions and 230 umique space
' groups in three-dimensions. Thus, the combination of symmetty elefients with dif-
I ferent lattice types (not all symmetry element combinations nor lattice types have
been covered here, see [G.3-G.6] for more details) dictate that three-dimensional
‘ crystals cannot have any atomic arrangement, only one of the 230 possibilities cat-
| aloged in Volume A of the International Tables for Crystallography [G.1]. Instead,
' | different crystals have different bases ranging from single atoms to thousands or
| . millions of atoms.

' The simplest crystals imaginable are those formed by placing atoms of the same
| : kind on the points of a Bravais lattice. Not all such erystals exist but many metals
g crystallize in this simple fashion, and Fig. 2-17 shows two common metal structures
‘}Ei based on the body-centered cubic (BCC) and face-centered cubic (FCC) lattices.

| & The former has two atoms per unit cell and the latter four.
’ i The next degree of complexity is encountered when two or more atoms of the
i same kind are “associated with” each point of a Bravais lattice, as exemplified by
||! \ the hexagonal close-packed (HCP) structure common to many metals. This struc-
V ture is simple hexagonal and is illustrated in Fig. 2-18. There are two atoms per unit
| cell, as shown in (a), one at 0 0 0 and the other at 33 (or at 333, which is an equiv-
’ alent position). Figure 2-18(b) shows the same structure with the origin of the unit
T cell shifted so that the point 1 0 0 in the new cell is midway between the atoms at
f i 100 and 241 in (a), the nine atoms shown in (a) corresponding to the nine atoms
{ marked with an X in (b). The “association” of pairs of atoms with the points of a
simple hexagonal Bravais lattice is suggested by the dashed lines in (b). Note, how-
’ ever, that the atoms of a close-packed hexagonal structure do not themselves form
a point lattice, the surroundings of an atom at 000 being different from those of an
atom at 21 1. Figure 2-18 (c) shows still ariother representation of the HCP struc-

ik ture: the three atoms in the interior of the hexagonal prism are directly above the
I centers of alternate triangles in the base and, if repeated through space by the vec-

| ‘ tors a, and a,, would also form a hexagonal array just like the atoms in the layers

ki ‘ above and below.

N “‘ _ The HCP structure is so called because it is one of the two ways in which spheres
*‘f ‘ can be packed together in space with the greatest possible density and still have a

Mé: periodic arrangement. Such an arrangement of spheres in contact is shown in Fig.

Y 2-18(d) and appears to have first been noted by Kepler [2.5], who is better known

Figure 2-17 Structures of some common metals. -
N Body-centered cubic: o-Fe, Cr, Mo, V, etc.: face-
i centered cubic: v-Fe, Cu, Pb, Ni, etc. BCC FCC
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{c) (@)
Figure 2-18 The hexagonal close-packed structure, shared by Zn, Mg, Be, o'Ti; etc:

for his work in astronomy. If these spheres are regarded as atoms, then the result-
ing picture of an HCP metal is much closer to physical reality than is the relatively
open structure suggested by the drawing of Fig. 2-18(c), and this is true, generaily,
of all crystals. On the other hand, it may be shown that the ratio of ¢ to a in an HCP
structure formed of spheres in contact is 1.633 whereas the ¢/z ratio of metals hav-
ing this structure varies from about 1.58 (Be) to 1.89 (Cd). As there is no reason to
suppose that the atoms in these crystals are not in contact, it follows that they must
be ellipseidal in shape rather than spherical.

The FCC structure is an equally close-packed arrangement. Its relation to the
HCP structure is not immediately obvious, but Fig. 2-19 shows that the atoms on the
(111} planes of the FCC structure are arranged in a hexagonal pattern just like the
atoms on the (0002) planes of the HCP structure. The only difference between the
two structures is the way in which these hexagonal sheets of atoms are arranged
above one another. In an HCP metal, the atoms in the second layer are above the
hollows in the first laver and the atoms in the third layer are above the atoms in the
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STACKING OF (0002) PLANES

[001]

! (0002)
L~

'l’///
Z

%
i

| !
4 FACE-CENTERED CUBIC HEXAGONAL CLOSE-PACKED

! ‘!. : Figure 2-19 Comparison of FCC and HCP structures. The black atoms in the FCC drawing delineate
at | . half a hexagon, which is completed on the same plane extended into the next unit cell below (not

“" . shown}. ' T - T e e SRR

1 : first layer, so that the layer stacking sequence can be summarized as
_ |' : ABABAB.... The first two atom layers of an FCC metal are put down in the

S § | same way, but the atoms of the third layer are so placed in the hollows of the sec-

S ond layer that not until the fourth layer does a position repeat. FCC stacking there-

fore has the sequence A B C A B C... . These stacking schemes are indicated in

all the plan views shown in Fig. 2-19.

Al Another example of the “association” of more than one atom with each point of

!' a Bravais lattice is given by uranium. The structure of the form stable at room tem-

perature, q-uranium, is illustrated in Fig. 2-20 by plan and elevation drawings. In
N such drawings, the height, of an atom (expressed as a fraction of the axial length)

i _ above the plane of the drawing (which includes the origin of the unit cell and two
of the cell axes) is given by the numbers marked on each atom. The Bravais lattice
is base-centered orthorhombic, centered on the C face, and Fig, 2-20 shows how the

’ atoms occur in pairs through the structure, each pair associated with a lattice point.
3

There are four atoms per unit cell, located at 0y %, 053 3G + »). and 3G — ¥)i




2-9  Crystal Stucture 57

o o ©

dafia

Figure 2-20 The structure of a-uranium, after
Jacob and Warren [2.6].

Here is an example of a variable parameter y in the atomic coordinates. Crystals”

often contain such variable parameters, which may have any fractional value with-
out destroying any of the symmetry elements of the structure. A quite different sub-
stance might have exactly the same structure as uranium except for slightly differ-
ent values of @, b, ¢, and y. For uranium y is 0.105 = 0.005.

Turning to the erystal structure of compounds of unlike atoms, structures are
built on the skeleton of a Bravais lattice but that certain other rules must be
obeyed, precisely because there are unlike atoms present. Consider, for example, a
crystal of A,B, which might be an-ordinary-chemical compound, an intermediate
phase of relatively fixed composition in some alloy system, or an ordered solid solu-
tion, Then the arrangement of atoms in A, B, must satisfy the following conditions:

1. Body-, face-, or base-centering translations, if present, must begin and end
on atoms of the same kind. For example, if the structure is based on a body-
centered Bravais lattice, then it must be possible to go from an A atom, say,
to another A atom by the translation 51

2. The set of A atoms in the crystal and the set of B atoms must separately
possess the same symmetry elements as the crystal as a whole, since in fact
they make up the crystal. In particular, the operation of any symimetry ele-
ment present must bring a given atom, A for example, into coincidence

with another atom of the same kind, namely A.

