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Nanostructure from Small Angle X-ray Scattering

θ



Small- and Wide-Angle X-ray
Scattering Measurements

X-ray
Source

Sample
Chamber

Detector

SAXSSAXS : pinhole camera : 2-d detector at 1m from the sample : pinhole camera : 2-d detector at 1m from the sample

WAXSWAXS : pinhole geometry camera : pinhole geometry camera : image plate detector atimage plate detector at
5cm from the sample5cm from the sample

 2D measurements are useful in
determining both size and relative
orientation of various structural
components

(MD)

(TD)
(ND)

X-ray Source



Small-Angle X-ray Scattering, (SAXS)

-Collimated Beam
-Monochromatic Beam
-Coherent Beam
(-Focusing Optics Perhaps)

-Longer Distance for Lower Angle
-Large Dynamic Range Detector
-Evacuated Flight Path
-Extend Angle Range with Multiple SDD’s

Crystalline Reflections Can Also Be Used

We Get Intensity as 
A Function of Angle
(or radial position)



Small-Angle X-ray Scattering at the APS Chicago

We Get Intensity as 
A Function of Angle
(or radial position)

Pinhole Cameras at:  12 ID BESSRC
        5 ID DND
      18 ID BIOCAT
      15 ID CARS

                                     8 ID XOR
        9 ID CMC-CAT

33 ID UNICAT

} Variants on Build/Tear
Down Motif

(Inside Traders)

Semi-Permanent
(Easily Used)



Small-Angle X-ray Scattering at Other Synchrotrons

ESRF we use ID2 with T. Naryanan 
(Probably the best instrument)

Much easier to get time on smaller synchrotrons
We use SSRL (Stanford); CHESS (Cornell)

 



Nanostructure from Small Angle X-ray Scattering

θ

Time Resolution 10 ms (Synchrotron Facility)

For Flow Through Experiment
(Flame/Liquid/Gas Flow) can be 10 µs

Size Resolution 1 Å to 1 µm (Synchrotron Facility)



Nanostructure from Small Angle X-ray Scattering

θ

3-Techinques are similar
SALS/LS, SANS, SAXS

λ = 0.5 µm
For light

λ = 0.1 - 0.5 nm
For x-ray/neutron

Contrast, index of refraction, electron density,
 neutron cross section



3-Closely related Techniques:

USAXS- Ultra Small Angle Scattering SAXS at
1/1000 º.  APS in US and ESRF in Europe.

ASAXS- Anomalous x-ray scattering, vary
wavelength leads to change in contrast due to the
complex absorption spectra.

GISAXS- Promise of high resolution spectra
for surface structures but there are technical issues
with data interpretation.

http://staff.chess.cornell.edu/~smilgies/gisaxs/GISAXS.php



For Small Angle X-ray Scattering (SAXS)

1)  Specific Structure

Calculate Pairwise Correlation Function

Calculate Fourier Transform to predict

scattering or direct transform of

measured data to correlation function

and analysis of correlation function.

Svergun (Hamburg) has applied this to protein in
native state

Simple application to monodisperse structures

Sphere Function/Rod Function/Cylinder

G = Nne
2



The Debye Scattering Function for a Polymer Coil
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Binary Interference Yields Scattering Pattern.

I(q) ~ N ne
2

ne Reflects the density of a
Point generating waves

N is total number of points



The Scattering Event

I(θ) is related to amount Nn2

θ is related to size/distances 
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2) Rather than consider specific structures, we can consider 
general scattering laws by which all scatters are governed 
under the premises that 1) “Particles” have a size and
2) “Particles” have a surface.



Binary Interference Yields Scattering Pattern.

-Consider that an in-phase
wave scattered at angle θ was
in phase with the incident
wave at the source of
scattering.

-This can occur for points
separated by r such that

|r| = 2π/|q|

-
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#
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$
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Binary Interference Yields Scattering Pattern.

-For high θ, r is small



Binary Interference Yields Scattering Pattern.

-For small θ, r is large



For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.
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Rather than random placement of the vector we can hold
The vector fixed and rotate the particle

For an isotropic sample we consider scattering as
arising from the probability of the random placement
of a vector r in the scattering phase.



The particle becomes a probability density function
from the center of mass.

That follows a Gaussian Distribution.
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The particle becomes a probability density function
from the center of mass.

Whose Fourier Transform is Guinier’s Law.
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Guinier’s Law Pertains to a Particle with no Surface.
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Any “Particle” can be Approximated as a Gaussian 
probability distribution in this context.
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Guinier’s Law can be thought of as the 
First Premise of Scattering:
All “Particles” have a size reflected by the radius of gyration.



