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A supported-metal catalyst can be considered as a mixture of three

homogeneous phases: support, void and metal. Information about the metal

phase alone can be obtained using anomalous small-angle X-ray scattering

(ASAXS), which requires measuring the SAXS for two different wavelengths

near the metal’s absorption edge. Herein, the conditions that must be obtained

so that the difference between the two scattering profiles gives the scattering of

the metal alone are presented. In a following contribution, the analysis will be

applied to in situ ASAXS measurements made on mordenite impregnated with

platinum metal while the temperature and composition of gas in the sample cell

are changed. The metal particles are assumed to be randomly distributed

spheres with N(R)dR being the number of spheres with radii between R and

R + dR. From N(R) one can obtain the average value of R.

1. Introduction

The activity and properties of a supported-metal catalyst

depend, not only on the chemical state of the support and the

metal, but also on the interphase surface areas and particle

sizes (Wachs, 1992; Stiles & Koch, 1995). X-rays penetrate a

bulk solid, such as a catalyst, non-destructively, making X-ray

scattering a possible method for such measurements. Indeed,

an early review (Somorjai et al., 1967) characterized small-

angle X-ray scattering (SAXS) as ‘the most versatile’ tech-

nique for investigation of the state of the metal in supported-

metal catalysts, and SAXS studies continue to appear (Li et al.,

2003). Other methods of characterizing supported-metal

catalysts include electron microscopy (Jacoby, 2002; Canton et

al., 2003), gas adsorption and various spectroscopies; they

have been reviewed by Meitzner (1992).

We have previously reported (Brumberger, 1988; Brum-

berger et al., 1996; Ramaya, 1997) measurement of metal

particle sizes in supported-metal catalysts by SAXS. Since

X-rays are scattered by the support as well as the metal, we

subtracted the scattering of the support alone from the scat-

tering of the catalyst. The validity of subtraction of support

scattering from catalyst scattering depends on several

assumptions, which may not be completely justified. An

alternative means to remove support scattering is by

subtracting measurements at two different X-ray energies

near the absorption edge of the metal in the catalyst (Naudon,

1995; Creagh, 1999). The atomic scattering factor of the metal

is noticeably different for the two energies, whereas the atomic

scattering factors for other elements are the same. Thus, the

difference in the scattering of the two wavelengths should

consist essentially of the scattering of the metal.

The catalysts we study are zeolites impregnated with

platinum. We consider them to consist of three homogeneous

phases: zeolite, metal and void. Since surface inhomogeneities

are neglected, the X-ray scattering intensity arises from

inhomogeneities in the electron density due to phase bound-

aries. The scattering intensity is proportional to the Fourier

transform of the correlation function (r), which, for a system

composed of homogeneous phases, can be written in terms of

the ‘stick probability functions’ Pij(r); Pij(r) is the probability

that a stick of length r, randomly located in the system, has one

distinguishable end in phase i and the other in phase j (see

below). Consider two three-phase systems with the same Pij ,

but having different electron densities for phase 3. Let their

scattering intensities be I 0ðQÞ and I(Q). We show in x2 that the

difference, I 0ðQÞ ÿ I(Q), has no contribution from the 1–2

interface and that, with a reasonable assumption about P13

and P23, I 0ðQÞ ÿ I(Q) includes only the scattering from

phase 3.

In our systems, phase 1 is zeolite support, phase 2 is void,

and phase 3 is metal. The alteration of the electron density of

phase 3 is accomplished by using X-rays with wavelengths near

the absorption edge of the metal, and taking advantage of the

anomalous scattering (Georgopoulos & Cohen, 1985;

Epperson & Thiyagarajan, 1988; Creagh, 1999). Near the

absorption edge, the index of refraction and hence the scat-

tering power of the metal vary noticeably with wavelength, so

measuring the scattering at two different wavelengths is

equivalent to measuring the scattering from two systems with† Deceased.



different values of n3, the electron density of phase 3. The

source of monochromatic X-rays of appropriate wavelengths

is the Cornell High Energy Synchrotron Source (CHESS). An

additional advantage of synchrotron radiation is the much

higher intensity, which makes it possible to obtain the X-ray

scattering profile I(Q) for each wavelength in seconds rather

than many minutes. Thus I(Q) can be obtained for a system in

which the correlation function or the particle size distribution

changes with time.