Consider the structures of a few common crystals in light of the above require-
ments. Figure 2-21 illustrates the unit cells of two ionic compounds, CsCl and NaCl.
These structures, both cubic, are common to many other crystals and, wherever they
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(a) CsCl {b) NaCl

Figure 2-21 The structures of (2) CsCl {common to CsBr, NiAl, ordered 8-brass, ordered CuPd, etc.)
and (b) NaCl (common to KCl, CaSe, PbTe, etc.).

oceur, are referred to as the “CsCl structure” and the “NaCl structure.” In consid-
ering a crystal structure, one of the most important things to determine is its Bravais
lattice, since that is the basic framework on which the crystal is built and because,
as Chap. 4 demonstrates, it has a profound effect on the way in which that crystal
diffracts x-rays.
What is the Bravais Jattice of CsCl? Figure 2-21 (a) shows that the unit cell con-
tains two atoms, ions really, since this compound is completely ionized even in the
-~ solid state: a cesium ion at 000 and a chlorine ion at £ £ 1. The Bravais lattice is obvi-
ously not face-centered, but the body-centering translation 2  connects two atoms.
However, these are unlike atoms and the lattice is therefore not body-centered. It
is, by elimination, simple cubic. If one wishes, one may think of both ions, the cesium
at 000 and the chlorine at 33, as being associated with the lattice point at 0 0 0, It
is not possible, however, to associate any one cesium jon with any particular chlo-
rine ion and refer to them as a CsCl molecule; the term “molecule” therefore has
no real physical significance in such a crystal, and the same is true of most inorganic
compounds and alloys.
Close inspection of Fig. 2-21(b) will show that the unit cell of NaCl contains 8

ions, located as follows:
4 Na*tat 0 0 0, % % 0,

N]’_l—l

and 0 %

3 .

D=
o
[l

4 Clrat 313 003 0430 ad 100
The sodium ions are clearly face-centered, and the face-centenng translations [000]

and (33 §> when applied to the chlorine ion at } 1, will reproduce all the chlorine-
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ion positions. The Bravais lattice of NaCl is therefore face-centered cubic. The ion
positions, incidentally, may be written in summary form as:

4 Nat at 0 0 0 4 face—centering translations.

4 CI° at 111 '+ face—centering translations.

Note aiso that in these, as in all other structures, the operation of any syminetry
element possessed by the lattice must bring similar atoms or ions into coincidence.
For example, in Fig. 2-21(b), 90° rotation about the 4-fold [010] rotation axis shown
brings the chlorine ion at 011 into coincidence with the chlorine ion at 31 1, the
sodium ion at 0 1 1 with the sodium ion at1 1 1, etc

Elements and compounds often have closely similar structures. Figure 2-22
shows the unit cells of diamond and the zinc-blende form of ZnS. Both are face-cen-
tered cubic. Diamond has 8 atoms per unit cell, located at

0 0 0 + face—centering translations.

% % % + face—centering translations.

In other words, a “molecule” of two atoms is associated with each of the face-cen-
tered lattice points. The atom positions in zinc blende are identical with these, but.
the first set of positions is now occupied by one kind of atom (S) and the other by
a different kind (Zn).

Note that diamond and a metal like copper have quite dissimilar structures,
although both are based on a face-centered cubic Bravais lattice. To distinguish
between these two, the terms “diamond cubic” and “face-centered cubic” are usu-
ally used. The industrially important semiconductor, silicon has the diamond cubic
structure.

. Instéad of referring to a structure by name, such as the “NaCl structure,” one can
use the designations introduced years ago in Strukmurbericht [G.8]. These consist of
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Figure 2-22 The structures of () diamond {common 1o Si, Ge, and gray Sn} and (b) the zinc-blende form
of Zn8 (common to HgS, Cul, A1Sb, BeSe, etc.).
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! : a letter and a number: the letter A indicates an element, B an AB compound, C an
| AB, compound, etc. The structure of copper, for example, is called the A1 structure,
l a-Fe is A2, zinc is A3, diamond is A4, NaCl is B1, etc. A full list is given by Pearson
1 : [G.9, Vol. 1, p. 85]. S
’ ' Some rather complex crystals can be built on a cubic lattice. For example, the fer-
rites, which are magnetic and are used in recording tapes, computer floppy disks
and in hard drives, have the formula MO - Fe,0s, where M is a divalent metal ion
‘ , like Mn, Ni, Fe, Co, etc. Their structure is related to that of the mineral spinel. The
J , Bravais lattice of the ferrites is face-centered cubic, and the unit cell contains 8
) E “molecules” or a total of § X 7 = 56 ions. There are therefore 56/4 or 14 lons asso-
| ! ciated with each lattice point.
| The number of atoms per unit cell in any crystal is partially dependent on its
| ’ Bravais lattice. For example, the number of atoms per unit cell in a crystal based on
' P a body-centered lattice must be a multiple of 2, since there must be, for any atom in
S the cell, a corresponding atom of the same kind at a translation of 3 34 from the first.
[ | . The number of atoms per cell in a base-centered lattice must also be a muitiple of
i 2, as a result of the base-centering translations. Similarly, the number of atoms per
L cell in a face-centered lattice must be a multiple of 4.
‘ F ik | The reverse of these propositions is not true, It would be a mistake to assume,
[ ' | for example, that if the number of atoms per cell is 2 multiple of 4, then the lattice
i is necessarily face-centered. The unit cell of the intermediate phase AuBe, for
, ‘\l example (Fig. 2-23), contains 8 atoms and yet it is based on a simple cubic Bravais
lattice. The atoms are located as follows:

i 4 Au at

- v ouow G- wE TG+ 0G- 0 G- Wi+,

! 'Ilw 4 Be at 7 . .
s wow ow, G+wE-ww, wi W)z = w), G- wiw + w),

where u = 0.100 and w = 0.406, each +0.005. If the parameter  is put equal to zero,
the atomic coordinates of the gold atoms become those of a face-centered cubic
cell. The structure of AuBe may therefore be regarded as distorted face-centered
cubic, in which the presence of the beryllium atoms has forced the gold atoms out
of their original positions by a distance *u, *u, +u. These translations are all in
: directions of the form <111>, i.e., parallel to body diagonals of the cube, and are
el shown as dotted lines in Fig. 2-23. The three-fold axes characteristic of cubic Bravais
! } i lattices remain, but four-fold axes are not present due to the distortion. Thus, this
i structure is an example of a cubsic crystal system without set of three perpendicular
four-fold axes. '
It should now be apparent that the term “simple,” when applied to a Bravais lat-
tice, is used in a very special, technical sense and that some very complex structures
i can be built up on a “simple” lattice. In fact, they may contain more than a hundred
atoms per unit cell. The only workable definition of a simple lattice is a negative
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Figure 2-23 The structure of AuBe, shared by FeSi, NiSi, CoSi, MnSi, ete. It is known as the FeSi struc-
tore [2.7].

one: a given lattice is simple if it is neither body-, base-, nor face-centered; these lat-
ter possibilities can be ruled out by showing that the set of atomic positions does
not contain the body-, base-, or face-centering translations. There is no-rule gov-
erning the allowable number of atoms per cell in a simple lattice: this number may
take om any one of the values 1, 2, 3, 4, 5, etc., although not in every crystal system
and not every higher integer is permitted. Incidentally, not every theoretical possi-
bility known to mathematical crystallography is realized in nature; for example, no
known element crystallizes with a simple liexagonal lattice containing one atom per
unit cell.

