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312 G. Porte

(CPCI). Strong electrostatic interactions arise: in spite of the dilution the peak is sharp and
the scattering at the beam stop is low. In Fig. 11 the concentration is twice as large but no
CPCl is added: there is no electrostatic interaction between the neutral bilayers. Only weak
steric interactions remain. The peak is broad and soft and the intensity scattered at beam stop
almost diverges. More quantitative procedures have been worked out along these line in order
to derive quantitatively the interlayer interactions (Nallet et al., 1993; Zhang et al., 1996;
Castro-Roman, 1999).

6.2. L4: an equilibrium dispersion of polydisperse vesicles

The scattering patterns of samples of the L4 phase show nothing specific and provide no
direct evidence for vesicles. An example is shown in Fig. 12. Of course, at high ¢’s we
find the leading ¢—2 dependence characteristic for the locally bilayered morphology. But at
lower ¢’s, there is a progressive crossover towards a weaker dependence which depends in
a non-straightforward manner on the system and the concentration of the sample. Therefore,
the first evidence of vesicles in the L4 phase was obtained by the Bordeaux group (Herve
et al., 1993) from a clever combination of viscosimetry, conductimetry and quasi-elastic
light scattering and using ‘direct visualization® by freeze fracture electron microscopy. The
main reason for the non-specific character of the static scattering is the size polydispersity.
Neglecting interactions, for a monodisperse dispersion of vesicles of internal radius R; and
external radius R, (so R, — R; = 8). we would expect for the scattered intensity:
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Eq. (27) indeed shows a series of maxima and minima when ¢ 1(q) is plotted versus ¢,
characteristic of the two radii: R, and R;. But for the very polydisperse situation typical for
the L4 phase, these maxima and minima are blurred out and nothing specific remains to be
exploited in the scattering. Static scattering alone cannot characterize unambiguously phases
of polydisperse vesicles.
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Fig. 12. L4 phase of a non-ionic (TX100, TX35) ternary system.
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3.1. Form factors

In the following it will be assumed that the particles are randomly oriented in the sample so
that the theoretical form factors for anisotropic particles have to be averaged over orientation.
Note that for spherically symmetric objects the form factor can be written as P(q) = F*(q),
where F(g) is the amplitude of the form factor.

1. Homogeneous sphere: The form factor amplitude of a homogeneous sphere was calculated
already in 1911 by Lord Rayleigh. For a sphere with radius R:
3[sin(gR) — g Rcos(¢g R)]

(gR) !

Sheu (1992) has also given analytical expressions for polydisperse spheres with the number
distribution given by, respectively, a box function, a triangular function, an exponential distri-
bution, a Gaussian distribution, a log-normal distribution, and a Schulz—Zimm distribution.

Bagger-Jorgensen et al. (1997) and Svaneborg and Pedersen (2002) ' have given expres-
sions for the form factor of a sphere with a scattering length density. which gradually decrease
at the sphere surface following a half-Gaussian distribution (see form factor 39 and the
example in Section 4 for an approximate expression).

(21)

Fi(g,R) =

2. Spherical shell: This form factor amplitude is obtained by subtracting the empty core with
a proper weighting by the volumes:

Fy(q) = V(R)F\(q.R))— V{.Rz)Fl(ff.Rzl‘ 22)
V(R)—V(Ry)
where V(R) =47 R*/3 and R, and R, are the outer and inner radius of the shell, respectively.
An infinitely thin shell with radius R has the form factor F>(g)" = sin(gR)/(g R).
Gradzielski et al. (1995) have given the expressions for a shell with a Gaussian radial
scattering length density profile.

3. Spherical concentric shells: This form factor amplitude is a generalization of the shell form

factor. Let R;, i = 1,..., N be the radii of the shells and p; be their scattering densities. With
this:
] f\r
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where M3 is the scattering mass or scattering volume of the particle, given by:

N
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i=2

Forster and Burger (1998) have recently considered core-shell particles with an algebraic
radial scattering length density profile which is piecewise of the form p(r) oc r“. The form
factors are given in terms of hypergeometric functions.

! Some errors in the paper by Bagger-Jorgensen et al. (1997) are corrected.
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