The use of anomalous small-angle X-ray scattering for

problems in materials science has recently been reviewed by

Goerigk et al. (2003). ASAXS has now been used by a number

of workers to study the size distribution of catalyst particles in

porous supports, as we do in the present work (Haubold et al.,

1996, 1997, 1999; Benedetti et al., 1999; Rasmussen et al., 2000;

Bóta et al., 2002; Bönnemann et al., 2002; Vad et al., 2002;

Polizzi et al., 2002; Canton et al., 2003; Haubold, 2003).

2. SAXS and anomalous scattering

For an isotropic system, the scattering intensity at an angle � is

given by (Brumberger, 1968; Goodisman & Brumberger, 1971;

Schmidt, 1995)

IðQÞ ¼ 4�Vh�2
iIeðQÞ

Z1
0

r2ðrÞ
sinðQrÞ

Qr
dr: ð1Þ

Here, Q = 4��ÿ1 sin(�/2) with � the wavelength of the radia-

tion and � the scattering angle; V is the sample volume,  is the

density–density correlation function, and h�2
i is the mean-

square electron density fluctuation from the mean. Ie(Q) is the

Thomson scattering of a single electron, which is essentially

independent of � for small scattering angles. If the system is

composed of several homogeneous phases, i, each of uniform

electron density ni,

h�2
i ¼

X
i

’iðni ÿ hniÞ
2; ð2Þ

where ’j is the volume fraction of phase j, and hni the average

electron density,
P

i ’ini. In principle, the correlation function

can be determined from the Fourier transform of the scat-

tering intensity I(Q) (Schmidt, 1995).

The correlation function for a system of homogeneous

phases with sharp boundaries may be written as

ðrÞ ¼
1

h�2i

X
i;j

PijðrÞninj ÿ hni
2

" #
; ð3Þ

where Pij(r) is the ‘stick probability function’: the probability

that a stick of length r, located at random in the system, has

one end in phase i and the other in phase j (Goodisman &

Brumberger, 1971; Ramaya, 1997). There are three stick

probability functions Pij for a three-phase system such as a

supported-metal catalyst. In the catalyst, i = 1, 2 or 3 refers to

support, void or metal, respectively. It is obvious that Pij(0) =

’j�ij, so that (0) = 1. It can also be shown (Goodisman &

Brumberger, 1971) that (dPij/dr)r=0 = Sij/4V, where Sij is the

interphase surface area; thus the correlation function contains

information about the interphase surface areas. It is clear,

however, that one cannot find an individual surface area from

(r) without additional assumptions.

For X-ray wavelengths near the absorption edge of one

phase, the scattering power, equivalent to the electron density,

of that phase varies noticeably with wavelength (anomalous

scattering). Carrying out SAXS measurements at two wave-

lengths near the absorption edge is equivalent to performing

SAXS measurements on two systems having the same struc-

ture (volume fractions, interphase surface areas, etc.) but

different electron densities for one phase (phase 3, the metal,

in our systems). If the electron densities for phase 3 are n3 and

n03 in the two systems, the difference in the SAXS for the two

wavelengths is

IðQÞ ÿ I 0ðQÞ ¼ 4�VIeðQÞ

Z1
0

dr r2 sinðQrÞ

Qr

�
�
2ðP13n1 þ P23n2Þðn3 ÿ n03Þ

ÿ 2ð’1n1 þ ’2n2Þ’3ðn3 ÿ n03Þ

þ P33ðn
2
3 ÿ n0 23 Þ ÿ ð’3n3Þ

2
þ ð’3n0 23 Þ

�
; ð4Þ

which has no contribution from P12. The bracketed part of this

equation is equal to

ðn3 ÿ n03Þ
�
2P13n1 þ 2P23n2 ÿ 2’3ð’1n1 þ ’2n2Þ

þ ðP33 ÿ ’
2
3Þðn3 þ n03Þ

�
;

so that

IðQÞ ÿ I 0ðQÞ ¼ 8�VIeðQÞðn3 ÿ n03Þ

�

Z1
0

dr r2 sinðQrÞ

Qr

�
P13n1 þ P23n2 þ P33 �nn3

ÿ ’3ð’1n1 þ ’2n2 þ ’3 �nn3Þ
�
; ð5Þ

where �nn3 is the average of n3 and n03. We now show under what

circumstances I(Q) ÿ I 0ðQÞ is equal to the scattering of a two-

phase system.

