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Table S1. Different approaches used to fabricate wood-based structures.   

 

Technologies Techniques Fabrication approach Unique properties 

Molding 

RT drying 
Samples were left to dry at 

RT 
High-density structure 

Freeze-

casting 

Mold samples formed on 

cold controlled stage 

followed by lyophilization 

Aligned foam structure, low-

density structure 

Extrusion 

DIW 
Left to dry at RT, multiple 

extruders possible 
High-density structure 

DCW 

3D print onto a cold, 

controlled stage, followed 

by lyophilization 

Aligned foam structure, low-

density structure, thermal 

insulator 

Inkjet 

 

Drop on 

Demand 

(DoD) 

Inkjet 

2D printing on a substrate Patterned layer on a substrate 

Binder-jet 
Inkjet printing of CNC/XG 

onto continuous layer of WF 

Low-density structure and 

thermal insulator 
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Table S2. Ink compositions 

 

Name CNC [wt.%] XG [wt.%] WF [wt.%] Ref 

5% WF 9.1 0.075 5 
DIW/DCW 

Fig S1-3 

 

11.5% WF 8.5 0.069 11.5 

14.5% WF 8.2 0.067 14.5 

30% WF 6.7 0.055 30 

DW 0 0 20 

Fig S9 

0:1 1.2 0 20 

1:100 1.19 0.01 20 

1:10 1.18 0.02 20 

1:4 1.1 0.1 20 

3% 3 0.3 9 

Fig S10 

2% 2 0.2 9 

1% 1 0.1 9 

0.5% 0.5 0.05 9 

0.1% 0.1 0.01 9 

Pine CNC-LAB 3.5 0.07 11.5 
DIW/DCW 

Fig S11 
Maple CNC-LAB 3.5 0.07 11.5 

75 CNC-LAB 3.5 0.07 11.5 

Pine CNC-CF 8.2 0.07 11.5 DIW/DCW 

Fig S12 Maple CNC-CF 8.2 0.07 11.5 

     

Name CNC [wt.%] XG [wt.%] BYK 348 [wt.%] Ref 

Inkjet-CNC 1.5 0 0 Inkjet 

Binder-CNC 1.5 0 0.011 Binder jet 

Fig S13 Binder-XG 0 0.1 0.01 
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Figure S1. 

Rheology measurements of inks containing different concentration of WF (75, Pine, Maple) 

while the XG:CNC (1:122) ratio was kept constant. (Top) All inks exhibiting shear thinning 

behavior are presented, as are (Bottom) unprintable inks (too liquid or too viscous). 

Printing regime 
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Figure S2. 

Oscillation stress sweep of printable inks at f=1Hz. (Top) Low phase angles indicate “solid-

like” behavior while high phase angles indicate “liquid-like” behavior. (Bottom) Storage 

modulus indicating linear visco-elastic region up to ~100 Pa.  
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Table S3. Yield stress point (flow point) derived from oscillation stress sweep.   

 

% WF WF source Yield stress point [Pa] 

11.5% 

75 904 

Pine 200 

Maple 263 

14.5% 

75 414 

Pine 309 

Maple 336 

 

 

 

 

 

Figure S3. 

Oscillation frequency sweep of printable inks at τ=10Pa.  

 

 

 

  



     

7 

 

 

 

Figure S4. 

Cross-section images of engineered woods and a 3D-printed wood-based sample (DIW). 
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Figure S5. 

Close-up photo of Fig 1C, 3D DIW printing of multi-material. (A) Image showing final 

printed structure and (B) microscopy image showing smooth bonding between the two types 

of wood. 
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Figure S6. 

Microscopy images of CNC-CF ink jet drops and patterns printed on a silicon wafer: (A,B) 

200 dpi, (C) 1 layer at 600 dpi and (D) 5 layers at 600 dpi. 
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Figure S7. 

Optical profile measurements of CNC-CF ink jet drops on a silicon wafer substrate at (Top) 

200 dpi, showing uniformity reproducibility of droplets. (Bottom) Morphology measurements 

of a single drop: diameter of 55 µm and height of 40um at the center of the droplet and height 

of coffee ring effect edge was 75 nm.  
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Figure S8. 

(A) AFM image of a single CNC-CF ink jet drop on a silicon wafer substrate (B-C) zoom-in 

measurements. 
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Figure S9. 

(A) Stress-strain curves and (B-C) modulus and compressive strength derived from 

compression testing of Eucalyptus mold samples at different XG:CNC ratios (Table S2). (D) 

Photograph of molded wood samples. 
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Figure S10.  
(A) Photograph of freeze-cast molded wood foam samples. (B) Stress-strain curves and (C-D) 

modulus and compressive strength of samples prepared from inks with different binder:WF 

ratios, all containing a 1:10 XG:CNC ratio (Table S2). 
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Figure S11. 

(A) Photograph of printed samples (left: ’75’; right: ‘maple’) (B) Stress-strain curves and (C-

D) modulus and compressive strength derived from compression tests of wood DIW-printed 

with ink comprised of CNC-LAB and different concentrations of WF (Table S2). 
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Figure S12. 

(A) Photograph of DIW printed samples (B) Stress-strain curves and (C-D) modulus and 

compressive strength derived from compression tests performed on wood DIW-printed with 

ink comprised of CNC-CF and different concentrations of WF (Table S2). 
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Figure S13. 

Dependence of surface tension on surfactant concentration in Binder-CNC and Binder-XG 

inks (Table S2). 

 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 0.005 0.01 0.015 0.02

in
te

rf
ac

ia
l t

en
si

o
n

 [
m

N
/m

] 

Surfactant concentration [%] 

Binder-CNC

Binder-XG