There is another way of arranging unlike atoms on a point lattice besides those
considered so far and that is exemplified by the structure of solid solutions. These
solutions are of two types, substitutional and interstitial; in the former, solute atoms
substitute for, or replace, solvent atoms on the lattice of the solvent, while in the lat-
ter, solute atoms fit into the interstices of the solvent lattice. The interesting feature
of these structures is that the solute atoms are distributed more or less at random.
For example, consider a 10 atomic percent solution of molybdenum in chromium,
which has a BCC structure. The molybdenum atoms$ can occupy either the corner
or body-centered positions of the cube in a random, irregular manner, and a small
portion of the ¢rystal might have the appearance of Fig. 2-24(a). Five adjoining unit
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‘I . Figure 2-24 Structure of solid solutions: (a) Mo in Cr (substitutional); (b} C in a-Fe (interstitial).

tion of the crystal therefore contains somewhat more than 10 atomic percent
molybdenum, but the next five cells would probably contain somewhat less. Such a
structure does not obey the ordinary rules of crystallography: for example, the
right-hand cell of the group shown does not have cubic symmetry, and one finds
throughout the structure that the translation given by one of the unit cell vectors
may begin on an atom of one kind and end on an atom of another kind. All that can
be said of this structure is that it is BCC on the average, and experimentally it dis-
plays the x-ray diffraction effects proper to a BCC lattice. This is not surprising
since the x-ray beam used to examine the crystal is so large compared to the size of
a unit cell that it observes, so to speak, millions of unit cells at the same time and so
obtains only an average “picture” of the structure.

The above remarks apply equally well to interstitial solid solutions. These form
whenever the solute atom is small enough to fit into the solvent lattice without

- causing too much distortion. Ferrite, the solid solution of carbon in e—iron, is a good

“example.f In the umt cell shown in Fig. 2-24(b), there are two kinds of “holes™ in the
lattice: one at 101 (marked @)and equivalent positions in the centers of the cube
faces and edges, and one at 101 (marked X) and equivalent positions. All the evi-
dence at hand points to the fact that the carbon atoms in ferrite are located in the
holes at 30} and equivalent positions. On the average, however, no more than about
1 of these positions in 500 unit cells is occupied, since the maximum solubility of
carbon in ferrite is only about 0.1 atomic percent.

Still another type of structure worth noting is that of ordered solid solutions. As
described above, a typical substitutional solid solution has solute atoms distributed
more or less at random on the lattice points of the solvent.” On the other hand,
there are solutions in which this is true only at elevated temperatures; when cooled

|
) i cells are shown there, with a total of 29 atoms, 3 of which are molybdenum. This sec-

8 Note the double meaning of the word ferrite: (1) metallurgical, for the metallic solid solution men-
uoned above, and (2) ceramic or mineralogical, for the oxide MO - Fe,0; previcusly described.

e; course, when the solution becomes concentrated, there is no real distinction between “solvent” and
“solute.” There is only one lattice, with two or more kinds of atoms distributed on it.
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to lower temperatures, the solute atoms take up an orderly, periodic arrangement
while still remaining on the lattice points of the solvent. The solid solution is then
said to be ordered and to possess a superiattice. The alloy AuCu, is a classic exam-
ple: at high temperatures the copper and gold atoms are located more or less at ran-
dom on face-centered cubic lattice sites, while at low temperature the gold atoms
occupy only the cube corner positions and the copper atoms only the face-centered
positions. In its temperature range of stability then, an ordered solid solution
resembles a chemical compound, with atoms of one kind on one set of lattice sites
and atoms of a different kind on another set. But an ordered solid solution is a
“half-hearted compound” because, when heated, it disorders before it melts; a real
compound, like NaCl, remains ordered right up to the melting point.
Crystallographically, the structures of the disordered and ordered solid solutions
are quite different; disordered AuCu, is, on the average, face-centered cubic while
the ordered form is simple cubic. Such structures will be discussed more fully in
Chap. 10.

il

2-10 ATOM SIZES AND COORDINATION

When two or more unlike atoms unite to form a chemical compound, intermediate
phase, or solid solution, the kind of structure formed is dependent, in part, on the
relative sizes of the atoms involved. But what is meant by the size of an atom? To
regard an atom as something like a billiard ball with a sharply defined bounding
surface is surely an oversimplification, since electron density decreases gradually at
the “surface” of the atom and that there is a small but finite probability of finding
an electron at quite large distances from the nucleus. One, not entirely satisfactory,
way of defining atomic size lies in considering a crystal as a collection of rigid
spheres in contact. The size of an atom, then, is given by the distance of closest
approach of atom centers in a crystal of the element, and this distance can be cal-
culated from the lattice parameters. ‘

For example, the latfice parameter & of a—iron is 2.87 A, and in a BCC lattice the
2 atoms are in contact only along the diagonals of the unit cube. The diameter of an
t iron atom is therefore equal to one half the length of the cube diagonal, or
f : (\/5/ 2)a = 2.48A. The following formulas give the distance of closest approach in
the three common structures:

V3
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1, BCC = —u,
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HCP = a (between atoms in basal plane),
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! ] + c? [ between atom in basal plan 919
[ 3 4 | and neighbors above or below 212)
| : Values of the distance of closest approach, together with the crystal structures and
; lattice parameters of the elements, are tabulated in Appendix 5.
| : To a first approximation, the size of an atom is a constant. In other words, an iron
atom has about the same size whether it occurs in pure iron, an intermediate phase,
{ or a solid solution. This is a very useful fact to remember when investigating
\ unknown crystal structures, for it enables prediction of roughly how large a hole is
. necessary in a proposed structure to accommodate a given atom. More precisely, it
! is known that the size of an atom has a slight dependence on its coordination num-
ber, which is the number of nearest neighbors of the given atom and which depends
on crystal structure. The coordination number of an atom in the FCC or HCP struc-
tures is 12, in BCC 8, and diamond cubic 4. The smaller the coordination number,
the smaller the volume occupied by a given atom, and the approximate amount of
contraction to be expected with decrease in coordination number is found to be:

Change in coordination Size contraction, percent
128 3
1256 3
124 12

This means, for example, that the diameter of an iron atom is greater if the iron is
dissolved in FCC copper than if it exists in a crystal of BCC a—iron or is dissolved
in BCC vanadium. If it were dissolved in copper, its diameter would be approxi-
mately 2.48/0.97, or 2.56 A.

The size of an atom in a crystal also depends on whether its binding is ionic, cova-
lent, metallic, or van der Waals, and on its state of ionization, The more electrons
are removed from a neutral atom the smaller it becomes, as shown strikingly for

* iron, whose atoris and-iois Fe, Fe™, Fe™ have diameters of 2.48;1.66,and 134 A,
respectively.

The spatial arrangement of atoms about a given point is often described by
words such as octahedral and tetrahedml For example, in the NaCl structure of Fig.
2-21(b) the central CI" ion. at } 11 is said to be octahedrally surrounded by Na* ions,

J because the six Na* ions in the face-centered positions lie on the corners of an octa-
, i hedron, a solid bounded by eighit triangular sides. In the zinc blende structure of Fig.