The phases 1 and 2 together may be considered a single

phase A, with volume fraction ’A = ’1 + ’2 and average

electron density

nA ¼
’1n1 þ ’2n2

’1 þ ’2

:

Phase 3 is now denoted as B, with volume fraction ’B = ’3 and

electron density nB = �nn3. The stick probability PBB is P33 and

PAA is P11 + P12 + P21 + P22. It is assumed that

P13

PAB

¼
’1

’A

¼
’1

’1 þ ’2

and similarly for P23, i.e. that phases 1 and 2 are arranged

randomly in the new combined phase A. Then equation (5)

may be written as
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IðQÞ ÿ I 0ðQÞ ¼ 8�VIeðQÞðn3 ÿ n03Þ

�

Z1
0

dr r2 sinðQrÞ

Qr

�
nAðPAB ÿ ’A’BÞ

þ nBðPBB ÿ ’B’BÞ
�
: ð6Þ

For a two-phase system with phases a and b, the scattering

intensity is given by

I2ðQÞ ¼ 4�VIeðQÞ

Z1
0

dr r2 sinðQrÞ

Qr

�
n2

aðPaa ÿ ’
2
aÞ

þ 2nanbðPab ÿ ’a’bÞ þ n2
bðPbb ÿ ’

2
bÞ
�
:

Since Pab + Pbb = ’b and Pab + Paa = ’a, this may be rearranged

to

I2ðQÞ ¼ 4�VIeðQÞ

Z1
0

dr r2 sinðQrÞ

Qr

�
ðPab ÿ ’a’bÞðnanb ÿ n2

aÞ

þ ðPbb ÿ ’
2
aÞðn

2
b ÿ nanbÞ

�
¼ 4�VIeðQÞðnb ÿ naÞ

Z1
0

dr r2 sinðQrÞ

Qr

�
ðPab ÿ ’a’bÞna

þ ðPbb ÿ ’
2
bÞnb

�
: ð7Þ

This is identical to equation (6) if (nb ÿ na) is replaced by

2(n03 – n3). Thus our assumption of randomness, P13/PAB =

’1/’A, makes the difference in scattering intensities for the two

systems equal to the scattering intensity from a two-phase

system. One of the phases is the metal and the other a density-

averaged support. The effective electron density difference is

2(n03 ÿ n3) rather than the difference in electron densities of

metal and support.

The electron density difference (n03 ÿ n3) is actually the

difference in atomic scattering factors for two different X-ray

wavelengths. In general, the coherent atomic scattering factor

f(Q, E) for X-rays of energy E (E = hc/�) is given by (Haubold

et al., 1994; Naudon, 1995; Cross et al., 1998)

f ðQ;EÞ ¼ foðQÞ þ f 0ðQ;EÞ þ if 00ðQ;EÞ; ð8Þ

where fo, independent of E, is the Fourier transform of the

electron density. In the small-angle scattering range, the Q

dependence, or dependence on scattering angle, can be

neglected, and fo becomes equal to the atomic number Z. The

term f 00 is proportional to the absorption coefficient, and f 0 is

related to f 00 through a Kramers–Krönig relation,

f 0ð!Þ ¼
2

�

Z1
0

!0f 00ð!0Þ

!0 2 ÿ !2
d!0;

where ! = 2�c/�. The absorption coefficient f 00 is small for low

!, but becomes large when ! approaches an absorption

frequency. Then f 0(!) becomes large and negative near the

absorption edge, varying rapidly with !, making the real part

of the scattering factor, fo + f 0(E), vary markedly over a small

range of E. Thus the electron number Z is reduced by several

electrons or more within 10 eV from the absorption edge

(Naudon, 1995; Goerigk et al., 2003), and the effective electron

density of one phase in a multi-phase system decreases as the

X-ray frequency approaches the absorption frequency.

Therefore the difference I(Q) ÿ I 0ðQÞ for a three-phase

system, where X-rays of two different frequencies are used to

obtain I 0ðQÞ and I(Q), has the form of the X-ray scattering

from a two-phase system [equations (6) and (7)]. One of the

phases is that with a scattering cross section which is very

different for the two frequencies (the metal in the present

application), and the other an average of the other phases

(zeolite and void). Instead of being proportional to the elec-

tron density difference between the two phases, the scattering

intensity is proportional to the difference in effective electron

densities of the metal at the two wavelengths used. When this

theory is applied to the scattering of a supported-metal cata-

lyst (Brumberger et al., 2005), only the variation of scattering

intensity with Q is important, and not the value of the

proportionality constant.