The Debye Scattering Function for a Polymer Coil
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I(q) ~ N ne
2

ne Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.  



I(q) ~ N ne
2

ne Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.  

The only location for contrast between phases is 
At the interface r
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I(q) ~ N ne
2

ne Reflects the density of a
Point generating waves

N is total number of points

At the other extreme we consider a surface.  

r

We can fill the interface with spheres of size r

N = S/(πr2)
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rN = S/(πr2)
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Porod’s Law can be thought of as the 
Second Premise of Scattering:
All “Particles” have a surface reflected by S/V.
(dp = (S/V)-1)
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For a Rough Surface:  2 ≤ ds < 3
(This Function decays to Porod’s Law at small sizes) 
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Sphere Function

For qR >> 1 

<sinqR> => 0
<cos2qR> => 1/3

! 

I q( ) "
G

q
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4 Porod’s Law for a Sphere!



First and Second Premise of Scattering
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Structure of flame made silica nanoparticles by ultra-snall-
angle x-ray scattering. Kammmler HK, Beaucage G,
Mueller R, Pratsinis SE Langmuir 20 1915-1921 (2004).

Particle Size, dp



Many Things can Happen between the “Particle” Size
And the “Particle” Surface.  Consider a “Linear” Aggregate.
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Overall Rg



Many Things can Happen between the “Particle” Size
And the “Particle” Surface.  Consider a “Linear” Aggregate.

S/V

Overall Surface Area (Sum of Primaries)



Many Things can Happen between the “Particle” Size
And the “Particle” Surface.  Consider a “Linear” Aggregate.

At intermediate sizes the chain is “self-similar”
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Many Things can Happen between the “Particle” Size
And the “Particle” Surface.  Consider a “Linear” Aggregate.

At intermediate sizes the chain is “self-similar”

I(q) ~ N ne
2

N = Number of 
Intermediate 
Spheres in the
Aggregate 

ne = Mass of inter.
sphere

I(q) ~ N ne
2

! 

N ~
R
2

r
int

" 

# 
$ 

% 

& 
' 

d f

! 

ne ~
r
int

R
1

" 

# 
$ 

% 

& 
' 

d f

! 

Nne
2 ~

rint

R1

" 

# 
$ 

% 

& 
' 

d f

R2

R1

" 

# 
$ 

% 

& 
' 

d f

     (      I q( ) ~
R2

R1

2

" 

# 
$ 

% 

& 
' 

d f

q
)d f



Linear Aggregates

Beaucage G, Small-angle Scattering from Polymeric
Mass Fractals of Arbitrary Mass-Fractal Dimension,
J. Appl. Cryst. 29 134-146 (1996).



Branched Structures

Guo L, Hyeon-Lee J, Beaucage G J. Non-Cry. Solids 243 61-69 (1999)

PDMS/Silica Hybrid Material



• Long Chain and Short Chain

• Model Branched Polymers (Stars, Hyperbranched, Dendrimers)

• Branching governed by kinetics (nano-scale aggregates)

Branching in different systems



1)  Mass Fractal dimension, df.

Nano-titania from Spray Flame
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Random aggregation (right) df ~ 1.8;
Randomly Branched Gaussian df  ~ 2.5;
Self-Avoiding Walk df = 5/3

Problem: 
Disk df = 2
Gaussian Walk df=2

2R/dp = 10, α ~ 1, z ~ 220
  df = ln(220)/ln(10) = 2.3

A Measure of Branching is not Given.

z is mass/DOA
dp is bead size
R is coil size



2)  Fractal dimensions (df, dmin, c)
and degree of aggregation (z)
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dmin should effect perturbations & dynamics, transport
electrical conductivity & a variety of important features.

Beaucage G, Determination of branch fraction and minimum dimension of frac. agg. Phys. Rev. E 70 031401 (2004).
Kulkarni, AS, Beaucage G, Quant. of Branching in Disor. Mats. J. Polym. Sci. Polym. Phys. 44 1395-1405 (2006).



Fractal aggregates are springs

Ogawa K, Vogt T., Ullmann M, Johnson S, Friedlander SK, Elastic properties of nanoparticulate chain
aggregates of TiO2, Al2O3 and Fe2O3 generated by laser ablation, J. Appl. Phys. 87, 63-73 (2000).