% 2-22(b) the empty position marked A is octahedrally surrounded by sulphur atoms,
of which only four are in the cell shown, and would be referred to as an octahedral
' ! hole in the structure. This group of atoms is shown separately in Fig. 2-25. In the
) BN same structure the Zn atom at 3§ 1, marked B in Fig. 2-22(b), is surrounded by four
|

; S atoms at the corners of a tetrahedron, a solid bounded by four triangular sides
‘:';’ (Fig. 2-25). In fact, all four of the Zn atoms in the unit cell have tetrahedral S sur-
i roundings. Also in the ZnS structure the reader can demonstrate, by sketching three
cells adjacent to the one shown, that the hole at A is tetrahedrally surrounded by
Zn atoms. Thus, the hole at A has both octahedral (s) and tetrahedral (Zn) sur-
roundings, an unusual circumstance.
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2-11 CRYSTAL SHAPE

The shape of crystals has been ignored thus far so that their internal structure could
be emphasized. However, the shape of crystals is, to the layman, perhaps their most
characteristic property, and nearly everyone is familiar with the beautifully devel-
oped flat faces exhibited by natural minerals or crystals artificially grown from a
supersaturated salt solution. In fact, it was with a study of these faces and the angles
between them that the science of crystallography began.

Nevertheless, the shape of crystals is really a secondary characteristic, since it
depends on, and is a consequence of, the interior arrangement of atoms. Sometimes
the external shape of a crystal is rather obviously related to its smallest building
block, the unit cell, as in the little cubic grains of ordinary table salt (NaCl has a
cubic lattice) or the six-sided prisms of natural quartz crystals (hexagonal lattice).
In many other cases, however, the crystal and its unit cell have quite different
shapes; gold, for example, has a cubic lattice, but natural gold crystals are octahe-
dral in form, i.e., bounded by eight planes of the form {111}.

. An’important fact about crystal faces was known long before there was any
knowledge of crystal interiors. It is expressed as the law of rational indices, which
states that the indices of naturally developed crystal faces are always composed of
small whole numbers, rarely exceeding 3 or 4. Thus, faces of the form {100}, {111},
{1300}, {210}, etc., are observed but not such faces-as {510}, {719}, etc. Earlier dis-
cussion in this chapter concluded that planes of low indices have the largest density
-of lattice points, and it is a law of crystal growth that such planes develop at the
expense of planes with high indices and few lattice points.

In materials work, however, crystals with well-developed faces are in the cate-
gory of things heard of but rarely seen. They occur occasionally on the free surface
of castings, in some electrodeposits, or under other conditions of no external con-
straint. Instead, a crystal is most usually a “grain,” seen through a microscope in the
company of many other grains on a polished section. If an isolated single crystal is
encountered it will have been artificially grown either from the melt, and thus have
the shape of the crucible in which it solidified, or by recrystallization, and thus have
the shape of the starting material, whether sheet, rod, or wire.
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|

! The shapes of the grains in a polycrystalline mass are the result of several kinds
' of forces, all of which are strong enough to counteract the natural tendency of cach
| grain to grow with well-developed flat faces. The result is a grain roughly polygonal
| ‘ in shape with no obvious aspect of crystallinity. Nevertheless, that grain is a crystal
’ and just as “crystalline” as, for example, a well-developed prism of natural quartz,
since the essence of crystallinity is a periodicity of inner atomic arrangement and
not any regularity of outward form.

! 2-12 CRYSTAL DEFECTS

There are a number of types of imperfections in the periodic structure of the indi-
vidual grains of crystalline solids. These crystallographic defects are broadly classi-
‘ fied as point, line and planar defects and can have important consequences in the
- mechanical, electrical, optical, etc. properties of a material. A large part of materi-
‘ als science and engineering concerns itself with the control and/or characterization
R of the different defects. Point defects such as substitutional or interstitial impurities
‘ ‘ were briefly discussed in Sec. 2-10. Edge and screw dislocations and dislocations
with character intermediate between the two are linear defects in the periodic array
of atoms within a crystal. In metals, multiplication and motion of dislocations occur
at relatively low stress, and the relatively easy plastic deformation and high ductil-
ity of metals is the product of this. Large strains and very high dislocation densities
can be introduced by operations such as forging, rolling, machining, shot peening or
ball milling; how these stress and strains can be measured is the subject of portions
of Chap. 14 and Chap. 15. There are a variety of planar defects including stacking
faults and twins; these are described below.
In Sec. 2-9 the stacking sequence of close packed planes of the fcc and hep struc-
. tures was discussed. Stacking faults occur when the normal stacking sequence
-is interrupted. ~In~ the - fce  structure, the mnormal- stacking- - sequence
.. ABCABCABC ...can become ... ABCAB"ABC...or ... ABCA'CABCA ...,
for example, by the removal of a C-layer or a B-layer, respectively. The asterisk in
the previous sentence is used to indicate the position of the stacking fault. In
| the hcp system, the stacking sequence... ABABABAB...can become
.. ABABA'CBCBCB ... Faults producing AA, BB or CC neighboring layers have
a very high energy of formatlon would require extraordinary circumstances to
appear and would probably rapidly split into a set of closely-spaced, lower energy
‘ : faults. In writing sequences such as those shown above, each letter represents a
‘ layer of atoms. Each layer extends to the end of the fault, and such planar faults

o _ must extend to the edge of the crystal or grain or must terminate at one or more
i dislocations [2.8,2.9].

Some crystals have two parts symmetrically related to one another. These, called
ll twinned crystals, are fairly common both in minerals and in metals and alloys. For
L a detailed discussion of twinning, see Barrett and Massalski [G.10].

o The relationship between the two parts of a twinned crystal is described by the
' symmetry operation which will bring one part into coincidence with the other or
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with an extension of the other. Two main kinds of twinning are distinguished,
depending on whether the symmetry operation is 180° rotation about an axis, called
the twin axis, or reflection across a plane, called the twin plane. The plane on which
the two parts of a twinned crystal are united is called the composition-plane. In the
case of a reflection twin, the composition plane may or may not coincide with the
twin plane.

Of most interest to those who deal mainly with FCC, BCC, and HCP structures,
are the following kinds of twins:

1. Annealing twins, such as occur in FCC metals and alloys (Cu, Ni, a—brass,
Al etc.), which have been cold-worked and then annealed to cause recrys-
tallization. '

2. Deformation twins, such as occur in deformed HCP metals (Zn, Mg, Be,
etc.) and BCC metals (e-Fe, W, etc.).

Annealing Twins

Annealing twins in FCC metals are rotation twins, in which the two parts are
related by a 180° rotation about a twin axis of the form <111>. Because of the high
symmetry of the cubic Iattice, this orientation relationship is also given by a 60°
rotation about the twin axis or by reflection acrbss the {111} plane normal to the
twin axis. In other words, FCC annealing twins may also be classified as reflection
twins. The twin plane is also the composition plane.

Occasionally, annealing twins appear under the microscope as in
Fig. 2-26(a), with one part of a grain (B) twinned with respect to the other part (A4).
The two parts are in contact on the composition plane (111) which makes a straight-
line trace on the plane of polish: More common; however, is the kind shown in Fig.
2-26(b). The grain shown consists of three parts: two parts (4, and A,) of identical
orientation separated by a third part (B) which is twinned with respect to A, and
A,. B is known as a twin band.

Figure 2-27 illustrates the structure of an FCC twin band. The plane of the main

drawing is (110), the (111) twin plane is perpendicular to this plane, and the [111]

Figure 2-26 Twinned grains: (a) and (b} FCC annealing twins; (¢} HCP deformation twin.
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| twin axis lies in it. Open circles represent atoms in the plane of the drawing and

| ‘ filled circles those in the Iayers immediately above or below. The reflection sym-

' metry across the twin plane is suggested by the dashed lines connectmg several
. pairs of atoms.