3. Pij for a system of particles

The metal (phase 3) is expected to be in the form of particles,

embedded in the mixed zeolite and void phases. We must now

calculate the relevant Pij for this situation. The particles are

assumed to be all of the same shape but of different sizes, with

the probability that a particle chosen at random has char-

acteristic radius R being

NðRÞ ¼ expðÿ�RÞð�þ Rþ �R2Þ; ð9Þ

where �, �,  and � are parameters. Normalization requiresZ1
0

NðRÞ dR ¼ 1:

Let A(r; R) be the autocorrelation function for a particle of

size R, i.e. the probability (averaged over angles) that, if a stick

of length r has one end in a particle of size R, the other end is

within the same particle. Obviously, A(0; R) = 1 and

A(r; R)! 0 as r!1.

The stick probability function P33 starts with ’3N(R): the

probability that one end of the stick lies in a particle of size R

of phase 3. This is multiplied by a sum of two terms, repre-

senting the probability that the other end lies in the same

particle or in another particle of phase 3, and then integrated

over R.

P33ðrÞ ¼ ’3

Z1
0

NðRÞ
�

Aðr; RÞ þ ½1ÿ Aðr; RÞ�’3

	
dR: ð10Þ

In addition, we have

P3jðrÞ ¼ ’3

Z1
0

NðRÞ
�
1ÿ Aðr; RÞ

�
’j dR; ð11Þ

where j = 1 or 2. Note that P13/P23 = ’1/’2 as required by our

model. The stick probability P12 need not be calculated since it
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cancels out in I 0ðQÞ ÿ I(Q). Substituting the stick probabilities

into equation (6), we find

½IðQÞ ÿ I 0ðQÞ�=8�VIeðQÞðn3 ÿ n03Þ

¼

Z1
0

dr r2 sinðQrÞ

Qr

�
nA

�
P13 þ P23 ÿ ð1ÿ ’3Þ’3

�
þ �nn3ðP33 ÿ ’3’3Þ

	
¼

Z1
0

dr r2 sinðQrÞ

Qr

"
ÿ nAð1ÿ ’3Þ’3

Z1
0

NðRÞAðr; RÞ dR

þ �nn3’3

Z1
0

NðRÞAðr; RÞdR ð1ÿ ’3Þ

#

with nA(’1 + ’2) = n1’1 + n2’2. This further simplifies to

IðQÞ ÿ I 0ðQÞ

8�VIeðQÞðn3 ÿ n03Þ
¼ ð �nn3 ÿ nAÞ’3ð1ÿ ’3Þ

�

Z1
0

NðRÞ

"Z1
0

drr2 sinðQrÞ

Qr
Aðr; RÞ

#
dR:

ð12Þ

The Fourier transform of A(r; R) gives I sphðQÞ, the scattering

of a sphere of radius R. Thus the scattering is the sum of

contributions of the individual particles (Schmidt, 1995).

For a sphere with uniform electron density �, the scattering

intensity is given by (Glatter, 1995)

I sphðQÞ ¼ ð4��Þ2½sinðQaÞ ÿQa cosðQaÞ�2=Q6: ð13Þ

Equation (13) may be approximated by a non-oscillating

Gaussian function (Somorjai et al., 1967; Hukins, 1981); in fact

a Gaussian may be used to approximate the scattering inten-

sity of particles of any shape (Guinier approximation):

I partðQÞ ¼ Ið0Þ expðÿQ2G2=3Þ:

Here G is the radius of gyration and I(0) is equal to the

electron density squared multiplied by the square of the

particle volume (Hukins, 1981; Schmidt, 1995). For a sphere of

radius a, G2 = 3
5a

2.

In previous work (Brumberger et al., 1996), we assumed the

metal was in the form of independent particles with variable

radii of gyration. We used the Guinier approximation and

defined F(G)dG as the number of particles with radius of

gyration between G and G + dG. The total scattering intensity

is proportional to

I totðQÞ ¼

Z1
0

dG FðGÞG6 expðÿG2Q2=3Þ:

However, this does not lead to Porod behavior (intensity

proportional to Qÿ4 for Q!1), expected for particle scat-

tering (Schmidt, 1995; Schaefer et al., 1995). The reason is that

the Guinier approximation is appropriate for small Q but not

for Q!1.

The complete sphere scattering function equation (13) does

give Porod behavior when averaged over the sinusoidal

oscillations. Therefore, we represent the metal particles as a

collection of spheres of different sizes and use equation (13).

With equation (9) for N(R) we have the total difference

scattering proportional to

ItðQÞ ¼

Z1
0

dR expðÿ�RÞð�þ Rþ �R2
Þð4��Þ2

� f½sinðQRÞ ÿQR cosðQRÞ�2=Q6
g: ð14Þ

The integral can be evaluated in closed form.