A Scaling Model for Branched Structures
Including Polyolefins

Beaucage G, Determination of branch fraction and minimum
dimension of fractal aggregates Phys. Rev. E 70 031401 (2004).
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3) Neutron & X-ray Scattering

I(θ) is related to amount Nn2

θ is related to size/distances 
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We can “Build” a Scattering Pattern from Structural
Components using Some Simple Scattering Laws

θ
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Persistence is distinct from chain scaling



Branching has a quantifiable signature.
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Aggregate Primary Chain Persistence
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Small Angle Scattering

Silica Aggregates Deuterated-PHB



Branch Content from Scattering
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G Beaucage, Physical Review E, 70, 031401 (2004)
AS Kulkarni, G Beaucage, J Polym Sci, Part B: Polym Phy, 44, 1395 (2006)  
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Topological information can be extracted from this feature
arising from combining Local Scattering Laws

221c
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c x dmin



4) Branched Polymers at Thermal
Equilibrium: Model Systems for LCB

For Polymers dmin is the 
Thermodynamically Relevant
Dimension (5/3 = 1.67 or 2)

df = dmin c
     ~ thermo x branching

PDI ~ 1.05
F5

“2D Slice”

F2



Mole fraction of Branches



0.670.711.591.252.0078.276 Arm Star2
0.880.811.401.612.274.3718 Arm Star3

0.330.391.491.332.006.873 Arm Star1

Theoretical φbrφbrcdmindfRg (Å)Sample#

Horton et al., Macromolecules, 22, 681 (1989)
US Jeng, TL Lin, LY et al. App Phys A, 74, S487 (2002).

Multi-Arm Star Polymers



Hyperbranched Polymers

E. De Luca, R. W. Richards, I. Grillo, and S. M. King, J. Polym. Sci.: Part B: Polym. Phys. 41, 1352 (2003).
Geladé, E. T. F.; Goderis, B.; et al. Macromolecules, 34, (2001).
AS Kulkarni, G Beaucage, Macromolecular Rapid Communications, accepted, (2007).

SANS on Hyperbranched Polymers: Beaucage model correctly describes transition
from good-solvent to Θ - solvent collapsed state for the minimum path dimension.

a) b)



Cyclic Polymers
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Casassa Equation

E F Casassa, Journal of Polymer Science: Part A, 3, 605, (1965)



V Arrighi, S Gagliardi et al., Macromolecules, 37, (2004)
S Gagliardi, V Arrighi et al., Applied Physics A, (2002)

S Gagliardi, V Arrighi et al., Journal of Chemical, 122 (2005)



0.910.63±0.0042.2737,900PE 3

0.360.39±0.0050.9111,500PE 2

000.0446,500PE 0

NMR
nbr/104

C

Mole Fraction
of Branches

φbr

Index
LCBI

Mn
(g/mol)

Model Based on
Mole Fraction of

Branches

This Approach Can Quantify LCB in Polyolefins.
(Talk by Kulkarni/Beaucage Tomorrow T34 0668 3:30)



Mw/Mn ~ 4
Large aggregates
Growth kinetics show
dmin => 1 
df => 1.8 for RLCA
Predicted previously
  by Meakin

4) Model Polydisperse Simulations



5mm LAT 16mm HAB
Typical Branched Aggregate

dp = 5.7 nm
z = 350

c = 1.5, dmin = 1.4, df = 2.1
φbr = 0.8

Branched Aggregates

Beaucage G, Determination of branch fraction and minimum
dimension of fractal aggregates Phys. Rev. E 70 031401 (2004).

APS UNICAT
Silica Premixed Flames
J. Appl. Phys 97 054309
Feb 2005



- Behavior is Similar to Simulation
   df drops due to branching

- Aggregate Collapse

- Entrainment High in the FlameHeight above burner



TEOS:H2O:HCl

Vapor

Reacting
Aerosol

R

a L

If Particles
Don't Stick Well

Packing is Dense
"Reaction Limited"

If Particles
Stick Immediately
Packing is Loose

"Diffusion Limited"

Particle/Cluster, Denser

Cluster/Cluster, Looser

HMDS

Mechanics Depend on Structure
Structure on Growth Chemistry

N = α (R/a)df How Dense?

( /a) = (R/a)dmin Minimum Path Dim.
1≤ df ≤ 3

1≤ dmin ≤ df
 C = df/dmin    How Branched?

        Linear C = 1; Reg. C = df

Mean Aggregate Size, "R"
Mean Primary Particle Size, "a"

Specific Surface Area related to 1/a
"R" is related to " a", "N", and Structure

"Structure" is Related to Growth Mechanism 
"a" is Related to Early Stage 
"N" and "R" to Later Stage



100nm 100nm 100nm

Nano-Aggregates Can Act as Springs

From:  S. K. Friedlander, H. D. Jang, K. H. Ryu 
Appl. Phys. Lett. 72 173 (1998).