} ‘ The statement that a rotation twin of this kind is related to the parent crystal by

a 180° rotation about the twin axis is merely an expression of the orientation rela-

J tionship between the two and is not meant to suggest that a twin is formed by a

f physical rotation of one part of the crystal with respect to another. Actually, FCC

annealing twins are formed by a change in the normal growth mechanism. Suppose

. that, during normal grain growth following recrystallization, a grain boundary is

| ‘ roughly parallel to (111} and is advancing in a direction approximately normal to

;‘ this boundary, namely [111]. To say that the boundary is advancing is to say that

‘ ‘ atoms are leaving the lattice of the consumed grain and joining that of the growing

grain. The grain is therefore growing by the addition of layers of atoms parallel to

(111}, and these layers are piled up in the sequence ABCABC... in an FCC crys-

; tal. If, however, a mistake should occur and this sequence become altered to

. CBACBA ... , the crystal so formed would still be FCC but it would be a twin of

the former. If a similar mistake occurred later, a crystal of the original orientation

would start growing and a twin band would be formed. With this symbohsm a twin

band appears as follows:

ABCABCBACBACABCABC

parent | twin | parent
crystal | band | crystal
— | «— | «—

~In this terminology, the symbols themselves are imaged in the mirror C, the twin
plane. At the left 6f Fig. 2-27 tlie positional syinbols A, B, C are-attached to various
(111) planes to show the change in stacking which occurs at the boundaries of the
twin band. Parenthetically, it should be remarked that twin bands visible under the
light microscope are thousands of times thicker than the one shown in this drawing.
There is still another way of describing the orientation relationship between an
FCC crystal and its twin: the (111} layers of the twin are in positions which would
result from homogeneous shear in a [112] direction, each layer moving by an
amount proportional to its distance from the twin plane. In Fig. 2-27, this shear is
indicated by the arrows going from initial positions D, E, F to final positions in the
twin. Although it has been frequently suggested that such twins are formed by
deformation, it is generally held that annealing twins are the result of the growth
i vl process described above. Nevertheless, this hypothetical shear is sometimes a use-
‘ '15:': ful way of describing the orientation relationship between a crystal and its twin.
|
’ | ‘
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Deformation Twins

Deformation twins are found in both BCC and HCP lattices and are all that their
name implies, since, in both cases, the cause of twinning is deformation. In each
case, the orientation relationship between parént crystal and twin is that of reflec-
tion across a plane. '
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| ‘ In BCC structures, the twin plane is (112) and the twinning shear is in the direc-
o tion [117]. The only common example of such twins is in a—iron (ferrite) deformed
[ | | | by impact, where they occur as exiremely narrow twin bands called Neumann
| bands. It should be noted that, in cubic lattices, both {112} and {}11} reflection twin-
ning produce the same orientation relationship; however, they differ in the inter-
atomic distances produced, and an FCC lattice can twin by reflection on {111} with
! ' less distortion than on {112}, while for the same reason {112} is the preferred plane
| ' for BCC lattices.

l' In HCP metals, the twin plane is normally (10T2). The twinning shear is not well
: understood; in a gross sense, it takes place in the direction [211] for metals with c/a
! o ratios less than V3 (Be, Ti, Mg} and in the reverse direction [21T] for metals with
c/a larger than V/3 (Zx, Cd), but the direction of motion of individual atoms during
shear is not definitely known. Figure 2-26(c) illustrates the usual form of a twin
band in HCP metals, and it will be noted that the composition “plane,” although
probably parallel or nearly parallel to the twin plane, is not quite flat but often
exhibits appreciable curvature.

I,
| l Twins, in. general, can form on different planes in the same crystal. For example,
! ; :‘ there are four {111} planes of different orientation. on which twinning can take
0 ‘} place in an FCC crystal. Accordingly, in the microstructure of recrystallized copper,
i for example, one often sees twin bands running in more than one direction in the
!|||? | same grain.
Im.‘i"‘l A crystal may also twin repeatedly, producing several new orientations. If crys-
; o ‘ tal A twins to form B, which twins to form C, etc., then B, C, etc., are said to be first-
L ':|.5||||‘\‘_-_' order, second-order, etc., twins of the parent crystal A. Not all these orientations are
K " -new. In Fig. 2-26(b), for example, B may be regarded as the first-order twin of A,

|
’ = ‘H General
|

i | " - and A, as the first-order twin of B. A, is therefore the second-order twin of A, but
Ey has the same orientation as A,. ‘

2-13 THE STEREOGRAPHIC PROJECTION

) "ll':_ Crystal drawings made in perspective or in the form of plan and elevation have
‘!‘f‘lh_@ their uses but are not suitable for displaying the angular relationship between lat-
| : tice planes and directions. These angular relationships are often more Interesting
’ 'l!i* than any other aspect of the crystal, and a kind of drawing is needed on which the
Ny | angles between planes can be accurately measured and which will permit graphical
R solution of problems involving such angles. The stereographic projection [2.10] fills
i this need. For details not given below, see Barrett and Massalski [G.10] and McKie
K and McKie [G.3).
. “‘3‘ The orientation of any plane in a crystal can be represented just as well by the
g inclination of the normal to that plane relative to some referénce plane as by the
' inclination of the plane itself. All the planes in a crystal can thus be represented by
a set of plane normals radiating from some one point within the crystal. If a refer-
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Figure 2-28 {100} poles of a cubic crystal,

ence sphere is now described about this point, the plane normals will intersect the
surface of the sphere in a set of points called poles. This procedure is illustrated in
Fig. 2-28, which is restricted to the {100} planes of a cubic crystal. The pole of a plane
Tepresents, by its position on the sphere, the orientation of that plane.

A plane may also be represented by the trace the extended plane makes in the
surface of the sphere, as illustrated in Fig. 2-29, where the trace ABCDA represents
the plane whose pole is P,. This trace is a great circle,i.e., a circle of maximum diam-
eter, if the plane passes through the center of the sphere. A plane not passing
through the center will intersect the sphere in a small circle. On a ruled globe, for
example, the longitude lines (meridians) are great circles, while the latitude lines,
except the equator, are small circles.

The angle a between two planes is evidently equal to the angle between their
great circles or to the angle between their normals (Fig. 2-29). But this angle, in
degrees, can also be measured on the surface of the sphere along the great circle
KLMNK connecting the poles P; and P, of the two planes, if this circle has been
divided into 360 equal parts. The measurement of an angle has thus been trans-
ferred from the planes themselves to the surface of the reference sphere.

