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the numbering of the scattering elements. After normalization to unity a'f

integration over r is made by parts leading (with v = gR) to the
qg =0, we call A(gq), A\g)

+2/2

An(qr)=l Y exp(—ig-r). (6.42)

i= =2/

A,(q) = % (sinv — vcosv). (6.49)

The symmetry implies that the phase difference betw: | scattered

waye and the wave scattered by the centre of symmetry is zero; this makes
A (q) real since one can always associate the points r, and -r

sected this expression depends only on R and the form factor
h 1914) is

P(q) = [A(q)]* = ; (sinv — vecosv)?. (6.50)

exp(—ig-r) + exp(+ig-r) = 2cos(g-r,). (6.43)
The scattered intensity for a given orientation is texts this formula is given in an equivalent form as function of
2 | [+ 2 ssel function
Ailq) = 2 _zz;z cos(q-r,-)] (6.44) r B(w) = ’ 2 sinv — vcosv
‘ . \ TV v
and the form factor P(q) is obtained after averaging over all orientations r

ng around g (or v) = 0 we obtain

v} 3vt 4 2v°
Plg) =1 =5+ 135 ~ 2725 * 72765
es P(q) as 1 — (¢°R*/3) the second term gives the correct value
ius of gyration of a sphere (eqn (6.15a)). Figure 6.6(a) shows
ction of v = gR.
n (6.50) shows that the scattering intensity becomes zero for all
of v (except zero) satisfying the equation

P(q) = %([Zcos(q-n)]z) (6.43_?

orientations

(6.51)

As an example of the use of this method we shall calculate the form factor
of a sphere.

6.3.2 The sphere

This case is extremely simple since the scattering intensity does not dej
on the orientation of the sphere. One evaluates the amplitude scattered |
the sphere (eqn (6.42)) transformed from discrete to continuous not
and normalized to unity for g = 0

v=1gv

: v= (2n + 1)x/2 (n being a positive integer) and goes
» maximum between two consecutive zeros. The main maximum
uch more important that the secondary maxima (Fig. 6.6(b)).
wo orders of magnitude larger but it is quite possible to detect
ima from well-defined systems. In order to see these minima
-more clearly Fig. 6.6(c) shows the logarithm of the form factor
of v =¢q’R%.

Ay(q) = %,m exp( — ig-r)risinfdfdedr,
v

the factor V comes from the fact that our normalization condi
A?(0) =1 has to be satisfied. Using the direction of ¢ as the z @
(gr = grcosf) and as new variable u = cosf, one obtains after integration
OVEr ¢ ]
+ 1 R

Ay(q) = i [ l exp(— igru)ridudr. (6.47)

% her objects with spherical symmetry (for example, shells)

u=-1 r=0 1 .

i Dd we have just used can be applied to many other systems having

symmetry. If, instead of having an uniform density, the sphere
p(r) of scattering elements which depends on the distance r
‘one can immediately write for the scattering amplitude, by
of eqn (6.48)

Integrating first over ¥ we recover the well-known result

Ay(q) =

3 smqr -
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sin r.
b Ay(q) = —] (N—— q (6.52)
a stant C is defined by the normalization condition 4(0) = 1
T
0.4 c={n(r)rdr (6.53)
0.2+ one obtains for the form factor
l a 2
P(q) = [z,]n(r) [smqj r=dr] : (6.54)
(a) 2 4 A/ 6 8 ?D_ qr
? | example let us assume that we want to evaluate the form factor
i ollow sphere where there are only scattering points between the
] - and the external radius R, (see Fig.6.7). It suffices to take
0. 06 1 ant for R, < r < R, and n = 0 everywhere else, obtaining
Rex
1 sin gr 3 .
e — I bl LT P 7R (singR,, — qR;.cosqR,,)
5 0.04 int
(g
o — - (SiNGRo, — qRwiC0s qR.). (6.55)
0.02 q Rm
. alization constant C’ is obtained by writing that for g =0,
e /\ ld be equal to 1. C’ is equal to the volume of the shell divided
(b) ¢ t gR 6 8 10 Rewt 1
c' = [ Pdr =3 (Rl = R%). (6.56)
10
faactor is evidently (A,(q))>. If the difference R, — R, is
2d to q
54
g /\ /-\ R
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Fig. 6.6 (a) Form factor for a sphere of radius R as function of gR. (b)
the tail of the curve. (c) Plot of the form factor of a sphere [log(P(q) ] as

of v = g’R’). Fig. 6.7 Model for an empty sphere.
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Fig. 6.9 Form factor for a thin disc of radius R as a function of gR.

coordinate system with the z axis in the direction of the vector

singR |? . By = : : ;
P(q) =[ q ] o (6.57 Er grecosfl) we immediately obtain
| $% e l /g 1}
with R = R, = R.,.. (See Fig.6.8.) LA (' Ay(q) = ¥ ] exp(— igrcos@)dr (6.59)
5'(!!1 in L
6.3.4 Other simple shapes—discs and rods Cq_-J') ‘after performing the integration
The disc 2 Lcosd
BCsE e . Ailq) = sin{q e J (6.60)
Until this point we have discussed the most simple case, the sphere. We qLcost 2

could go on and discuss many other geometrical objects which can be used
as models for molecular structure. This is purely a mathematical exercise
and we shall discuss in detail only the linear molecules which are the most
common model for polymers but, before doing so, we give here for the sake
of completeness, the result for a thin disc of radius R (Kratky and Porod
1949a) (see Fig. 6.9).

‘we take the square of this expression and integrate over all orientation

% H[ [4,(g) | *sin6de.

=0

P(q) =

T integration by parts (Neugebauer 1943)

2 R &
P(qg) = W[l - LR 24 (ZqR]J (6.58) 5 sm‘q?
% P(q) = = S(qL) — 7~ 6.61)
where J,(x) is a first order Bessel function. q [E}
2
The rod e S;(x) is the sine integral function
For a rod of length L one can use the same method and taking the centre ol ¢ sinw
of the rod as origin calculate the scattering amplitude. Using the classi- Si(x) —:! = du. (6.62)
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