Static Stressed Released

F

F

Eσ

ε

EAggregate = EOxide(a/R)3+dmin

From:  T. A. Witten, M. Rubinstein, R. H. Colby 
J. Phys. II France 3, 367 (1993).

R
a

dmin is Dimension 
of Stressed 

Path



Summary of Witten/Rubinstein/Colby Theory 
for Mechanics of Springy Aggregates in Elastomers

EAggregate = EOxide(a/R)3+dminR
a

dmin is Dimension 
of Stressed 

Path

Aggregates are only Effective 
below a Critical Size,  Rcritical

Rcritical =  a(EOxide/ERubber)1/(3+dmin)
A Critical Concentration is Predicted Beyond which

There is No Higher Reinforcing Effect, φcritical
φcritical =  (R/a)df-3

The Modulus for a Critical Concentration Composite, Ecomposite 
is given by:

Ecomposite = EOxide φcritical(3+dmin)/(3-df)

Test these Propositions using Tuned Nano-Composites
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Complex Scattering Pattern (Unified Calculation)



Particle with No Interface
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Spherical Particle
With Interface (Porod)

Guinier and Porod Scattering

4)( !
= qBqI P

SNB
eP

2
2 !"=

2
~ RS

322 )( RNdqqIqQ e!== "

2

3

2 R

R

B

Q
d

P

p ==
!

Structure of Flame Made Silica Nanoparticles
By Ultra-Small-Angle X-ray Scattering
Kammler/Beaucage Langmuir 2004 20 1915-1921



Polydisperse Particles

Polydispersity Index, PDI
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Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).



Linear Aggregates

Beaucage G, Small-angle Scattering from Polymeric
Mass Fractals of Arbitrary Mass-Fractal Dimension,
J. Appl. Cryst. 29 134-146 (1996).
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1)  Fractal dimensions (df, dmin, c)
and degree of aggregation (z)
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dmin should effect perturbations & dynamics.
Beaucage G, Determination of branch fraction and minimum
dimension of fractal aggregates Phys. Rev. E 70 031401 (2004).



Linear Aggregates

Beaucage G, Small-angle Scattering from Polymeric
Mass Fractals of Arbitrary Mass-Fractal Dimension,
J. Appl. Cryst. 29 134-146 (1996).
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Branched Aggregates

Beaucage G, Determination of branch fraction and
minimum dimension of fractal aggregates Phys. Rev.
E 70 031401 (2004).
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Large Scale (low-q) Agglomerates
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Small-scale Crystallographic Structure



5mm LAT 16mm HAB
Typical Branched Aggregate

dp = 5.7 nm
z = 350

c = 1.5, dmin = 1.4, df = 2.1
φbr = 0.8

Branched Aggregates

Beaucage G, Determination of branch fraction and minimum
dimension of fractal aggregates Phys. Rev. E 70 031401 (2004).

APS UNICAT
Silica Premixed Flames
J. Appl. Phys 97 054309
Feb 2005



Supported Catalysts



Nobel Metals (Gold) 
Become 

Reactive Catalysts
When of 1-6 nm Size

Onset of catalytic activity of gold
clusters on titania with the appearance
of non-metallic properties. 
Valden M, Lai X, Goodman DW
Science 281, 1647-1650 (1998).



Solution Method
For Au/Support Oxide

(Using HAuCl4)

Gold Catalysts Prepared by coprecipitation 
for low-temperature oxidation of hydrogen 
and of Carbon Monoxide. 
Haruta M, Yamada N, Kobayashi T, Iijima S,
J. Of Catalysis 115, 301-309 (1989).

20 nm

Size- and support-dependency in the 
catalysis of gold.  Haruta M, Catalysis 
Today 36, 153-166 (1997).

592 Citations

480 Citations



Consider Support Particle with Deposited Domains
We can obtain: Mean Size, 

Polydispersity, 
State of Aggregation
For Both Particle Types.  

This can be done in situ in almost
any environment that can be brought to the synchrotron.

Option 1:  Brute Force/Lab Source

dp, nm σg

3.97 1.35

14.9 1.08

Measurements with ETHZ (Eveline Bus, Jereon Van Bokhoven)
ESRF (T. Narayanan)



Consider Support Particle with Deposited Domains

How do the particles vary with concentration gold?