Figure 2-29 Angle between two planes.
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‘ Measuring angles on a flat sheet of paper rather than on the surface of a sphere,
‘ requires the same sort of transformation as used by the geographer who wants to
f transfer a map of the world from a globe to a page of an atlas. Of the many known
| kinds of projections, a map-maker usually chooses a more or less equal-area pro-
F jection so that countries of equal area will be represented by equal areas on the
\ map. In crystallography, however, an equiangular stereographic projection is most
useful since it preserves angular relationships faithfully although distorting areas. It
l is made by placing a plane of projection normal to the end of any chosen diameter
of the sphere and using the other end of that diameter as the point of projection. In

Fig. 2-30 the projection plane is normal to the diameter AB, and the projection is

‘ made from the point B. If a plane has its pole at P, then the stereographic projec-
‘ tion of P is at P’, obtained by drawing the line BP and extending it until it meets

\ b
! b
I projection plane
basic circle
reference
- sphere
C B \
point of
projection
E
1
\
S\
SECTION THROUGH
AB AND PC
Pe P
b A B
Figure 2-30 The stereographic

projection
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the projection plane. Alternately stated, the stereographic projection of the pole P
is the shadow cast by P on the projection plane when a light source is placed at B.
The observer, incidentally, views the projection from the side opposite the light
source.

The plane NESW is normal to AB and passes through the center C It therefore
cuts the sphere in half and its trace in the sphere is a great circle. This great circle
projects to form the basic circle N'E'S"W’ on the projection, and all poles on the
left-hand hemisphere will project within this basic circle. Poles on the right-hand
hemisphere in Fig. 2-30 will project outside this basic circle, and those near B will
have projections lying at very large distances from the center. In order to plot such
poles, the point of projection must move to A and the projection plane to B; minus
signs designate the new set of points while plus signs identify, the previous set (pro-
jected from B). Note that movement of the projection plane along AB or its exten-
sion merely alters the magnification; this plane is usunally tangent to the sphere, as
illustrated, but it can pass through the center of the sphere, for example, in which
case the basic circle becomes identical with the great circle NESW.

A lattice plane in a crystal is several steps removed from its stereographic pro-
jection, and it may be worth-while at this stage to summarize these steps:

1. The plane C'is represented by its normal CP.

2. The normal CP is represented by its pole P, which is its intersection with

the reference sphere.
3. The pole P is represented by its stereographic projection P,

After gaining some familiarity with the stereographic projection, the student will
be able mentally to omit these intermediate steps and will then refer to the pro-
jected point P~ as the pole of the plane C or, even more directly, as the plane C itself.

Great circles on the reference sphere project as circular arcs on the projection.or,
if they pass through the points 4 and B (Fig. 2-31), as straight lines through the cen-
ter of the projection. Projected great circles always cut the basic circle in diametri-
cally opposite points, since the locus of a great circle on the sphere is a set of dia-
metrically opposite points. Thus the great circle ANBS in Fig. 2-31 projects as the
straight line N°S” and AWBE as W'E"; the great circle NGSH, which is inclined to
the plane of projection, projects as the circle are N'G’S". If the half great circle W
AE is divided into 18 equal parts and these points of division projected on W AE",
a graduated scale, at 10° intervals, is produced on the equator of the basic circle.

Small circles on the sphere also project as circles, but their projected center does
not coincide with their center on the projection. For example, the circie AJEK
whose center P lies on AEBW projects as AJ"E°K”. Its center on the projection is at
C, located at equal distances from A and E”, but its projected center is at P, located
an equal number of degrees (45° in this case) from A and E".

The device most useful in solving problems involving the stereographic projec-
tion is the Wulff net (named after its popularizer) [2.11] shown in Fig, 2-32. It is the
projection of a sphere ruled with parallels of latitude and longitude on a plane par-
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Figure 2-31 Stercographie projection of great and small circles.

allel to the north-south axis of the sphere. The latitude lines on a Wulff net are small
circles extending from side to side and the Jongitude lines (meridians) are great cir-
cles connecting the north and south poles of the net. These nets are available in var-
ious sizes and can be plotted readily from equations available elsewhere [G.16], one
of 183-cm diameter giving an accuracy of about one degree, which is satisfactory for
most problems; to obtain greater precision, either a larger net or mathematical cal-
culation must be used. Wulff nets are used by making the stereographic projection
on tracing paper and with the basic circle of the same diameter as that of the Wulff
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5

Figure 2-32 Wulff net drawn to 2° intervals.

net; the projection is then superimposed on the Wulff net, with the centers always
coinciding,

Drawing the stereographic projection on tracing paper is not only more eco-
nomical than drawing it directly on a Wulff net, but it also allows differentiation
between the frame of reference of the crystal (represented by the stereographic
projection on the paper) and the frame of reference of the laboratory, i.e., of the
equipment on which the crystal is positioned for various measurements (the Wulff
net). The sample and Jaboratory reference frames are not identical and both are
needed. The sample may be mounted in a number of orientations on the equip-
ment, and it may be necessary to realign the sample relative to the apparatus, e.g.
with <001> in different orientations relative to vertical and to the incident beam
direction S,




76  Chapter2 Geometry of Crystals

|
|
‘ 1 To return to the problem of the measuring the angle between two crystal planes,
| Fig. 2-29 showed that this angle could be measured on. the surface of the sphere
‘ along the great circle connecting the poles of the two planes. This measurement can
f also be carried out on the stereographic projection if, and only if, the projected poles
l lic on a great circle. In Fig. 2-33, for example, the angle between the planes® A and
| B or C and D can be measured directly, simply by counting the number of degrees
) separating them along the great circle on which they lie. Note that the angle C-D
r equals the angle E-F, there being the same difference in latitude between C and D
! as between E and F. _
E‘ If the two poles do not lie on a great circle, then the projection is rotated relative
. to the Wulff net until they do lie on a great circle, where the desired angle meas-
urement can then be made. Figure 2-34(a) is a projection of the two poles P; and P,
shown in perspective in Fig. 2-29, and the angle between them is found by the rota-
tion illustrated in Fig. 2-34(b). This rotation of the projection is equivalent to rota-
tion of the poles on latitude circles of a sphere whose north-south axis is perpendi-
cular to the projection plane.

As shown in Fig. 2-29, a plane may be represented by its trace in the reference
sphere. This trace becomes a great circle in the stereographic projection. Since
every point on this great circle is 90° from the pole of the plane, the great circle may
be found by rotating the projection until the pole falls on the equator of the under-
lying Wulff net and tracing that meridian which cuts the equator 90° from the pole,
as illustrated in Fig. 2-35. If this is done for two poles, as in Fig. 2-36, the angle
between the corresponding planes may also be found from the angle of infersection
of the two great circles corresponding to these poles; it is in this sense that the stere-
ographic projection is said to be angle-true. This method of angle measurement is
not as accurate, however, as that shown in Fig. 2-34(b).
~ Often poles must be rotated around various axes. Rotation about an axis normal

-to the projection is-accomplished simply by rotation of the projection around the
center of the Wulff net. Rotation about an axis lying in the plane of the projection
is performed by, first, rotating the axis about the center of the Wulff net until it coin-
cides with the north-south axis if it does not already do so, and, second, moving the
poles involved along their respective latitude circles the required number of
degrees. Suppose it is required to rotate the poles 4, and By shown in Fig. 2-37 by
60° about the NS axis, the direction of motion being from W to £ on the projection.
Then A, moves to A, along its latitude circle as shown. B, however, can rotate only
40° before reaching the edge of the projection; then it moves 20° in from the edge
to the point B”; on the other side of the projection, staying always on its own lati-
tude circle. The final position of this pole on the positive side of the projection is at
B, diametrically opposite B’

(The student should carefully note that the angle between A, and A,, for exam-
ple, in Fig. 2-37 is not 60°. The pole A, is the position of A, after a 60° rotation about

8 Here the planes are represented by their normals, as was discussed abave.
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PROJECTION N
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Figure 2-33 Stereographic projec-
tion superimposed on Wulif net for
measurement of angle between
poles. For illustrative purposes this
net is graduated at 10° intervals.. Ay

NS, which is not the same thing. Consider the two great circles NA,S and NA,S;
these are the traces of two planes between which there is a true dihedral angle of
60°. Any pole initially on NA;S will be on NA,S after a 60° rotation about NS, but
the angle between the initial and final positions of the poles will be less than 60°,
unless they lie on the equator, and will approach zero as the poles approach N.)