The values of the four parameters (�, �, , �) in N(R) are

chosen to obtain the best fit of It(Q) to the experimental I(Q).

Specifically, we minimize the sum of the relative deviations,

S ¼
X

j

IðQjÞ ÿ ItðQjÞ

IðQjÞ

� �2

ð15Þ

with respect to all four parameters. The sum in equation (15) is

over the values of Q for which scattering intensity can be

measured reliably. With the values of the parameters deter-

mined, we calculate properties of the distribution.

4. Discussion and conclusions

In this and a following paper, we analyze the SAXS from a

supported-metal catalyst, modeled as a system of three

homogeneous phases with sharp phase boundaries. We first

show [equations (2)–(7)] that, for such a system, the difference

in the SAXS at two X-ray wavelengths is equivalent to the

scattering of a two-phase system. If the two wavelengths are

near the absorption edge for one of the phases (phase 3), the

effect of changing wavelength is to change the effective scat-

tering power or electron density of phase 3, while leaving the

distribution of phases the same. In the two-phase system, one

phase is phase 3 of the three-phase system (the metal in the

present example) and the other phase is an average of phases

1 and 2 of the three-phase system.

If the metal is modeled as a collection of spheres of variable

radii, the difference scattering is shown [equations (10)–(12)]

to be proportional to the sum of scattering intensities from the

spheres. The sphere scattering function [equation (13)] is

multiplied by the radius distribution function [equation (9)]

and integrated over R to give the theoretical scattering

intensity curve It [equation (14)]. The correct sphere scattering

function [equation (9)] was used in preference to the Guinier

approximation because the latter does not give the correct

Porod-law behavior, IQ4
! constant as Q!1.

This work is based upon research conducted at the Cornell
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National Science Foundation and the National Institutes of
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award DMR 9713424.
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Appl. Cryst. 36, 617–620.

Hukins, D. W. L. (1981). X-ray Diffraction by Disordered and
Ordered Systems. Oxford: Pergamon.

Jacoby, M. (2002). Chem. Eng. News, Aug. 5, pp. 26–32.
Li, Z.-H., Gong, Y.-J., Pu, M., Wu, D., Sun, Y.-H., Zhao, H. & Dong,

B.-Z. (2003). Wuji Huaxue Xuebao, 19, 252–256.
Meitzner, G. (1992). Characterization of Catalytic Materials, edited by

I. E. Wachs, ch. 2. Stoneham, MA: Butterworth-Heineman.
Naudon, A. (1995). Anomalous Small-Angle X-ray Scattering, in

Modern Aspects of Small-Angle Scattering, edited by H. Brum-
berger, NATO ASI Series C: Mathematical and Physical Sciences,
No. 451. Dordrecht: Kluwer.

Polizzi (2002).
Ramaya, R. (1997). Study of Zeolite-Supported Platinum Catalysts

Using Small Angle X-ray Scattering, PhD thesis, Syracuse
University, USA.

Rasmussen, F. B., Molenbroek, A. M., Clausen, B. S. & Feidenhans, R.
(2000). J. Catal. 190, 205–208.

Schaefer, D. W., Brow, R. K., Olivier, B. J., Ricker, T. & Beaucage, G.
(1995). Characterization of Porosity in Ceramic Materials by Small-
Angle Scattering: Vycor Glass and Silica Aerogel, in Modern
Aspects of Small-Angle Scattering, edited by H. Brumberger,
NATO ASI Series C: Mathematical and Physical Sciences, No. 451.
Dordrecht: Kluwer.

Schmidt, P. W. (1995). Some Fundamental Concepts and Techniques
useful in Small-Angle Scattering Studies of Disordered Solids, in
Modern Aspects of Small-Angle Scattering, edited by H. Brum-
berger, NATO ASI Series C: Mathematical and Physical Sciences,
No. 451. Dordrecht: Kluwer.

Somorjai, G. A., Powell, R. E., Montgomery, P. W. & Jura, G. (1967).
Small-Angle X-ray Study of Metallized Catalysts, in Small-Angle
X-ray Scattering, Proceedings of the Conference Held at Syracuse
University, edited by H. Brumberger. New York: Gordon and
Breach.

Stiles, A. B. & Koch, T. A. (1995).Catalyst Manufacture, 2nd ed. New
York: Marcel Dekker.

Vad, T., Haubold, H.-G., Waldoefner, N. & Bönnemann, H. (2002). J.
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