Option 1:  Brute Force

Measurements with ETHZ (Eveline Bus, Jereon Van Bokhoven)
ESRF (T. Narayanan)



Consider Support Particle with Deposited Domains

In situ versus ex situ measurements.
Option 1:  Brute Force

Measurements with ETHZ (Eveline Bus, Jereon Van Bokhoven)
ESRF (T. Narayanan)

Desirable: In Situ Study/Contrast variation for Gold



Option 2:  Anomalous Scattering/Synchrotron

In situ anomalous small-angle x-ray scattering from metal particles in supported-
metal catalysts. I Theory and II Results.  Brumberger H, Hagrman D, Goodisman
J, Finkelstein KD, J. Appl. Cryst. 38 147-151 and 324-332 (2005). 

G.Goerigk and D.L.Williamson
http://www.desy.de/~jusifa/solarzellentechnik.htm

Consider Support Particle with Deposited Domains

Haubold et al. 1999

Goerigk et al. 2003

(Ge)



Scattered Intensity Depends on Contrast, G (For Each Phase)

Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).
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“f” Depends on Wavelength
Sintering of Ni/Al2O3 catalysts studied by 
anomalous small angle x-ray scattering.  
Rasmussen RB, Sehested J, Teunissen HT, 
Molenbroek AM, Clausen BS
Applied Catalysis A. 267, 165-173 (2004). - =



Particle Size Distributions
From SAXS



Particle Size Distribution Curves From SAXS

Assumption Method
i)   Assume a distribution function.
ii)  Assume a scattering function (sphere)
iii) Minimize calculation



Particle Size Distribution Curves From SAXS
Assumption Method.

i)   Assume a distribution function.
ii)  Assume a scattering function (sphere)
iii) Minimize calculation

Not unique &
Based on assumptions
But widely used & easy to understand

Sintering of Ni/Al2O3 catalysts studied by 
anomalous small angle x-ray scattering.  
Rasmussen RB, Sehested J, Teunissen HT, 
Molenbroek AM, Clausen BS
Applied Catalysis A. 267, 165-173 (2004).



Particle Size Distribution Curves From SAXS

Unified Method
i)   Global fit for BP and G.
ii)  Calculate PDI (no assumptions &

unique “solution”)
iii) Assume log-normal distribution

for σg and distribution curve
(or other models)

iv) Data to unique solution
Solution to distribution

Advantages
Generic PDI (asymmetry also)
Global fit (mass fractal etc.)
Direct link (data => dispersion)
Use only available terms
Simple to implement
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Particle size distributions from
small-angle scattering using global
scattering functions, Beaucage,
Kammler, Pratsinis J. Appl. Cryst.
37 523-535 (2004).

Particle Size Distribution Curves
from SAXS

PDI/Maximum Entropy/TEM Counting



Maximum Entropy Method
i)   Assume sphere or other 

scattering function
ii)  Assume most random solution
iii) Use algorithm to 

guess/compare/calculate
iv) Iterate till maximum “entropy”

Particle size distributions from small-angle scattering
using global scattering functions, Beaucage, Kammler,
Pratsinis J. Appl. Cryst. 37 523-535 (2004).

Advantages
No assumption concerning

distribution function
No assumption for number of modes
Matches detail PSD’s well

Related Alternatives
Regularization

Particle Size Distribution Curves From SAXS



Software for My Collaborators/Students
(And Me)



Particle Size Distribution Curves From SAXS

All Methods are available in Jan Ilavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Anomalous Scattering



Particle Size Distribution Curves From SAXS

All Methods are available in Jan Ilavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Unified Fit (Not all implemented)



Particle Size Distribution Curves From SAXS

All Methods are available in Jan Ilavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Sphere (or any thing you could imagine) Distributions



Particle Size Distribution Curves From SAXS

All Methods are available in Jan Ilavsky’s Igor Code
http://www.uni.aps.anl.gov/usaxs/

Maximum Entropy/Regularization Code (Jemian)



Zeolites/Spherical Colloids
Many Other Parts to Scattering
Are Not Covered
For Instance:



Zeolites:

Ethyl acrylate
Benzyl Peroxide
Zeolite 13X

Polyethylacrylate
in 

Zeolite Pores

Pu Z, Mark JE, Beaucage G, Maaref S, Frisch HL, SAXS Investigation of
PEA Composites J. Polym. Sci., Polym. Phys. 34 2657 (1996).

1 nm

2 nm

-4
-4

-Pore Structure
-Nano-Structure
-Micron Structure



Keep in Mind:

-SAXS Measurement is Generally Easy

-SAXS Analysis is Generally Difficult

-A Reasonable Model is Mostly Needed

-You will Generally Have to Understand 
What is going on.

(-This is not a good Technique for Those 
Interested only in Verifying)