Rotation about an axis inclined to the plane of projection is accomplished by
compounding rotations about axes lying in and perpendicular to the projection
plane. In this case, the given axis must first be rotated into coincidence with one or
the other of the two latter axes, the given rotation. performed, and the axis then
rotated back to its original position. Any movement of the given axis must be
accompanied by a similar movement of all the poles on the projection.

For example, suppose A must be rotated about B, by 40° in a clockwise direction
(Fig. 2-38). In (a) the pole to be rotated A, and the rotation axis B, are shown in
their initial position. In (b) the projection has been rotated to bring B, to the equa-
tor of a Wulff net. A rotation of 48° about the NS axis of the net brings B, to the
point B, at the center of the net; at the same time A; must go to A, along a paral-
lel of latitude. The rotation axis is now perpendicular to the projection plane, and
the required rotation of 40° brings A, to A, along a circular path centered on B,
The operations which brought B, to B, must now be reversed in order to return B,
to its original position. Accordingly, B, is brought to B; and A, to A,, by a 48°
reverse rotation about the NS axis of the net. In (c) the projection has been rotated
back to its initial position, construction lines have been omitted, and only the initial
and final positions of the rotated pole are shown. During its rotation about B;, A,
moves along the small circle shown. This circle is centered at € on the pro;ectmn
and not at its projected center B,. To find C, use the fact that all points on the cir-
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PROJECTION N

®P;
Pj®

Figure 2-34 () Stereographic projection of poles P, and P, of Fig. 2-29, (b) Rotation of projection to
put poles on same great circle of Wulff net. Angle between poles = 30°. ]
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Figure 2-35 Method of finding the trace of a pole {the pole P’, in Fig. 2-34).

PROJECTION

trace of P{

e —

trace of Pz”/

to Figure 2-36 Measurement of an
angle between two poles (P, and P,
of Fig. 2-29) by measurement of the
angle of intersection of the corre-
sponding traces.
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PROJECTION N

20°

Ll

’H Figure 2-37 Rotation of poles about
b NS axis of projection.

I cle must lie at equal angular distances from By; in this case, measurement on a Wulff
; net shows that both A, and A, are 76° from B;. Accordingly, locate other points,
3t such as D, which are 76° from By, and, knowing three points on the required circle,
5 its center C can be found by the methods of plane geometry. :
1 " In dealing with problems of crystal orientation a standard projection is of very
great value, since it shows at a glance the relative orientation of all the important
planes in the crystal. Such a proj ection is made by selecting some important crystal
plane of low indices as the plane of projection [e.g., (100), (110), (111), or (0001)]
and projecting the poles of various crystal planes onto the selected plane. The con- }
struction of a standard projection of a crystal requires a knowledge of the interpla-
nar angles for all the principal planes of the crystal. A set of values applicable to all
crystals in the cubic system is given in Table 2-4[TR 2-4]], but those for crystals of
other systems depend on the particular axial ratios involved and must be calculated
for each case by the equations given in Appendix 3. A simple spreadsheet program
suffices if interplanar angles are needed beyond those listed in Table 2-4 (for cubic
i crystals). Much time can be saved in making standard projections by making use of
: §i‘ . the zonal relation: the normals to all planes belonging to one zone are coplanar and
i at right angles to the zone axis. Consequently, the poles of planes of a zone will all
L lie on the same great circle on the projection, and the axis of the zone will be at 90°
Bl from this great circle. Furthermore, important planes usually belong to more than
s one zone and their poles are therefore located at the intersection of zone circles: It
IR is also helpful to rémember that important directions, which in the cubic system are
] normal to planes of the same indices, are usually the axes of important zones.
Figure 2-39(a) shows the principal poles of a cubic crystal projected on the (001)
plane of the crystal or, in other words, a standard (001) projection. The location of
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St 100
/| @

4 Figure 2-39 Standard projections of cubic crystals, (2) on (001) and (b} on (011).

‘ ; first note from Table 2-4 that they must lie at 45° from {100} poles, which are them-
selves 90° apart. In this way (011) is found for example, on the great circle joining
(001) and (010) and at 45° from each. After all the {110} poles are plotted, the {111}
poles are found at the intersection of zone circles. Inspection of a crystal model or
drawing or use of the zone relation given by Eg. (2-6) will show that (111), for
example, belorigs to both the zone [T01] and the zone [0T1]. The pole of (111) is
thus located at the intersection of the zone circle through (010), (101), and (010) and
the zone circle through (T00), (011), and (100). This location may be checked by
. measurement of its angular distance from (010) or (100), which should be 54.7°.The
(011) standard projection shown in Fig: 2-39(b) is plotted in the.same manner. .
Alternatively, it may be constructed by rotating all the poles in the (001) projection
45° to the left about the NS axis of the projection, since this operation will bring the
(011) pole to the center. In both of these projections symmetry symbols have been
given each pole in conformity with Hg. 2-8(b), and it will be poted that the projec-
tion itself has the symmetry of the axis perpendicular to its plane, Figs. 2-39(a) and

|
1 |
| ,,1};:”.
n the {100} cube poles follows immediately from Fig. 2-28. To locate the {110} poles
I
;

| (b) having 4-fold and 2-fold symmetry, respectively.
J Figure 2-40 is a standard (001) projection of a cubic crystal with considerably
more detail and a few important zones indicated. A standard (0001) projection of a
hexagonal crystal (zinc) is given in Fig. 2-41.

1t is sometimes necessary to determine the Miller indices of a given pole on a
r | crystal projection, for example the pole A in Fig. 2-42(a), which applies to a cubic
|
]
|

‘ crystal. If a detailed standard projection is available, the projection with the
unknown pole can be superimposed on it and its indices will be disclosed by its
coincidence with one of the known poles on the standard. Alternatively, the method
illustrated in Fig. 2-42 may be used. The pole A defines a direction in space, normal
to the plane (hkl) whose indices are required, and this direction makes angles
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Figure 2-40 Standard (001) projection of a cubjc crystal, after Barrett [1.7].

o, o, 7 with the coordinate axes a, b, ¢. These angles are measured on the projection
as shown in (a). Let the perpendicular distance between the origin and the (hkl)
plane nearest the origin be 4 [Fig. 2-42(b)], and let the direction cosines of the line
A be p, g r. Therefore ’

d d
p=cosp=m, q=0050‘=b/—k, I=cosrr=c—/l,
h:k:l = pa:gbire. (2-13)

For the cubic system the simple result is that the Miller indices required are in the
same ratio as the direction cosines.

The lattice reorientation caused by twinrning can be shown clearly on the stereo-
graphic projection. In Fig. 2-43 the open symbols are the {100} poles of a cubic crys-
tal projected on the (001) plane. If this crystal is FCC, then one of its possible twin
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Tigure 2-42 Determination of the Miller indices of a pole.

planes is (TIl), represented on the projection both by its pole and its trace. The cube
poles of the twin formed by reflection in this plane are shown as solid symbols;
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(111)

Figure 2-43 Stereographic projection of an FCC twin plane 1(;[]

crystal and its twin,

these poles are located by rotating the projection on a Wulff net until the pole of
the twin plane lies on the equator, after which the cube poles of the erystal can be
moved along latitude circles of the net to their final position.

The main principles of the stereographic projection have now been presented
and they will be used later in dealing with various practical problems in x-ray crys-
tallography. Merely reading this section is not sufficient preparation for such prob-’
lems. Practice with a Wulff net and tracing paper is required before the stereo-
graphic projection can be manipulated with facility and before three dimensions
can be visualized from what is represented in two.

PROBLEMS

2-1 Draw the following planes and directions in a tetragonal unit cell: (001), (011),
(113), [110], [201], [TO1]. Show cell axes. " '

2-2 Show by means of a (110) sectional drawing that [111] is perpendicular to (111)
in the cubic system, but not, in general, in the tetragonal system.,

2-3 In a drawing of a hexagonal prism, indicate the following planes and directions
(1210), (1012), (1011), [110], [11T], [021]. Show cell axes.

2-4 Derive Eq. (2-2) of the text.

2-5 Show that the planes (110), (121), and (312) belong to the zone [111].

2-6 Do the following planes all belong to the same zone: (110), (311), (I32)? If so,
what is the zone axis? Give the indices of any other plane belonging to this zone.
*2-T Prepare a cross-sectional drawing of an HCP structure which will show that all
atoms do not have identical surroundings and therefore do not lie on a point lattice,
2-8 Show that c/a for hexagonal close packing of spheres is 1.633.

2.9 Show that the HCP structure (with ¢/a = 1.633) and the FCC structure are .
equally close-packed, and that the BCC structure is less closely packed than either
of the former. '
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|
| |
! ! 2-10 The unit cells of several orthorhombic crystals are described below. What is the
‘ Bravais lattice of each and how do you know? Do not change axes. (In solving this
} kind of problem, examining the given atom positions for the existence or nonexis-
: tence of centering translations is generally more helpful than making a drawing of
' the structure.}
? a) Two atoms of the same kind per unit cell located at 0 lo,10}
| b) Four atoms of the same kind per unit cell located at
i 002,052,05G + 2), 00G + z).
Yi ¢) Four atoms of the same kind per unit cell located at
! xyz, 3% 6+ 06— ¥z, G — 06 T y)z
d) Two atoms of one kind A located at 3 00,0 11 and two atoms of another

|
| kind B located at 003,33 0.

#2.11 Make a drawing, similar to Fig. 2-23,0f a (112) twinin a BCC lattice and show
the shear responsible for its formation. Obtain the magnitude of the shear strain
graphically.

3.12 Construct a Wulff net, 18 cm in diameter and graduated at 30° intervals, by the
use of compass, dividers, and straightedge only. Show all construction lines.

In some of the following problems, the coordinates of a point on a stereographic projection are
given in terms of its latitude and longitude, measured from the center of the projection. Thus,
the N pole is 90° N, 0° E, the E pole is 0° N, 90° E, etc.

l‘ 2.13 Plane A is represented on a stereographic projecﬁén by a great circle passing
i : through the N and S poles and the point 0°N, 70°W. The pole of plane B is located

i at 30°N, 50°W.
: a) Find the angle between the two planes by measuring the angle between the

poles of A and B.
b) Draw the great circle of plane B and demonstrate that the stereographic

projection is angle-true by measuring with a protractor the angle between
: the great circles of A-and B. e _
#2-14 Pole A, whose coordinates are 20°N, S0°E, is to be rotated about the axes
described below, In each case, find the coordinates of the final position of pole A
and show the path traced out during its rotation.

a) 100° rotation about the NS axis, counterclockwise looking from N to S.
il b) 60° rotation about an axis normal to the plane of projection, clockwise to
‘.]i;i the observer. :
i ¢) 60° rotation about an inclined axis B, whose coordinates are 10°S, 30°W,
‘ - clockwise to the observer.
i, 2-15 Draw a standard (111) projection of a cubic crystal, showing all poles of the
iy form {100}, {110}, {111} and the important zone circles between them. Compare with
i Figs. 2-39(a) and (b).
v 2.16 Draw a standard (001) projection of white tin (tetragonal, c/a = 0.545), show-
i ing all poles of the form {001}, {100}, {110}, {011}, {111} and the important zone ¢ir-
' cles between them. Compare with Fig. 2-39(a).
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2-17 Draw a standard (0001) projection of beryllium (hexagonal, ¢/a = 1.57), show-
ing all poles of the form {2710}, {1070}, {2111}, {1071} and the important zone cir-
cles between them. Compare with Fig. 2-40.

2-18 On a standard {001) projection of a cubic crystal, in the orientation of Fig. 2-
36(a), the pole of a certain plane has coordinates 53.3°S, 26.6°E. What are its Miller
indices? Verily your answer by cornparison of measured angles with those given in
Table 2-4.

*2-19 Duplicate the operations shown in Fig. 2-43 and thus find the locations of the
cube poles of a (111) reflection twin in a cubic crystal. What are their coordinates?
2-20 Show that the twin orientation found in Prob. 2-19 can also be obtained by

a) Reflection in a {112} plane. Which one?

b) 180° rotation about a (111} axis. Which one?

c) 60° rotation about a (111) axis. Which one?

In (c), show the paths traced out by the cube poles during their rotation.
*2-21 Plot the great-circle route from Washington, D.C. (39°N, 77°W) to Moscow
(56°N, 38°E). '

a) What is the distance between the two cities? (Radius of the earth = 6360
km.)

b) What is the true bearing of an airplane flying from Washington to Moscow
at the beginning, midpoint, and end of the trip? (The bearing is the angle
measured clockwise from north to the flight direction. Thus east is 90° and.
west is 270°.) _

2-22 Cellulose (CgH,,Os), crystallizes as monoclinic crystals with lattice parameters
a=787A,b=1031A,c=10.13 A, and 8 = 122°.

a) Plot the lattice points for (k0{), i.e., in direct space. Superimpose the lattice
points of the adjacent (20f) on the first plot.

b) Plot the /0! net of the reciprocal lattice (i.e., the reciprocal lattice plane
containing reciprocal lattice points of the form A0!). Superimpose the
points of the (A1]) reciprocal lattice net onto the first plot. .

2-23 Laitetium has a hexagonal structure with lattice parameters a = 3.516 A and
¢ =5.570 A. Plot the A0I plane of the reciprocal lattice of this material.

2-24 Aluminum silicate (mullite) AlSi,O,; has an orthorhombic Bravais lattice and
lattice parameters @ = 7.5456 A, b = 7.6898 A and ¢ = 2.8842 A. Assuming that the
Bravais lattice is simple orthorhombic, in one diagram plot the 40! net of the recip-
rocal lattice, and in a second diagram plot the 0kI net of the reciprocal lattice.




